Weekend Project: A Custom IDA Loader Module for the
Hidden Bee Malware Family

msreverseengineering.com/blog/2018/9/2/weekend-project-a-custom-ida-loader-module-for-the-hidden-bee-malware-
family

September 2, 2018
e
September 2, 2018 Rolf Rolles

Here's a half-day project that | did this weekend for my own edification. Perhaps someone
will benefit from the source code in the future.

While reading hasherezade's research on the Hidden Bee malware family's custom file
format (samples here), | was struck with the thought that this use-case seemed particularly
well-suited for an IDA custom loader module. The IDA loader module approach has a few
advantages over the previous approach: it's fully automated, requiring no additional
programs, plugins, or scripts; the imports have proper names and type information, allowing
IDA's ordinary P.I.T. algorithms to propagate the information; and the user can relocate the
database to an arbitrary base address.

O Load a new file e

Load file C:\Users'Rolf\Downloads\b3eb576e028492 1886 7caefaal4 1 2ood as

Hidden Bee Custom Format [HELoad.py]
Binary file

Processor type

MetaPC (disassemble all opcodes) [metapc] - Set
Analysis
Loading segment 0x00000000 Kernel options 1| |Kernel options 2| Kernel options 3
Enabled
Loading offset |0x00000000 Indicator enabled Processor options =
Options
Loading options [] Load resources
Fill segment gaps Rename DLL entries
Create segments [] Manual load
Create FLAT group Create imports segment

Load as code segment

Corcel | [i

1/4

https://www.msreverseengineering.com/blog/2018/9/2/weekend-project-a-custom-ida-loader-module-for-the-hidden-bee-malware-family
http://10.10.0.46/blog?author=5111cf9ee4b0a36262da10df
https://github.com/RolfRolles/HiddenBeeLoader/blob/master/HBLoad.py
https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://github.com/InQuest/malware-samples

Given that custom loaders are the only variety of IDA plugin that | haven't yet written, this
seemed like a nice small-scope project for the weekend to round out my knowledge. My
very minor contribution with this entry is the IDA custom loader for the Hidden Bee format,
which can be found on my _GitHub. The IDAPython code requires that Ero Carrera's pefile
module be installed, say via pip.

Hidden Bee

In brief, the Hidden Bee malware family distributes payloads in a customized file format,
which is a majorly stripped-down version of the PE file format. You can see all of the details
in hasherezade's write-up. | did no original malware analysis for this project; | merely read
her blog entry, figured out how to convert the details into a loader plugin, and then
debugged it against the sample links she gave. As usual, Chris Eagle's The IDA Pro Book,
2nd Edition was useful. Some details about the loader API have changed with the IDA 7.x
API port, but Hex-Rays' porting guide was informative, and the loader examples in the IDA
7.1 SDK have also been ported to the newest API.

IDA Loader Modules in Brief

An IDA loader module is simply an IDA plugin with a well-defined interface. IDA loader
modules will be called when loading any file into IDA. They have two primary
responsibilities:

1. Given access to the bytes of a file, determine whether the file is of a format that the
loader module can handle. Every IDA loader module must export a function named
accept_file for this purpose. This function returns 0 if it can't recognize the file format,
or a non-zero value if it can.

2. If the file type can be loaded by the module, and the user chooses to use this module
to load the file, perform the actual loading process e.g. creating segments within the
IDB, copying bytes out of the file into the segments, processing relocations, parsing
imports, adding entrypoints, and so on. Every IDA loader module must export a
function named load_file for this purpose.

Both of these functions take as input an "linput_t *" object that behaves like a C FILE *
object, which supports seeking to specified positions, reading byte arrays out of the file, and
so on. Since Hidden Bee's format includes relocations, | chose to implement a third,
optional IDA loader module function: move_segm. This function will be called by the IDA
kernel when the user requests that the database be relocated to another address.

Writing a Loader Module for Hidden Bee

After reading the aforementioned write-up, | figured that the only difficulties in loading
Hidden Bee images in IDA would be A) that the Hidden Bee customized header specifies
APl imports via hash rather than by name, and B) that it includes relocation information.

2/4

https://github.com/RolfRolles/HiddenBeeLoader/blob/master/HBLoad.py
https://github.com/erocarrera/pefile
https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://nostarch.com/idapro2.htm
https://www.hex-rays.com/products/ida/7.0/docs/api70_porting_guide.shtml
https://www.hex-rays.com/products/ida/support/idapython_docs/ida_idaapi.loader_input_t-class.html

Relocations and import lookup via hash are simple enough conceptually, but the precise
details about how best to integrate them with IDA are not obvious. Sadly, | did not feel
confident in these tasks even after reading the loader module examples in the SDK. Four
out of the five hours | spent on this project were reverse engineering
%IDADIR%\loaders\pe.dll -- the loader module for the PE file format -- focusing in particular
on its handling of relocations and imports. As expected, the results are idiosyncratic and |
don't expect them to generalize well.

Imports

For dealing with the imports by hash, hasherezade's toolchain ultimately generates a textual
file with the addresses of the import hash names and their corresponding plaintext API
string. Then, she uses one of her other plugins to create repeating comments at the
addresses of the import hash DWORDs. Instead, | wanted IDA to show me the import
information the same way it would in a normal binary -- i.e., | wanted IDA to set the proper
type signature on each import. | figured this might be difficult, but after a few hours reverse
engineering the virtual functions for the pe_import_visitor_t class (partially documented in
%IDASDK%\Idr\pe\common.hpp), it turns out that all you have to do to trigger this
functionality is simply to set the name of the DWORD to something from a loaded type
library.

Here's a screenshot showing IDA successfully applying the type information to the APIs:

HIDDEN.E: 208000585 ; FARPROC _ stdcall GetProcAddress(HMODULE hModule, LPCSTR lpProcName)
HIDDEN.E: 288888385 GetProcAddress dd @CF31BB1Fh ; DATA XREF: sub BEDHETLr
HIDDEN. B : B2aa2885 ; start+25Alr
HIDDEN.E:228020289 ; wvoid _ stdcall Sleep({DWORD dwMilliseconds)

HIDDEN.E:2@a288389 Sleep dd BE19ESFEA ; DATA XREF: sub 99E+27ir
HIDDEN.E:e@a88030 ; DWORD _ stdcall GetLastError()

HIDDEN.E:eaaa8e30 GetLastError dd 2882EAE3h ; DATA XREF: sub_ ACD+H1A4r
HIDDEN. B : epaaaasD 3 sub _DBF+374r ...
HIDDEN.E: 22828091 ; HMODULE _ stdcall LoadlLibraryW(LPCWSTR lpLibFileName)

HIDDEN.E: 80806891 LoadlibraryW dd SFBFF111lh ; DATA XREF: sub ACD4FLr
HIDDEN.B: 28888805 ; BOOL _ stdcall CloseHandle(HANDLE hObject)

HIDDEN.E:2ea828095 CloseHandle dd 3878CABTh ; DATA XREF: sub_72B41A44r
HIDDEN. B : @2aa2895 ; start+dedr ...
HIDDEN.E: 22888899 ; DWORD _ stdcall ResumeThread({HANDLE hThread)

HIDDEN.E:@@888829 ResumeThread dd 74162A6Eh ; DATA XREF: start+4BAlr
Relocations

For the IMAGE_REL BASED_ HIGHLOW relocations common in PE files, each can
ultimately be processed via straightforward translation of the relocation information into
IDA's fixup_data_t data structures, and then passing them to the set_fixup API. The SDK
examples did not give a straightforward idea of what | needed to do to handle PE
IMAGE_REL_BASED_HIGHLOW relocations properly, so | reverse engineered pe.dll to

3/4

figure out exactly what needed to happen with the relocations. (Fortunately, reverse
engineering IDA is trivial due to the availability of its SDK.) If you wish, you can see the
results in the do_reloc function. Don't ask me to explain why it works; however, it does work.

Here's a before and after comparison of rebasing the database from base address 0x0 to
base address 0x12340000. Note particularly that the red underlined bytes change. Before:

“ IDA - b3eb576e02849218867caefaald 2ccd C\Users\Relf\Downloads\ b3eb576e02849218867caefaald 2ccd

File = Edit Jump

Search View Debugger Options Windows Help

s @B @ chol el ¥ X » O O bodebugger

~| el B

5 Dy Copy Ctrl+C

a Begin selection Alt+L

' Select all
h Select identifier Shift+Enter
ni Export data Shift+E

sk Code C

1 g Data D

z @F Structvar.. Alt+Q

d .h'i' Strings 4
s # Array... Mumpad-+*
s 2 Undefine]

3 ﬁ‘ Rename N

s

4 Operand type L4
5 Comments L4
& Segments 3
3 Structs 3
Il Functions L4
z Patch program L4
q Other L4
¥ Plugins L4
sub_70A

sub_72B

sub_80D

sub_8ED

sub_983

sub_99E
After:
HIDDEN.B:12341223 6A
HIDDEM.B:12341225 &8
HIDDEMN.B:12341224 FF
HIDDEM.B:1234122D BA
HIDDEN.B:1234122F FF
HIDDEN.B:12341235 85
HIDDEN.B:12341237 89
HIDDEM.B:1234123A 74
HIDDEM.B:1234123C FF
HIDDEM.B:1234123F &3
HIDDEMN.B:12341242 56
HIDDEN.B:12341243 5@
HIDDEN.B:12341244 EB
HIDDEN.B:12341249 BB
HIDDEM.B:1234124C 83
HIDDEM.B:1234124F 8D
HIDDEM.B:12341252 89
HIDDEM.B:12341255 BA
HIDDEMN.B:12341257 89
HIDDEN.B:1234125A 59
HIDDEN.B:1234125B FF
HIDDEN.B:1234125E 68
HIDDEM.B:12341263 BA
HIDDEM.B:12341265 FF
HIDDEM.B:12341268 FF

O 7 x IDA View-A %] @ Hex View-1 Structures [?3 Enums
~ t * HIDDEN.B:@BRE1219 74 53 jz short loc_126E
' HIDDEN.B: 88881218 89 45 FC mov [ebp+lpAddress], eax
: HIDDEN.B:@@@8121E 3D 34 38 lea esi, [eaxtedi]
HIDDEN.B:08881221 EB DE jmp short loc_1281
! HIDDEN.B:@B@O1223 e
\ |HIDDEN.B:@e8e1223
| |HIDDEN.B:28@01223 loc_1223: ; CODE XREF: start+39B1]
*° |4IDDEN.B:e@RE1223 BA 48 push 4gh ; '@ ; flProtect
HIDDEN.B: 86881225 63 @@ 18 60 &8 push 1666h ; flallocationType
HIDDEN.B:@@@8122A FF 76 B2 push dword ptr [esi+3] ; dwsize
HIDDEN.B: 82881220 6A 88 push @ ; lpAddress
HIDDEN.B:@@@@122F FF 15 Bl @@ @0 09 call large VirtualAlloc
HIDDEN.B:080@1235 85 (@ ™ test eax, eax
HIDDEN.B: 88881237 89 45 FC mov [ebp+lpAddress], eax
HIDDEN.B:0@@@123A 74 32 jz short loc_126E
HIDDEN.B:888@123C FF 76 B3 push dword ptr [esi+d]
HIDDEN.B:@@@@123F 83 C6 1@ add esi, 1eh
Create segment... 242 56 push esi
243 58 push eax
Edit segment... Alt+S 244 £8 19 F2 FF FF call sub_s62
Delete segment... 249 8B 45 B3 mov eax, [ebp+arg_8]
24C 83 4 BC add esp, @8Ch
Move current segment.. 24F 8D 55 F@ lea edx, [ebp+ProcessInformation.dwProcessId]
Rebase program... 252 89 7D F4 mov [ebp+ProcessInformation.dwThreadId], edi
255 6A 01 push 1
Change segri— "L 327 257 89 45 F@ mov [ebp+ProcessInformation.dwProcessId], eax
Change segment register value.., Alt+G 254 59 pop ecx
25B FF 55 FC call [ebp+lpAddress]
S T (S e J5E 68 @@ B8 B0 88 push &eeeh ; dwFreeType
HIDDEN.B: 80801263 6A B8 push %] ; dwSize
HIDDEN.B:0@@81265 FF 75 FC push [ebp+lpAddress] ; lpAddress
HIDDEN.B:@@@81268 FF 15 DD @@ 2o @8 call large VirtualFree
HIDDEN.B:0808126E —
4. push 4h ; @' ; TlProtect
62 16 06 b6 push 1ea6h ; TlallocationType
76 B8 push dword ptr [esi+8] ; dwsize
B8 push 8 ; lpAddress
15 Bl @8 34 12 call VirtualAlloc
L]
ce test eax, eax
45 FC mow [ebp+lpAddress], eax
32 jz short loc_1234126E
76 B8 push dword ptr [esi+8]
Ce 18 add esi, 18h
push esi
push eax
19 F2 FF FF call sub_12348452
45 @8 mov eax, [ebpt+arg_ 8]
C4 ac add esp, BCh
55 F@ lea edx, [ebp+ProcessInformation.dwProcessId]
7D F4 mov [ebp+ProcessInformation.dwThreadId], edi
e1 push 1
45 F@ mov [ebp+ProcessInformation.dwProcessId], eax
pop ECX
55 FC call [ebp+lpAddress)
ee 3e e e. push geaah ; dwFreeType
2e push @ ; dwsize
75 FC push [ebp+lpAddress) ; lpAddress
15 call VirtualFree

DO @@ 34 12

4/4

