Reversing malware in a custom format: Hidden Bee
elements

blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/

hasherezade August 30, 2018

Malware can be made of many components. Often, we encounter macros and scripts that
work as malicious downloaders. Some functionalities can also be achieved by position-
independent code—so-called shellcode. But when it comes to more complex elements or
core modules, we almost take it for granted that it will be a PE file that is a native Windows
executable format.

The reason for this is simple: It is much easier to provide complex functionality within a PE
file than within a shellcode. PE format has a well-defined structure, allowing for much more
flexibility. We have certain headers that define what imports should be loaded and where, as
well as how the relocations should be applied. This is a default format generated when we
compile applications for Windows, and its structure is then used by Windows Loader to load
and execute our application. Even when the malware authors write custom loaders, they are
mostly for the PE format.

However, sometimes we find exceptions. Last time, when we analyzed payloads related to
Hidden Bee (dropped by the Underminer exploit kit), we noticed something unusual. There
were two payloads dropped that didn’t follow the PE format. Yet, their structure looked well

1/9

https://blog.malwarebytes.com/threat-analysis/2018/08/reversing-malware-in-a-custom-format-hidden-bee-elements/
https://blog.malwarebytes.com/threat-analysis/2018/07/hidden-bee-miner-delivered-via-improved-drive-by-download-toolkit/

organized and more complex than we usually encounter dealing with pieces of shellcode.
We decided to take a closer look and discovered that the authors of this malware actually
created their own executable format, following a consistent structure.

Overview

The first payload: b3eb576e02849218867caefaa0412ccd (with .wasm extension, imitating
Web Assembly) is a loader, downloading and unpacking a Cabinet file:

@ 52he3kf2g2ribl5:1as2ul198 k. wasm |

Offsec(h) 00 01 02 03 04 05 06 07 08 0% Q& OB OC OD QE OF

00000000 P01 03 00 10 18 00 61 OO0 74 OE 00 00 S8 1E OO0 OO0 |[Aururuey- - S iy
DOODOD10 [C8 01 00 00 90 1C 00 00 05 00 6E 74 €4 &C &C 2F |a ntdll.
00000020 g4 &C oC 00 1B OO0 4B 45 52 4E 45 4C 33 32 ZE 64 .. .KERNEL32 .¢

Q0000030 |BC &C 00 04 00 41 44 56 41 50 49 33 32 2ZE 649 60 RESEraRnyy el
00000040, ||C 00 04 00 43 61 62 69 6E 65 T4 2ZE 64 6C &6C OO0 nRSec] o= ois iR
g000o00sa 103 00 4D 53 56 43 52 54 2E 64 6C &C 00 00 OO0 OO0 [Fchcxties g b Ry
Q00000080 OO F9 58 Be 04 SE 96 93 1C SD BE 593 1C CL4 96 893
00000070 1C 80 75 82 0D FE FO BF 5F 56 F2 39 D6 B3 BO DE . .u, .0dz vAedz T

The second payload: 11310b509f8bf86daa5577758e9d1eb5, unpacked from the Cabinet:

& coresdb

Offsec(h) 00 01 02 03 04 05 06 O7 08 09 04 OB OC OD QOE OF

00000000 18 00 &0 00 &2 2A 00 00 oC 50 00 OC|NEEEEE “.b*..3E..
00000010 78 e . .xM....ntdll.
00000020 07 H11...MSVCRT.d11
80000030 45 ...KERNEL32.d11.
00000040 32 ..WS2_32.d11...J
00000050 &1 phlpapi.dll.....

000000BD 81 74 82 OD SE 96 93 1C CA 96 93 1C D1 FE FO EF .t,."-"_.E-".Ntdd
0Qo0o00070 4F 5B A8 &3 SD BE 93 1C AEB TO 80 50 2C 66 48 2E O cte™. p.P,fH.

We can see at first that in contrast to most shellcodes, it does not start from a code, but from
some headers. Comparing both modules, we can see that the header has the same structure
in both cases.

Headers

We took a closer look to decipher the meaning of particular fields in the header.

2/9

https://www.virustotal.com/#/file/76b70f1dfd64958fca7ab3e18fffe6d551474c2b25aaa9515181dec6ae112895/details
https://www.virustotal.com/#/file/c1a6df241239359731c671203925a8265cf82a0c8c20c94d57a6a1ed09dec289/details

E core.sdb

Offzec(h)y 00 01 02 03 04 O5 06 O7 OB 0% OA OB OC OD OE OF

00000000 P01 03 00 10 18 00 60 00 &2 24 00 00 SC 50 0O Oq

00000010 24 03 00 00 78 4D 00 Od 13 00 eE 74 &4 eC &C ZE o

00000020 64 &C eC OO0 07 OO0 4D 53 56 43 52 54 Z2E 64 &C &C dll...MS5VCET.d1ll
00000030 OO0 1E 00 4B 45 52 4E 45 4C 33 32 Z2E 64 eC &C 00 ...EEENEL3Z.d1l.
00000040 OC 00 57 53 32 5F 33 32 ZE 64 6C 6C 00 01 00 89 ..W52 32.d11...1

00000050 70 &8 6C TO 61 TO 69 ZE €4 oC &C 00 OO0 00 OO0 00 phlpapi.dll.....
00000060 81 74 82 OD SE 96 93 1C CA 96 93 1C D1 FE FO EF .t,."-"_E-“.Htgdd
00000070 4F 5B &8 63 8D BE 93 1C A8 70 80 50 2C 66 48 2ZE O cte™. p.F,fH.
00000080 F8 S5C EF 6E 72 3C 94 7C OB OF BS 45 D6 94 93 1C Fidnr<”|..pad~ .
00000080 7T E2 E1 FS 8% S5F BT 25 8D &4F D2 7D FS 26 BD &B Wﬁéﬁh_']fiﬁ}ﬁ&”k

The first DWORD: 0x10000301 is the same in both. We didn’t find this number
corresponding to any of the pieces within the module. So, we assume it is a magic number
that makes an identifier of this format.

Next, two WORDs are offsets to elements related to loading the imports. The first one (0x18)

points to the list of DLLs. The second block (0x60) looks more mysterious at first. Its
meaning can be understood when we load the module in IDA. We can see the cross-
references to those fields:

0000000Y dd 8
600860868 dword 68 dd 68D827481h ;: DATA XREF: sub 3F7F+AOLr
00000060 ¢ A O

d0p000e0B6 Y, xrefs to dword_60

00000068

aagaaasc | | Direction Typ Address Text

ABAAAAT7 e . 1 sub 3F7F+A9

68008070 | 32 Do.. r sub_3F7F+BD call ds:dword_60

08000074 Do.. r sub 3FTF+D1 call ds:dword_60

gggggg;g Do.. r sub 3FTF+17F call ds:dword_60

GA6RERE B Do.. r sub 3F7F+1B8 call ds:dword_60

AREEAARY Do.. r sub 3F7F+314 call ds:dword_60

We see that they are used as IAT—they are supposed to be filled with the addresses to the
imported functions:

000840838 push ebhx

agea4 A3 push 3Fh ; *%°
68084 83E push edi

a8a8La2c call ds:dword 68
aaeaL a2 add esp, BCh
A0804A45 mou [ebp+var_18], eax
afaaLaus test eax, eax

aaa84 84 jnz Short loc_ 4@5C
aa08484C push ebhx

aa0a4a4D push 2%h ; '#°
a0a08484F push edi

G00040% 0 call d5:hwurd_6ﬂ

The next value is a DWORD (0x2A62). If we follow it in IDA, we see that it leads to the
beginning of a new function:

3/9

L T B

t00088ZA62 push ebp

t00088ZAG63 mowv ebp, esp

- A88B2AGS sub esp, 22Ch
:B8802A6E call sub_2986
-@aaaznsa test al, al
gaae2ns2 jnz short loc_ 2A7D
A8082A7Y call sub_29a3

- 88882A79 test eax, eax
t0008ZA7B jz short loc_ZA8Y4
A88aZAvD

88882A7D loc_2A7D: ; CODE XREF: segBop:epe02a727T]
- B88e2ATD xor eax, eax
tB8882A7F jmp locret 2BBC

This function is not referenced by any other functions so we can suspect that it is the
program’s Entry Point.

The meaning of the next value (0x509C) is easy to guess because it is the same as the size
of the full module.

Then, we have the last two DWORDs of the header. The second DWORD (0x4D78) leads to
the structure that is very similar to the PE’s relocations. We can guess that it must be a
relocation table of the module, and the previous DWORD specifies its size.

00004D70 ...
00004DED e LY . g) .
00004D30) TS T o) TS T
00004DRO 7) LI T
00004DED e, =, D=, 0=, .
00004DCO % . &%, % ..+..
00004DDO =4, M+,]+ .ut. .
00004DED A R - B - T
00004DFO 4..d4 Lk, ..,

This is how we were able to reconstruct the full header:

typedef struct {
DWORD magic;

WORD dll_list;
WORD iat;
DWORD ep;
DWORD mod_size;

DWORD relocs_size;

DWORD relocs;
} t_bee_hdr;

Imports

As we know from the header, the list of the DLLs starts at the offset 0x18. We can see that
each of the DLL’'s names are prepended with a number:

4/9

Cffset(h) 00 01 02 03 04 05 06 07 OB 09 0O& OB OC OD OE OF

00000000 01 03 00 10 18 00 60 00 &2 2R 00 00 9C 50 00 00 “.b*..3P..
00000010 ¢...xM..[..ntdll.
00000020 H11...MSVCRT.d1l
00000030 ...KERNEL32.d11l.
00000040 ..W52_32.d1l...d
00000050 phlpapi.dll.....

00000060 81 74 82 0D SE 96 93 1C CA 96 93 1C D1 FE FO EF .t,.~-".E-".Ngdd

The numbers are not corresponding with a DLL name: In two different modules, the same
DLL had different numbers assigned. But if we sum up all the numbers, we find that their
total sum is the same as the number of DWORDs in the IAT. So, we can make an educated
guess that those numbers are specifying how many functions will be imported from a
particular DLL.

We can describe it as the following structure (where the name’s length is not specified):
typedef struct {
WORD func_count;
char name;
} t_dll_name;
Then, the IAT comes as a list of DWORDs:

Q0000050 70 88 eC 7O 61 7O &% ZE 64 oC &C 00 OO0 Q0 OO0 00 phlpaai.dll

00000060 T, . ~—".E—".Htdd
00000070 o[cts". p.PB,fH.
00000080 Frndnr<”|..pad~".
00000090 waadks -)TIN}G&~K
000000RD kiz~.u,.0,,.e=t]
000000BD FEfdesFia. &6=.9.
000000co & td—|U. .~ Aa.:“HE
00000000 B ..XE.gv.L HT. 50"
000000ED 2 —r.0w~3—.,8.DEF
000000FD 5 B K?.Z.»1D.—. %...d
00000100 4 511, | . «AHa0XG " uTH
00000110 7 L1~*=szH[I+ciszH
00000120 A3 .C-gs5 1&~. EL.EpS
00000130 B6 T@~. [Lisrdm!na4.T
00000140 F3 LC(aNI?;£Y-6.1L]]
00000150 55 ™ | K5 RS . 2U0wWS .
00000160 OF 100/ “®+JIwd . Sc—0
00000170 L. =IU¢< ¢ E.SV35W%

It is common in malware that when the function’s names are not given as an explicit string,
they are imported by checksum. The same is done in this case. Guessing the appropriate
function that was used for calculating the checksum can be more difficult. Fortunately, we
found it in the loader component:

5/9

DWORD checksum(char *func_name)

{
DWORD result = 0x1505;

while (*func_name)
result = *func_name++ + 33 * result;
return result;

}
Knowing that we paired appropriate checksums with the function’s names:

Ws2_32_4d11
6128c683
3h3fhede
f32dh%ed
494chifd4
Yc?49%e2
583h354h WSAloctl
559f15%a WEASocketh
£f2a7751 - htons
JAd?54YE gethosthyname
bliaehdZ2f inet_addr
f?a??a : htonl
£f32de??a = WSASend

1 : iphlpapi.dll
be?58fcS @ GetAdaptersInfo

WEAStartup
WSAGetLastError
WSARecw
closesocket
bind

Once the address of the function is retrieved, it is stored in the IAT in place of the checksum.

Relocations

Creating a relocation table is simple. It consists of the list of DWORDs that are identifying the
offsets of the places in the code to which we should add the base where the module has
been loaded. Without relocations applied, the module will crash (so, it is not position-
independent like a typical shellcode).

Comparison to PE format

While the PE format is complex, with a variety of headers, this one contains only essentials.
Most of the information that is usually stored in a PE header is completely omitted here.

You can see a PE format visualized by Ange Albertini here.

6/9

https://raw.githubusercontent.com/corkami/pics/master/binary/PE101.png

Compare it with the visualization of the currently analyzed format:

Offset (n) OO0 Ol 02 O3 04 05 06 07 O 09 DA OB OC OD OE OF
00000000 01 03 00 10|18 ool &1 coff7A oE oo ocollse 1E 0o oo 2.z...%
gooooo1o [C8 01 G0 00]90 iC 00 00 [,

05 00 6E 74 64 &C &C 2E ..ntdll.
00000020 64 6C 6C 00 1B 00 4B 45 52 4FE 45 4C 33 32 2E 64 dll...KERNEL32.d
00000030 6C 6C 00 04 00 41 44 56 41 50 49 33 32 2E 64 6C 11...ADVAPIS2.dl
00000040 6C 00 04 00 43 61 &2 &9 &E &5 74 2E 64 &C 6C 00 1...Cabinet.dll.
00000050 03 00 4D 53 56 43 52 54 2E &4 6C &C 00 00 00 00 ..MSVCRT.dll....

00 .

00000060 F9 58 B6 04 SE 96 93 1C 9D BB 93 1C Ch 96 93 GXI.”—".ts“.E-"
00000070 1C 90 75 82 0D FB FO BF S5F 56 F2 39 D& B3 BO DE ..u,.0dz VAodz°T
00000100 B6& 87 FO 96 7C 3D AD 39 0D C7 OE EQ 3D &4 A1 30 9#d-|=.9.C.5=d"0
00000110 OO0 00 00 C3 55 8B EC 83 EC 14 56 BB 75 08 57 33 ...A0<&.5.Vcu.W3
00000120 FF 57 57 57 57 &8 50 1A 00 00 89 7D FC FF 56 04 WWWWhP...&}d V.
00001C80 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +ueuenenenrnennn
00001C90 26 01 00 00 3F 01 00 00 CF 01 00 00 D& 01 00 00 &...2...0...0
00001CRO 1F 02 00 00 26 02 00 00 92 02 00 00 RS 02 00 00 LBt
D0001E40 43 14 00 00 49 14 00 00 4F 14 00 00 55 14 00 00 C...I...0...U
DO001ES0 5B 14 00 00 &1 14 00 00 - T

Static analysis

HEADERS

DLLs

{functions_count,
dll_name}

CODE

Entry Point = OxE7A

RELOCATIONS

Size =0x1C8

Module Size =0x1E58

We can load this code into IDA as a blob of raw code. However, we will be missing important

information. Due to the fact that the file doesn’t follow a PE structure, and its import table is
non-standard, we will have a hard time understanding which API calls are being made at
which offset. To solve this problem, | made a tool that resolves hashes into function names
and generates a TAG file to mark the offsets where each function’s address is going to be

filled.

[=] core sdb tag E3 l

(WU

P VB Y 8

[T s v

ED;memchr
64;strcmp
68:stCrcpy
bc;tolower
70; snwprintcf
T4r=trlen
T8;ZwlpenFile
TerZwClose
B0; snprintf
B4ratoi

7/9

https://blog.malwarebytes.com/wp-content/uploads/2018/08/format.png
https://github.com/hasherezade/bee_parser

Those tags can be loaded into IDA using an IEL plugin:

Segaaa:
Segaaa:
SEgaea:
Segaea:
SEegaeg:
Segiee:
Seghae:
Seghae:
Segaaa:
Segaaa:
SEgaea:
Segaea:
SEegaeg:
Segiee:
Seghae:
Seghae:

aaaaae60
aaaaae6e
aaaaaene
aagaapcd
gaaoapod
SR EEEE B
epeaae68
eaaaaaaC
aaaaaaaC
aaaa0e 7
aaaane7a
aaaa0e 78
gagaanT4
BEeeaE T4
aaeaae 78
aaeaae 78

dword_68

dword_64
dword 68
dword_6C

dword_7e

dword 74

dword 78

dd eD827481h

dd 1C93965Eh

dd 1C9396CAM

; DATA XREF: sub 3F7F+a894r
; sub 3F7F+BDMr ...

3 memchr

; DATA XREF: sub_4758ir

3 stromp

; DATA XREF: sub 47524r

3 strcpy

dd BEFFRFEDLh ; DATA XREF: sub_365F:loc_369Eir

dd B3AB5B4Fh

dd 1C93BBIDh

dd SB987BARh

3 tolower

; DATA XREF: sub 38CF+2
; sub_33BD4254r ...

3 _snwprintf

; DATA XREF: sub 474Cir
; strlen

; DATA XREF: sub 20C2+49.r
3 ZwDpenFile

%3]

Having all the API functions tagged, it is much easier to understand which actions are
performed by the module. Here, for example, we can see that it will be establishing the
connection with the C2 server:

aaead2Es
aaead42ER
aaead2Es
aaead42ES
aaead42ET
aapad2ER
2apa42ER
eaead2ER
aaeed42Fl
aaead2rs
aaead2Fs
aapad2Fe

arg_@=
arg_4=

push
push

loc_42E
call
mowv
cmp
mov

jnz

dword ptr 4
dword ptr B8

esi

[esp+itarg_8)

B:
ds:dword_164

esi, [esptitarg 4]

eax, @FFFFFFFFh
[esi+d], eax
short loc_4328

; inet_addr

Ll s 5

|eeRa2FD push
eeepazal call
agee43e7 test

Dynamic analysis

[esp+d+arg_ 8]
ds:dword_168
eax, eax

; gethostbyname

This format is custom, so it is not supported by the typical tools for analysis. However, after
understanding it, we can write our own tools, such as the parser for the headers and loader
that will help to run this format and analyze it dynamically.

In contrast to PE, the module doesn’t have any sections. So, we need to load it in a
continuous memory region with RWX (read-write-execute) access. Walking through the
relocations list, we will add the value of the base at which the module was loaded to the
listed addresses. Then, we have to resolve the imported functions by their hashes and fill the

8/9

https://github.com/hasherezade/ida_ifl

addresses in the thunks. After preparing the stage, it just needs to jump at the Entry Point of
the module. We will load the prepared loader under the debugger and follow to the entry
point of the loaded module.

Simple but rare

The elements described here are pretty simple—they serve as a first stage of the full
malware package, downloading other pieces and injecting them into processes. However,
what makes them interesting is the fact that their authors have shown some creativity and
decided to invent a custom format that is less complex than a full-fledged PE, but goes a
step further than a typical piece of shellcode.

Such module, in contrast to independent shellcode, is not self-sufficient and cannot be
loaded in a trivial way, but must be parsed first. Given the fact that the format is custom, it is
not supported by existing tools. This is where programming skills come in handy for a
malware analyst.

Fortunately, fully custom formats are rather uncommon in the malware world; usually, authors
rely heavily on existing formats, from time to time corrupting or customizing selected parts of
PE headers.

9/9

