Interesting hidden threat since years ?

P marcoramilli.com/2018/08/20/interesting-hidden-threat-since-years/

View all posts by marcoramilli August 20, 2018

History ©

First Seen In The Wild 2016-12-04 17:35:40
First Submission 2018-08-14 13:19:26
Last Submission 2018-08-14 21:08:47
Last Analysis 2018-08-14 21:08:47
Earliest Member Modification 2018-08-14 11:37:50
Latest Member Modification 2018-08-14 11:37:50

Today I'd like to share the following reverse engineering path since it ended up to be more
complex respect what | thought. The full path took me about hours work and the sample
covers many obfuscation steps and implementation languages. During the analysis time only
really few Antivirus (6 out of 60) were able to “detect” the sample. Actually none really
detected it, but some AVs triggered “generic unwanted software” signature, without being
able to really figure it out. As usually | am not going to show you who was able to detect it
compared to the one who wasn't, since | wont ending on wrong a declarations such as (for
example): “Marco said that X is better than Y”. Anyway, having the hash file | believe it
would be enough to search for such information.

M & engines detected this file
. ERATL

a3 2 T 10 1R T T8 1 3y P PN 1 S Dot

LY;

AntiVirus Coverage

The Sample (SHA256:
e5c67daef2226a9e042837f6fad5b338d730e7d241ae0786d091895b2a1b8681) presents
itself as a JAR file. The first thought that you might have as experienced malware reverse

1/8


https://marcoramilli.com/2018/08/20/interesting-hidden-threat-since-years/
https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/10c59-screen2bshot2b2018-08-152bat2b08-11-17.png?ssl=1

engineer would be: “Ok, another byte code reversing night, easy.. just put focus and debug
on it...”. BUT surprisingly when you decompile the sample you read the following class !

Stage1: JAR invoking JavaScript

A Java Method that invokes (through evals) an embedded “Javascript” file ! This is totally
interesting stuff :D. Let’s follow up on stages and see where it goes. The extracted Javascript
(stage 2) looks like the following image. The “O00000” obfuscation technique have been
used. Personally | do not like this obfuscation technique it's harder to reverse respect to
different obfuscation techniques, even the CTR-F takes confused on substrings, but we need
to figure out what it does, so let’s try to manually substitute every string and watch-out for
matching substrings (in order words %s/O00000/varName/g wont work at all.

Stage 2: evaluated Javacript (obfuscated)

Manually substitution takes “forever” if you do not have a substitution framework which asks
you for a string, it replace such string (and not a substring) and eventually represents the

2/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/9e873-0.png?ssl=1
https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/2e8b1-1.png?ssl=1

new beautified JavaScript. After many substitutions (I really have no idea how many :D) you
land on a quite readable JavaScript as the following one (click on it to make it bigger).

Stage 2: Manually Deobfuscated JavaScript

What is interesting (at least in my personal point of view) is the way the attacker (ab)used the
JS-JVM integration. JavaScript takes the Java context by meaning it might use Java
functions calling contextual java classes. In this stage the JavaScript is loading an encrypted
content from the original JAR, using a KEY decrypts such a content and finally loads it
(Dynamic Class Loader) on memory in order to fire it up as a new Java code. The used
encryption algorithm is AES and everything we need to decrypt is in this file, so let’s build up
a simple python script to print our decryption parameters. The following image shows the
decoding script made to easily reconstruct AES-KEY and surrounded parameters. NB: The
written python code is not for production, is not protected and full of imprecisions. | made it
up just for decode AES key and such, so don'’t judge it, take it as a known weak but working
dirty code.

3/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/33825-screen2bshot2b2018-08-152bat2b11-42-14.png?ssl=1

Python Script to Decode AES-KEY

We now have every decoding parameter, we just need to decrypt the classes by using the
following data:
e ClassName
Resource (a.k.a package in where it will be contextualised)
Byte to be decrypted
Secret Key
Byte Length to be decrypted

A Simple Java Decrypter has been developed following the original Malware code. Once run,
the following code was decrypted.

4/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/0c7a0-decoding4.png?ssl=1
https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/5b56b-screen2bshot2b2018-08-162bat2b06-22-14.png?ssl=1

Stage 3 Decrypted JavaClass

Here my favourite point. As you might appreciate from the previous image we are facing a
new stage (Stage 3). What is interesting about this new stage is in the way it reflect the old
code. It is a defacto replica of the Stage 2. We have new classes to be decrypted (red tag on
the image), the same algorithm (orange label on the image), a new KEY (this time is not
derived by algorithm as was in Stage 2 but simply in clear text, orange tag on the image) and
the same reflective technique in which attacker dynamically loads memory decrypted content
on Java.loader and uses it to decrypt again a further step, and after that it replies the code
again and again. There is an interesting difference although, this stage builds up a new in
memory stage (let’s call Stage 4) by adding static GZIpped contents at the end of encrypted
section (light blue tag on image). By using that technique the attacker can reach as many
decryption stages as he desires.

At the end of the decryption loop (which took a while, really ) the sample saves (or drops
from itself, if you wish) an additional file placed in AppData — Local — Temp named:
_ARandomDecimalNumber.class. This .class is actually a JAR file carrying a whole function
set. The final stage before ending up runs the following command:

java -jar _ARandomDecimalNumber.class

The execution of such a command drops on local HardDrive (AppData-Local-Temp) three
new files named: RetrieveRandomNumber.vbs (2x) and RandomName.reg. The following
image represents a simple ‘cat’ command on the just dropped files.

g — T cos-eis — fimp — -psh — 1177

On Final Stage VBS Run Files

5/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/64cde-7externalvbs_scriptusage.png?ssl=1

It's quite funny to see the attacker needed a new language script (he already needed Java,
as original entry point, Javascript as payload decrypt and now he is using VBS ! ) to query
WMI in order to retrieve installed AntiVirus and Installed Firewall information. Significative
the choice to use a .reg file to enumerate tons of security tools that have been widely used
by analysts to analyse Malware. The attacker enumerates 571 possible analysis tools that
should not be present on the target machine (Victim). Brave, but not neat at all (on my
personal point of view). The sample does not evade the system but it forces the System
Kill of such a process independently if they are installed or not, just like Brute force Killing
process. The samples enters in a big loop where it launches 571 sigKill one for each
enumerated (.reg) analysis program. It copies through xcopy.exe the entire Java VM into
AppData-Roaming-Oracle and by changing local environment classpath uses it to perform
the following actions. It finally drops and executes another payload called “plugins”.

The following image shows plugins and initial new stage JAR stage.

s e

‘.-

'

Final Droppe Files (_RandomDec and plugins)

At a first sight experienced Malware reverser engineer would notice that the original sample
finally drops a AdWind/JRat Malware having as a main target to steal files and personal
information from victims. While the AdWind/JRat is not interesting per-se since widely
analysed, this new way to deliver AdWind/JRat, it is definitely fascinating me. The attacker
mixed up Obfuscation Techniques, Decryption Techniques, File—less abilities, Multi
Language Stages and Evasions® Techniques in order to deliver this AdWind/JRat version.
Multiple programming styles have been found during the analysis path. Each Stage
belonging with specific programming language is atomic by meaning that could be run
separately and each following stage could easily consume its outputs. All these indicators
make me believe the original Sample has been built by using Malware builder, which BTW,
perfectly fits the AdWind philosophy to run as a service platform.

A final consideration is about timing. Checking the VirusTotal details (remembering that only
6 on 60 AV were able to say the original JAR was malicious or unwanted) you might notice
he following time line.

6/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/1585e-10plugintodecode2band2bloaddropper.png?ssl=1
https://www.virustotal.com/#/file/e5c67daef2226a9e042837f6fad5b338d730e7d241ae0786d091895b2a1b8681/details

History ©

First Seen In The Wild 2016-12-04 17:35:40
First Submission 2018-08-14 13:.19:26
Last Submission 2018-08-14 21:08:47
Last Analysis 2018-08-14 21:08:47
Earliest Member Modification 2018-08-14 11:37:50
Latest Member Modification 2018-08-14 11:37:50

Detection Time Line (VirusTotal)

VT shows the first time it captured that hash (sha256): it was on 2016. But then the fist
submission is on 2018-08-14 few days ago. In such a date (2018-08-14) only 6 out of 60
detected a suspicious (malicious) behaviour and triggered on red state. But what about the
almost 2 years between December 2016 and August 2018 ? If we assume the Malware
is 2 years old, was it silent until now (until my submission) ? Have we had technology
two years ago to detect such a threat ? Or could it be a targeted attack that took
almost 2 years before being deployed ?
| currently have no answers to such a questions, hope you might find some.
*Actually not really an evasion technique, more likely a toolset mitigation.
loC
You will not find Command and Controls (c2) and dropping url because: (i) dropping url/s
was/were not found: the sample auto-extracts contents from itself. (ii)) No C2 during the
delivery stage. Of course AdWind/JRat does C2 but, as explained, the analyst did not
followed on the analysis of AdWind/JRat since well-known malware.
hash:
o eb5cb67daef2226a9e042837f6fad5b338d730e7d241ae0786d091895b2a1b8681
(Original)
e 97d585b6aff62fb4e43e7e6a5f816dcd7a14be11a88b109a9ba9e8cd4c456eb9
(_LRandombDec..)
e 9da575dd2d5b7c1e9bab8b51a16cde457b3371c6dcdb0537356¢f1497fa868f6
(Retreive1)
o 45bfe34aa3ef932f75101246eb53d032f5e7cf6d1f5b4e495334955a255f32e7
(Retreive?2)
e 296a0ed2a3575e02ba22e74fd5f8740af4f72b629e4e50643ac0c156694a5f3c (.req)
e 32d28c43af1afc977b96436b7f638fba15188e6120eeaefa1ad91fb82015fd80 (plugins)

File Paths:
e ..AppData/Local/Temp/_ARandomDecimalNumber.class
e ..AppData/Local/Temp/RetreiveRandomNumber.vbs
o ..AppData/Local/Temp/RetreiveRandomNumber.vbs

7/8


https://i0.wp.com/marcoramilli.com/wp-content/uploads/2018/08/9e053-final_consideration.png?ssl=1

e ..AppData/Local/Temp/RandomNabe.reg

8/8



