
1/14

Where we go, we don't need files: Analysis of fileless
malware "Rozena"

gdatasoftware.com/blog/2018/06/30862-fileless-malware-rozena

Fileless malware leverages exploits to run malicious commands or launch scripts directly
from memory using legitimate system tools such as Windows Powershell. Code Red and
SQL Slammer were pioneers of fileless malware which date back to the early 2000s.
Currently, this type of malware is on the rise once again.

https://www.gdatasoftware.com/blog/2018/06/30862-fileless-malware-rozena


2/14

The talk of the town within the first half of the year on Cyber Security community is the term
“fileless” attack. It is an attack technique that does not require downloading nor dropping
malicious files into the system to execute its malicious behavior, but rather leverages on
exploits to run malicious commands or launch scripts directly from memory via legitimate
system tools. In fact, attacks such as Code Red and SQL Slammer worms in the early 2000s
do not save itself to any disk but store its malicious code solely in memory.

However, the term "fileless" can also be a misnomer as there are attacks that may involve
presence of files on the computer, such as opening an attachment from spam emails. Once
executed, it may still save a file on disk and later use fileless techniques to gather
information on the system and spread the infection throughout the network. These
techniques can be in the form of exploits and code injections to execute malicious code
directly in memory, storing scripts in registry, and executing commands via legitimate tools. In
2017 alone, 13% of the gathered malware uses PowerShell to compromise the system.

 Legitimate system tools such as PowerShell and Windows Management Instrumentation are
being abused for malicious activities, since these are all built-in tools that run in Windows
operating system. One known malware family that uses PowerShell to download and
execute malicious files is the Emotet downloader.

 There are even old malwares that changed its technique and now uses fileless attack. These
malwares aim to be more effective in terms of infecting machines and avoiding detection like
Rozena.

 Rozena is a backdoor-type malware capable of opening a remote shell connection leading
back to the malware author. A successful connection to the malware author yields numerous
security concerns not only to the affected machine, but also to other computers connected
on its network.

 This was first seen in 2015 and made a comeback on March 2018. The old and new Rozena
malware still targets Microsoft Windows operating systems, but what made the difference is

https://www.gdatasoftware.com/blog/2018/03/30610-malware-number-2017
https://cyber.wtf/2017/11/27/emotet-drops-zeus-panda-targeting-german-and-austrian-online-banking-users/


3/14

the new one’s adaption to the fileless technique which uses PowerShell scripts to execute its
malicious intent. A survey done by Barkly and the Ponemon Institute, which polled 665 IT
and security leaders, found out that fileless attack are 10 times more likely to succeed than
those of file-based attacks. This could be the probable reason why malware authors are now
following the fileless trail.

Arrival and Infection Routine Overview

Figure 1: Steps of Rozena's infection routine

This file may arrive on a system as a dropped file by another malware or as a downloaded
file when visiting malicious sites. It may also arrive as an attachment on a crafted spam
email. Rozena is an executable file that masks itself as a Microsoft Word file. Upon
execution, it will create a text file named Hi6kI7hcxZwU in %temp% folder. Then the
exeutable file will launch obfuscated and encoded PowerShell commands with specific order
and purpose. In this case, we name these scripts as CREATOR script, DECODER script and
INJECTOR script for easier tagging in the In-Depth Analysis. The creator script is
responsible in spawning the decoder script. The decoder script is to decrypt the content of
Hi6kI7hcxZwU and execute it. The decoded script will yield the injector script that will injects
shellcode to PowerShell.exe.

 This injected shellcode will create a reverse TCP connection to a remote server that will give
an access to the malware author. It is like opening a door to the thieves that makes them
take and do whatever they want to the house, and can go beyond in reaching all its
neighbors.

In-depth Analysis

https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends
https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2018/06_2018/G_DATA_Blog_Rozena_InfectionRoutine.png


4/14

One of the common techniques used to lure users in executing files from unknown sender or
unknown downloads is to make them look harmless. Since the default Windows’ feature is
not to show the file extension, it is easier for the malware author to bait the user to execute
the file as shown in Figure 2. Rozena chooses to use Microsoft Word Icon, but it is a
Windows executable file as shown in Figure 3 for Rozena’s file header.

Figure 2: Rozena uses the icon of a Microsoft Word file to disguise itself

Figure 3: File header of Rozena - note that the MZ header indicates a regular executable file
Upon execution, it will create a file in %temp% folder with a fixed filename Hi6kI7hcxZwUI.

Figure 4: The contents of "Hi6kI7hcxZwUI", as seen in HVIEW
Then it will call CreateProcessA to a PowerShell script via command line, where we name
the first script as CREATOR Script.

https://www.gdatasoftware.com/fileadmin/web/general/images/blog/2018/06_2018/G_DATA_Blog_Rozena_WordFile.png


5/14

Figure 5: Shell - executing a PowerShell script
Now let's take a closer look at the PowerShell parameters:

Figure 6: First PowerShell script (parameter and partially encrypted code)
The parameters and functions consist of mixed lower and upper cases, and this is one of the
obfuscation techniques used by this file for executing PowerShell scripts. PowerShell
commands by default is not case sensitive, thus doing this cannot affect its execution.
Almost all parameters used by this file has similar format – mixed cases and shortened
syntax.

-wIndOwsTY, is a syntax for -WindowStyle parameter of PowerShell. The truncating of
syntax is also for obfuscation and anti-detection, and this is still a valid parameter because of
how PowerShell handles parameter binding.

 
HiddeN, which means that it will set the window style for this session to hidden. This
parameter is widely used to prevent the PowerShell from displaying a window when it
executes a script.

 
-c, short for -Command. It will execute a command that follows the parameter as though
they were typed at the PowerShell command prompt. The value after the command is an
encrypted script block.



6/14

Figure 7: Encrypted CREATOR Script
Using join, split and convert functions from PowerShell, this code will be decrypted as a
script as shown on Figure 8. The script also uses a pipeline operator (|) to send the
command string to Invoke -Expression, that will execute the script on the infected machine.
For obfuscation and not to be detected easily, the 'iNVOKE-EXPreS'+'sIOn' is a
concatenated string for Invoke-Expression.

Figure 8: Decrypted CREATOR Script
The first section that is boxed in red is only for variable declarations to be later used in the
PowerShell parameter. The lower part which is boxed in gray are the new parameters for the
second PowerShell that will be spawned.

Now let us take a look at the newly created PowerShell script and its parameters:



7/14

Figure 9: Encrypted DECODER script
The upper part boxed in red consists of PowerShell parameters and some obfuscation
functions.

 Now let's break down each parameter:
 -noniNtE, shortened syntax for -NonInteractive. It is used to prevent showing an interactive

prompt to the user. It is often combined with -WindowStyle Hidden to hide any script
execution.

 -nOlOG, shortened syntax for -NoLogo. Hides the copyright banner when PowerShell is
executed.

 -NOpROFI, shortened syntax for -NoProfile. Does not load the PowerShell profile.
 -wIndOwsTY HiddeN, shortened syntax for -WindowStyle Hidden. As mentioned above, to

prevent PowerShell from displaying when executed.
 -ExeCUTIonPOlic BypaSS, truncated syntax for -ExecutionPolicy bypass. It is used to set

the default execution policy for the current session. This parameter does not make any
changes to the PowerShell execution policy set in Windows Registry, nor writes file on disk to
evade security checks and hide malicious execution.

 Setting the execution policy to bypass will not block any script execution and there are no
warnings or prompts to alarm the user. It is also regardless of the user’s profile, whether
administrator or not, the PowerShell script will still be executed.

 After -ExeCUTIonPOlic BypaSS, there is an obfuscated code that only yields ‘-ec’ when
decrypted.

 -ec, truncated syntax for encodedcommand, it accepts a base-64-encoded data block
version of a command. This parameter is used to submit commands to PowerShell that
require complex quotation marks or curly braces. This parameter runs the base64-encoded
command highlighted section from Figure 8.

 Decrypting the part boxed in green in Figure 9 which is a base-64-encoded data block. This
will generate another PowerShell script, calling this as the DECODER script.



8/14

Figure 10: Decrypted DECODER script
The procedure is the same in the decrypted CREATOR Script shown in Figure 8. The part
boxed in red is just variable declarations which will be used later as a parameter for
PowerShell execution. The part boxed in gray has the same parameters as Figure 9, but with
different obfuscations used.

 In the DECODER script, it used some new parameters highlighted in green, which is
somehow readable even with the strings are concatenated.

New-Object is used to create an instance of a .NET Framework class, which in this script, it
creates System.Net.Webclient which is used to send and receive data from remote
resources. Most of the threats today, especially downloaders that uses PowerShell scripts
uses this code.

 -f / -File, run commands from a specified file which points to the output of DownloadString()
 that downloads the content from Hi6kI7hcxZwU (file located in %temp% folder shown in

Figure 2 to a buffer in the memory.

Since this is an encrypted string, it will then be decrypted using XOR operation as seen on
the last part of the PowerShell script (DECODER script). The file Hi6kI7hcxZwU will
subsequently be deleted.



9/14

Figure 11: Decrypted content of Hi6kI7hcxZwU
The decrypted output has the same structure as the CREATOR script. Notice the last part of
this script in Figure 11, it is an obfuscated parameter for Invoke-Expression and this will be
the third PowerShell Script to be executed by this file, calling this as the INJECTOR script.
This is a common anti-debugging technique by most malware wherein wrapping their code
with multiple layers of obfuscation and encryption. Decrypting this code, will yield us another
base-64-encoded data block.

Figure 11b: Second half of the decrypted content of Hi6kI7hcxZwU
After decrypting this base-64-encoded data block in Figure 12.a, we finally can see the script
in its full glory:



10/14

Figure 11b: Decrypted INJECTOR Script
The upper part highlighted in red has much a lot of readable strings and only few string
obfuscations. There is DLLImport for kernel32.dll and msvcrt.dll, for importing APIs in
Windows Kernel and msvcrt library. There are specific APIs that can be seen: VirtualAlloc,
CreateThread and memset. These are common APIs used for executing a code injection.
The middle part contains hexadecimal byte values that make up a block of code and assign it
to a variable. This block of code is referred to as the shellcode. In the bottom part,
hightighted in green, the obfuscated functions will copy the hexadecimal byte values to the
allocated memory and inject it to the running PowerShell.exe, using VirtualAlloc and memset.

Digging into the shellcode

The following APIs will be harvested and used:
 - WSASocketA

 - Connect
 - Recv

 - VirtualAlloc



11/14

It will try to establish a connection to a server: 18[.]231[.]121[.]185[:]443 (down at the time of
analysis). Notice that it also uses TCP port 443 which is used for SSL connections, as shown
on Figure 13. This means that all data passed through the server to the receiver remains
private and integral and a way to avoid security checks and network detections. The IP
address and port number are hard-coded in the shellcode as hexadecimal byte values.

Figure 12: The shell code contains a hard-coded IP address and port number
Rozena will make four attempts to establish a connection. The IP address was unreachable
at the time of analysis, however.

It does not end here

Given that the IP address was not available for a connection, we might as well have stopped
at this point. However: doing so would mean that we could not find out what Rozena can do
to an infected machine. In order to proceed with the analysis, we set up a test environment.
Since the IP address and port number were hard-coded in the shellcode, we just modified it
to point to an internal dummy server for the sole purpose of continuing the analysis. This is
the only modification done in the whole script for further analysis. We also destroyed the
modified malware after the test so it will not find its way into anyone’s malware collection.

Figure 14: Established connection to dummy server



12/14

Once the connection between the server and the infected machine is established, it is now
ready to receive files from the server that will be allocated in the memory and be executed.

Figure 15: Metasploit framework Reverse TCP connection
The series of code above is from the Metasploit framework that creates a reverse TCP
connection. In a reverse TCP connection, the infected machine will open the port that the
server will connect to. This is mostly used by backdoor malware since it bypasses firewall
restrictions on open ports.

Figure 16: Established connection to infected machine seen in Metasploit
The infected machine is now connected to the dummy server that uses Kali Linux
environment with Metasploit Framework. It uses meterpreter to craft and send files to the
infected machine or any other commands shown below.

https://en.wikipedia.org/wiki/Metasploit_Project#Payloads


13/14

Figure 17: Meterpreter commands
To be infected by a backdoor malware and looking on the few commands above that can be
used to compromise the system is no doubt terrifying. It can literally do anything with the
infected machine, the files, be familiar with the system and infecting its network. This poses a
lot of security threats and can cause huge amount of damage. Now that Rozena follows the
fileless trail, its stealthy way of delivering and executing its malicious activity intensifies.

Prevention

As the world changes, malware authors adapt and make use of built-in legitimate tools for
their infection that might leave us defenseless. But there is always a way to shield ourselves
from these types of attack.

 1. Keep operating systems and software up-to-date, including security updates. Especially
knowing that older systems have numerous vulnerabilities that can be exploit and be use for
the infection.

 2. It is strongly advised to download, save or execute files from known and trusted sources.



14/14

malware authors still use traditional arrival vector to lure users for executing malicious files.
If disabling system tools especially PowerShell is not an option, you will find some alternative
ways to configure PowerShell to prevent malicious script execution.

3. Set PowerShell Constrained Language Mode – this will limit the capability of PowerShell
by removing advanced feature such as .Net and Windows API calls, since most PowerShell
scripts rely on these parameters and methods.
4. Pairing PowerShell with AppLocker – this will prevent unauthorized binary file from being
executed.

IOC list & information for fellow researchers

Executable File (masks as Microsoft Word):
c23d6700e93903d05079ca1ea4c1e36151cdba4c5518750dc604829c0d7b80a7

 Created File (filename Hi6kI7hcxZwU):
d906dc14dae9f23878da980aa0a3108c52fc3685cb746702593dfa881c23d13f

 Connected to remote server: 18[.]231[.]121[.]185[:]443

https://blogs.msdn.microsoft.com/powershell/2017/11/02/powershell-constrained-language-mode/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/what-is-applocker

