BackSwap Defrauds Online Banking Customers Using
Hidden Input Fields

-iE‘j f5.com/labs/articles/threat-intelligence/backswap-defrauds-online-banking-customers-using-hidden-input-fi

byline June 29, 2018

FS

BackSwap is new banking malware recently discovered by Eset! and later analyzed by
CERT Polska.2 Unlike previous banking trojans, which typically either intercept requests and
redirect users to fake banking websites or inject malicious code from command and control
(C&C) servers to manipulate browser processes, BackSwap keeps its campaign locally. The
JavaScript is hardcoded and pulled from the portable executable (PE) file resource section.
BackSwap manipulates the document object model (DOM) elements by duplicating the
original input fields during an unsuspecting user’s legitimate interaction with a banking
website.

During our daily analysis of malware samples, we’ve noticed BackSwap has started to
update its JavaScript core injection sample using various methods. Since the latest reports
on this malware, BackSwap has changed the names of resource sections, which are used to
represent targeted bank names, and it has changed its handing of the International Bank
Account Number (IBAN).

Injected JavaScript Analysis

In the following analysis, we explain BackSwap’s actual fraud action and the user experience
during a transaction session.

1/9

https://www.f5.com/labs/articles/threat-intelligence/backswap-defrauds-online-banking-customers-using-hidden-input-fi

The main purpose of the approximately 300 lines of JavaScript code is to create fake input
fields that are visible to the victim and are identical to the original fields. Although users think
they’re filling in the real fields, these fake input fields aren’t sent in the final submission.
Instead, the original fields, which are hidden from display to the user (using “display:none”),
are filled with the fraudster’s account information. Unfortunately, it is this information that is
submitted.

Figure1: Fake input fields hidden from users
Figure 1: Fake input fields hidden from users

Figures 2 and 3 illustrate how legitimate elements are hidden from the user by with malicious
content.

Transactions

Lvalus;

Step by step demonstration
of BackSwap executing its
fraud technique by creating fake
elements and hiding legitimate fields

Figure 2: BackSwap hiding Iegitimate elerhéﬁfé _wi-t'H-maI'icious content

Figure 2: BackSwap hiding legitimate elements with malicious content

2/9

Transactions

Revealing the hidden input fields

BackSwap is using for
its malicious transaction

Figure 3. BackSwap revealing hidden input fields
Figure 3. BackSwap revealing hidden input fields

As shown in Figure 4, the code is injected in the format of IIFE, “Immediately Invoked
Function Expression.” This has the advantage of staying out of global scope, hence making it
harder to find its variables and functions after its invocation.

-+

-+ I+

A .
'.I'-I-"

Figure 4. BackSwap JavaScript injection in the format of IIFE

Figure 4. BackSwap JavaScript injection in the format of IIFE

3/9

The “mainStart” function is in charge of hiding the original 26-character IBAN with the
account owner’s name. It's executed every 50 seconds with a setinterval.

The process of duplicating legitimate inputs begins with the method “cloneNode” that copies
the nodes to be cloned with the entire element hierarchy. This process happens twice; the
first time for the IBAN of the consignee, and the second time for the full name and address of
the consignee.

mainStart ()

(' document.
cuntNumbe:

Figure 5. BackSwap mainStart function
Figure 5. BackSwap mainStart function

An important and crucial part of creating the fake DOM elements involves removing some
eminent attributes, such as names, from the visible cloned fake elements. Those elements’
IDs are modified to a random string (some samples we examined had hardcoded strings).

Eventually, all these DOM modifications guarantee that the original data intended to be sent
by the victim is not sent.

= o s abisl = RgggDe _'-'r H
Figure 6. BackSwap fake elements modifications

Figure 6. BackSwap fake elements modifications

For safety reasons, the clipboard in modern browsers isn’t accessible to client JavaScript
without user interaction. BackSwap reaches the clipboard via a click event on the window.
Then, it self-executes “cut” or “copy” events with document.execCommand() (IE9+ supports
clipboard interaction).

4/9

Figure 7. “Cut” or “copy” events with document.execCommand
Figure 7. “Cut” or “copy” events with document.execCommand

After the execution mention above, via a listener of “cut” and “copy”, BackSwap has access
to ClipboardEvent.clipboardData property via this original programmatic technique.

Transactions

3

Mateusz Kwasniewski

Victim selects and copies

IBAN Number

his legitimate IBAN number

12345617891234567891234567

Consignee Name

Figure 8. BackSwap clipboard manipulation and example of what the user sees
Figure 8. BackSwap clipboard manipulation and example of what the user sees

While accessing this property, BackSwap’s authors change the tab’s title with information
gathered from this malicious transaction. The format is a type of key-value that is typically a
short string and most often, just one letter. The key and value are separated by a colon. It
includes the amount (“_kwota”), the real username ("nav-user__region-name"), and the mule
owner’s name (“myname”).

Figure 9. BackSwap Tab Title change

5/9

Figure 9. BackSwap Tab Title change

Resource and Script Changes

BackSwap maintains its fraud actions in the PE resource section. We gathered several old
and new samples of the malware and noticed interesting cosmetic changes between them.
For example, the target names have been changed. We assume this might be because of
the immediate validation of a target list by researchers. Figures 7 and 8 show the resource

section with visible target lists.

o f834eBb034d5664eaddbaTdiacti43

-4 Cursors
[#-i) Bitmaps
FH-{3) Icons
&nj Dialogs
{23 String Tables
2-) RCData
{5 DVCLAL" - [langs
LD TINGT - [lang: 103.
D TPCT - [lang: 103!
3 "PEKI" - [lang: 107
) "TABQUTFORM" -
D) "TFORM1" - [lang
-{3) "THELPFORM" - [I
0D "TWAITFORM" - [
[Cursor Groups
) Icon Groups
&nj Yersion Info

Figure 10. Older version of BackSwap showing resource section with visible target list
Figure 10. Older version of BackSwap showing resource section with visible target list

The newer version of the malware contains the JavaScript in the resource section. The
actual target list is the same, but the represented names have changed.

h & = o P

Of f=et

0

1

2

3

4

5

B

7

oooooooo
ooooooio
oooooozo
oooooozo
oooooo4o
ooooooso
ooooo0oen
oooooozo
ooooooso
oooooogo
000000&AD
ooooo0oED
ooooooco
ooooooDo
ooooo0oED
ooooo0oED
oooooioo

25
7B
07
36
7D
BC
2D
68
2D
62
25
79
2D
6B
2D
68
tE

6B
EC
7B
oo
74
7F
2D
F
2D
EC
24
¥
68
BC
2D
48
62

78
iF
6C
07
SE
69
&R
2D
2D
7F
79
LT
7B
78
69
7B
7D

63
2D
7F
0o
79
25
78
25
2D
69
63
63
68
Bl
62
68
74

6E
64
2D
07
7F
7E
63
68
2D
49
75
Y
63
79
EE
63
24

79
7E
62
tE
64
79
EE
7B
6d
EC
79
24
79
25
78
79
21

64
79
6B
78
63
7F
79
68
7B
79
22
36
23
24
&0
41
2D

62
BC
61
63
B
B4
64
63
6o
BC
7D
0o
7D
36
68
64
65

6/9

34 1bcef3918030f 12055039 cd 1404

FH-4) Cursors
i) Bitmaps @ IE) lﬁ @ P2 =
E-{3) Icons
&) Dialogs Dff=et o1 2 3 4 5
B0 String Tables 00000000 [21 &6F 7C &7 6A 7D
55 RCData 00000010 | 03 7F 68 7B 29 &0
' - . 00000020 | 04 03 00 04 03 6F
i) DVCLAL™ - flang:0] 00000030 | 4F 66 7B 64 68 7D
£ "1GER" - Jlang: 1033] 00000040 | 00 7B 6C 7D 7C 7B
{3 "MBB" - [lang: 1033 00000050 | 68 64 GC 21 26 &2
o ACKCAGEINFG™ - lanas 00000060 | 2E 2E 20 27 7B &C
() PACKAGEINFO" - flang:0] 00000070 | 20 21 36 34 21 56
Q) PEGQ" - [lang: 1033] 00000080 | 6D 20 20 26 6E 25
D "PPD" - [lang: 1033] 00000090 | 74 32 04 03 04 03
£ "TABOUTSQLMONITOR” - [lang:0] goooooAD | 66 79 Y0 SA 7D T7H
MONITOR" - B 000000B0 | 66 68 7E 6D 21 74
g E@;EES%;E-D?HEE-D-. 000000CD | 29 29 29 6F 7C 67
i 00000000 | 65 6C 7B 29 21 &C
-1 Curser Groups 000000E0 | 29 29 29 29 29 29
-3 Teon Groups 000000F0 | 6B 66 68 7B 6D 4D
&) Version Info 00000100 | 68 21 2E 7D &C 71
00000110 | 72 7D 7E &0 67 &E

Figure 11. BackSwap resource section with un-meaningful target list names

Figure 11. BackSwap resource section with un-meaningful target list names

In addition, fraudster-related IBAN information is handled differently. In the older samples,
the IBAN was found in plain text in the injected script.

Figure 12. IBAN handling in BackSwap old version: IBAN is shown in clear text
Figure 12. IBAN handling in BackSwap old version: IBAN is shown in clear text

In newer versions, the IBAN is passed through a switch case function.

Figure 13. IBAN handling in BackSwap new version: IBAN is hidden
Figure 13. IBAN handling in BackSwap new version: IBAN is hidden

Fraudster IBAN handling is passed through a function named ‘dede(str)’. In return, the dede
function utilizes a For loop, which passes the string content into chars, dealing with them
separately on a switch case to create the fraudster-related IBAN.

7/9

; lcount < sStr.

(1count) ;

ceht (str, 1count,

ycehAt (str, 1count,

ceAt (str, 1count,

ceAt (str, 1count,

ceAt (str, 1count,

cedAt (str, 1count,

ceAt (str, 1count,

ceAt (str, 1count,

ceht (str, 1count,

yceAt (str, 1count,

cehAt (str, 1count,

Figure 14. BackSwap switch case function

Figure 14. BackSwap switch case function

Conclusion

r

icount++)

BackSwap’s manipulation of the DOM elements by duplicating the original input fields during
a legitimate user interaction with a banking website is an original fraud method. Not many
malware authors choose this path of originality. In addition, the authors appear to be
continually modifying the malware in response to researchers’ investigations of the malware.
In almost every sample we tested, we noticed new, small changes. We expect future
changes in the malware, either in its behavior or its target list.

To avoid being infected by this malware, users should simply not open suspicious links or
files received by an active spam campaign. BackSwap hides as a legitimate running
application such as 7zip or OllyDbg, which are applications not commonly run by typical
users.

MD5 Tested:

fdc8e751535a4ced457f87e6¢c747217b8
92657201392a08e688d438d0d8e48c9%e
acbcc3e7342e86c0cca31a3a967d56d9

9/9

