
1/4

valsov

BackNet
github.com/valsov/BackNet

buildbuild passingpassing codefactorcodefactor AA

BackNet is a command line remote administration tool for Windows, written in C#. Able to
achieve persistance and communicate with a botnet server, it works over a reverse TCP
connection, avoiding firewall issues.

Creating commands is fairly easy, feel free to contribute !

Features

Most notable remote commands :

Keylogger
Webcam control
File upload and download
Remote program execution
System informations
Local Area Network scan
Wifi profiles informations dump (including passwords)
Firefox and Google Chrome databases information extraction
Remote shell
Persistance

https://github.com/valsov/BackNet
https://camo.githubusercontent.com/dc7ac998a194ba58b36898d4ed49bfc9a2243dd727df2aac4050fb6ad5e093c7/68747470733a2f2f63692e6170707665796f722e636f6d2f6170692f70726f6a656374732f7374617475732f783978347469727077623163653734642f6272616e63682f6d61737465723f7376673d74727565
https://www.codefactor.io/repository/github/valsov/backnet

2/4

LoadCommands - allows you to load commands from DLLs at runtime

More to come !

Structure

BackNet consists in 3 projects :

Master : The console application used to interact with the slave by sending commands.
It can also be used to issue commands to the botnet server.
Slave : The WPF application to deploy on the computer you wish to monitor and
control.
Shared : DLL that contains global mechanics for the Master and Slave projects. For
example, the network manager. A DLL is not welcome in a lot of scenarios when using
the Slave, so a reference embedding tool is used for the slave project : Costura Fody

Communication between the Master and Slave was made easy, you can send and read
lines, as well as send and receive files in just one line.

Send a line of text

Read a line of text

Send a file over the network, using a FileStream

Receive a file over the network

File transferts come with a nice progress bar !

Commands

Commands are located in both the Master and Slave projects. In order to create a new
command, you will have to create two files containing the new command class, in the Master
project and Slave project. A command class should be internal. A command will first be sent
to the Slave, then processed by the Master (to process the Slave messages)

GlobalCommandsManager.networkManager.WriteLine("Hello !");

string message = GlobalCommandsManager.networkManager.ReadLine();

GlobalCommandsManager.networkManager.StreamToNetworkStream(fileStream);

GlobalCommandsManager.networkManager.NetworkStreamToStream(fileStream);

https://github.com/Fody/Costura

3/4

The Master commands must implement the IMasterCommand interface

name : how to call your command from the Master interface
description : describe what it will do
isLocal : should this command only be executed on the master side ? (example :
lcd - local change directory)
validArguments : list of string representing the command arguments syntax, will
be described below
Process(List<string> args) : the actual code executed on the Master side
PreProcess(List<string> args) -optional- : if your command needs to do some
checks on the Master side before sending the command to the Slave, just make
your IMasterCommand class implement the IPreprocessCommand interface as
well

The Slave commands must implement the ICommand interface

name : same as the one in the IMasterCommand
Process(List<string> args) : code executed on the Slave side, this is usually
where most of your work goes !

Valid arguments are stated in a string which must follow those rule:

If there is no arguments for the command, then null
"?" is for a string, and "0" is for an integer
If a string is confidential, add a "*" => "?*", this way, it will not be sent to the slave as is
? arguments must be followed by a [ArgumentName] => example: "?:[filename]" or "?*:
[filename]"

Example : download command

The arguments are composed of two strings, the remote file name and the local file name.
The latter won't be sent to the slave because it is confidential, so it's marked with a star.

Botnet

Backnet was designed to communicate with a botnet server to issue commands to all the
registered Slaves. This way, you can make a registered Slave connect to you (Master) and
send commands directly to it. More botnet commands will be added, like DDOS, bitcoin
mining, etc... Of course, this behaviour is optional and requires you to setup a botnet server.

PHP source code for the botnet server is avaible in the 'botnet' folder. The database engine
used in this project is MySQL.

public List<string> validArguments { get; set; } = new List<string>()
{
 "?:[remoteFileName] ?*:[localFileName]"
};

4/4

License

This project is licensed under the MIT License - see the LICENSE file for details

https://github.com/valsov/BackNet/blob/master/LICENSE

