The King is dead. Long live the King!

SL securelist.com/root-cause-analysis-of-cve-2018-8174/85486/

Authors

Vladislav Stolyarov

« Expert Borislarin

. Expert Anton lvanov

Root cause analysis of the latest Internet Explorer zero day — CVE-
2018-8174

1/11

https://securelist.com/root-cause-analysis-of-cve-2018-8174/85486/
https://securelist.com/author/vladislavstolyarov/
https://securelist.com/author/borislarin/
https://securelist.com/author/anton/

In late April 2018, a new zero-day vulnerability for Internet Explorer (IE) was found using our
sandbox; more than two years since the last in the wild example (CVE-2016-0189). This
particular vulnerability and subsequent exploit are interesting for many reasons. The
following article will examine the core reasons behind the latest vulnerability, CVE-2018-
8174.

Searching for the zero day

Our story begins on VirusTotal (VT), where someone uploaded an interesting exploit on April
18, 2018. This exploit was detected by several AV vendors including Kaspersky, specifically
by our generic heuristic logic for some older Microsoft Word exploits.

2018-04-18 06:50:30 16/59 Kaspersky HEUR:Exploit. MSOffice. Generic 15.0.1.13 20180418
Kingsoft - 2013.5.14.323 20180418
Malwarebytes - 2111115 20180413
MAX malware (ai score=89) 2017.11.151 20180418
McAfee . 6.0.6.653 20180418
McAfee-GW-Edition - w2015 20180417
Microzoft . 1.1.14700.5 20180418

After the malicious sample was processed in our sandbox system, we noticed that a fully
patched version of Microsoft Word was successfully exploited. From this point we began a
deeper analysis of the exploit. Let’s take a look at the full infection chain:

200 HTTP autosoundcheckers.com fs2fsearch.php?who=7

w0 b asoncfillcon s2fsearchoro

<!doctype html=

<html Tang="en"=

<head=

<meta http-equiv="xX-ua-compatible”™ content="IE=10">
<;/head=

<body=

<script language="vbscript"=
Dim 1II1

Dim IIITI(6),IT1II(6)

Dim I11I

Dim IIT1I(40)

Dim 1I1II1,1III11

Dim ITII

Dim 1111,IIII1

Dim 111111,I1IIII

Dim IITIII,ITIIII

I1II=195548557

TIT1IIT=Unescape("®%ud001%u0880%u0001%u0000%u0000%UD000%UD000%U0000™ & _
Ut T T T %uU7 T T T%u0000%u0000™)

1III11=Unescape " $ul000%u0000%u0000%u0000%u0000%0 00003 00005u0000™)
I11I=195830033

The infection chain consists of the following steps:

e A victim receives a malicious Microsoft Word document.

2/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133136/180508-the-king-is-dead-cve-18-1.png
https://www.kaspersky.com/enterprise-security/wiki-section/products/sandbox
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133144/180508-the-king-is-dead-cve-18-2.png

» After opening the malicious document, a second stage of the exploit is downloaded; an
HTML page containing VBScript code.

o The VBScript code triggers a Use After Free (UAF) vulnerability and executes
shellcode.

Initial analysis

We'll start our analysis with the initial Rich Text Format (RTF) document, that was used to
deliver the actual exploit for IE. It only contains one object, and its contents are obfuscated
using a known obfuscation technique we call “nibble drop*.

After deobfuscation and hex-decoding of the object data, we can see that this is an OLE
object that contains a URL Moniker CLSID. Because of this, the exploit initially resembles an
older vulnerability leveraging the Microsoft HTA handler (CVE-2017-0199).

i e
y- |1<MB Kk KiidM
http:/f/ a
uto

2§’ Registry Editor

File | Edit View Favorites Help
, {79eac9dl-bafl-11ce-8cB2-0022004ba00b} || Name Type Data

i L. {79eac9el-bafd-11ce-8cB2-00aa004bat0b} 5B) (Default) REG_SZ URL Moniker
- {79eac9e?-bafd-11ce-8cB2-0022004bad0b}

With the CVE-2017-0199 vulnerability, Word tries to execute the file with the default file
handler based on its attributes; the Content-Type HTTP header in the server’s response
being one of them. Because the default handler for the “application/hta” Content-Type is
mshta.exe,it is chosen as the OLE server to run the script unrestricted. This allows an
attacker to directly call ShellExecute and launch a payload of their choice.

However, if we follow the embedded URL in the latest exploit, we can see that the content
type in the server’s response is not “application/hta”, which was a requirement for CVE-2017-
0199 exploitation, but rather “text/html”. The default OLE server for “text/html” is mshtml.dll,

3/11

https://securelist.com/disappearing-bytes/84017/
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133151/180508-the-king-is-dead-cve-18-3.png
https://docs.microsoft.com/en-us/windows/win32/com/url-monikers
https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133158/180508-the-king-is-dead-cve-18-4.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133205/180508-the-king-is-dead-cve-18-5.png

which is a library that contains the engine, behind Internet Explorer.

NWORD.EXE 2238 @Re;@uew}(éy HKCR\Wow6432Node \CLSID\{25336920-03F9-11CF-8FDO-D0AADDEEEF 13} SUCCESS

@’ Registry Editor
File Edit View Favorites Help
5.l {252BFDA2-4B21-4872-ABA3-043945949BFB] ~ | Name Ty e Data

: {23336920-03F9-11CF-8FD0-00AA00686F13} ab) (Default) REG_SZ CA\Windows\SysWOWE4\ mshtml.dll
: E;::E:Erce a_b] Assembly REG_SZ Microsoft.mshtml, Version=7.0.3300.0, Culture=neutral,
: EnablePlugin "_ﬂCIass REG_SZ mshtmlHTMLDocumentClass

[l TnProcserver32 a_b] RuntimeVersion REG_SZ v1.0.3705
L1 7.033000 “_‘ﬂThreadingModel REG_SZ Apartment

Furthermore, the page contains VBScript, which is loaded with a safemode flag set to its
default value, ‘OxE’. Because this disallows an attacker from directly executing a payload, as
was the case with the HTA handler, an Internet Explorer exploit is needed to overcome that.

Using a URL moniker like that to load a remote web page is possible, because Microsoft’s
patch for Moniker-related vulnerabilities (CVE-2017-0199, CVE-2017-8570 and CVE-2017-
8759) introduced an activation filter, which allows applications to specify which COM objects
are restricted from instantiating at runtime.

scriptlet_CLSID
; Honiker to a Windows Script Component

soap_activator_CLSID ; Soap Activator Class
soap_CLSID 3 SDRE Honiker
partition_CLSID 3 ParEitiun Moniker
queue_CLSID 5 uueae Honiker

htafile_CLSID ; HTHL Application

scriptlet_context_CLSID ; Dbject under which scriptlets may be created

At the time of this analysis, the list of filtered CLSIDs consisted of 16 entries. TheMSHTML
CLSID ({{25336920-03F9-11CF-8FD0-00AA00686F 13}}) is not in the list, which is why the
MSHTML COM server is successfully created in Word context.

4/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133212/180508-the-king-is-dead-cve-18-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133220/180508-the-king-is-dead-cve-18-7.png

This is where it becomes interesting. Despite a Word document being the initial attack vector,
the vulnerability is actually in VBScript, not in Microsoft Word. This is the first time we’ve
seen a URL Moniker used to load an |IE exploit, and we believe this technique will be used
heavily by malware authors in the future. This technique allows one to load and render a web
page using the |IE engine, even if default browser on a victim’s machine is set to something
different.

The VBScript in the downloaded HTML page contains both function names and integer
values that are obfuscated.

Jub StartExploit
1TI111IT
If IITI1II{)={&h5h3+2967-£H114c) Then

11T11I(}
Else
Err.Raizse (&hl3cc+2590-EH1de3d)

End If
IT1111
1IT1I1
IITIII1=1ITIII1{(}
I111IT=11T1I{ GetTinc3a{IIIII1}}
I111I1=TI1T1{I1l11II,"msvort,.dll™)
IT111I=I1T1{Ill1lIl,"kernelhase.Al1l™}
ITI1T1TI=TI1T1{I111I1l,"nccdll.cdll™}
I11IIT=I11I1{ITI111I,"VirtualFrotect™})
IT1IIIT=I11I1{1I1I1I,"NEContinus"}
I1111 11I11¢}
ITIT11=T1I1I{}+{&hl01la+2050-£H1814)
I1111 T1ITI1I1{III1ll}
1I111=T1I1I{}+69596
I1111 11ITI1{1I11l1}
11TTI11=TI1TI1I{}
1IT111

End Sub

StartExploit

Vulnerability root cause analysis

For the root cause analysis we only need to look at the first function (‘Trigger\Vuln’) in the
deobfuscated version which is called right after ‘RandomizeValues’ and ‘CookieCheck’.

5/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133228/180508-the-king-is-dead-cve-18-8.png

SJubh TriggerVuln
For idx={0) To {17}
Jet layvouthrray{idx)i=New ClassEmpty
Mext
For idx={20) To {(38)
Jet layouthrray{idx)=New ClassToReuse
Mext
badibad marker={0})
For idx={0)} To {6}
Felim ArrWithFreedObhj{{1l))
Jet ArrWithFreedCbhi{(1l))=New ClassTerminatel
Erazse ArrWithFreeddhj
Mext
Jet Corrcdhijecti=New ClassToReuse
badibad marker={0})
For idx={0)} To {6}
Felim ArrWithFreedObhj{{1l))
Jet ArrWithFreedCb]i{(1))=New ClassTerminatelb
Erazse ArrWithFreeddhj
Mext
Jet CorrcdhijectB=New ClassToReuse
End 3ub

Sub StartExploit

FandomizeValues

If CookieCheck({)={0}) Then
SetCookie(}

El=e
Err.Baize (5)

End If

TriggerVuln

To achieve the desired heap layout and to guarantee that the freed class object memory will
be reused with the ‘ClassToReuse’ object, the exploit allocates some class objects. To trigger
the vulnerability this code could be minimized to the following proof-of-concept (PoC):

Dim Arri{l}
Dim ArrE{1l}

Class ClassVuln
Private Jub Class Terminate()
Zet ArrE({O0)y=Arra{0})
ArrA{0)y=31337
End Sub
End Class

Zubh TriggerVuln
Det ArrA{0)=New ClasszVuln
Erase Arrd
Erase ArrE

End Sub

TriggerVuln

6/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133234/180508-the-king-is-dead-cve-18-9.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133240/180508-the-king-is-dead-cve-18-10.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133249/180508-the-king-is-dead-cve-18-11.png

When we then launch this PoC in Internet Explorer with page heap enabled we can observe
a crash at the OLEAUT32!VariantClear function.

With this PoC we were able to trigger a Use-after-free vulnerability; both ArrA(1) and ArrB(1)
were referencing the same ‘ClassVuln’ object in memory. This is possible because when
“Erase ArrA” is called, the vbscript!VbsErase function determines that the type of the object
to delete is a SafeArray, and then calls OLEAUT32!SafeArrayDestroy.

It checks that the pointer to a tagSafeArray structure is not NULL and that its reference
count, stored in the cLocks field is zero, and then continues to call ReleaseResources.

7/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133256/180508-the-king-is-dead-cve-18-12.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133304/180508-the-king-is-dead-cve-18-13.png
https://docs.microsoft.com/en-us/windows/win32/api/oaidl/ns-oaidl-safearray

typedef =truct cagVARIANT {
union
=truct cagVARTANT {

VARTYPE vt;

WORD wheserwedl ;

WORD wReservediy
WORD wReserveds; typedef unsigmed shortc WARTYPE;
union { erum VARENUH {
LONGLONG 11V VT_EMPTY =
LONG 1Val: VI_NULL =
EYTE bVal: VT_Iz =
SHORT ival; e
FLOAT fltVal;: YT _Be =
DOUBLE dblvVal;: VI_CY = &,
VARIANT BOOL boolVal: YT DATE = .
VARIANT EBOOL bool: YT BSTR =
BCODE scode ; VT DISFATCH = - |
CY cyVal; ¥S_ERROR =
DATE date ; VI_EOOL =
BSTR batrval; e
IUnknown tpunkVal ; UT ULl = .
IDispatch dpdiapWal ; }: -
SAFEARRAY tparray. VT_RESERVED =
VT_ETREF =
VT_ARPAY =
VI_FUNC =

ReleaseResources, in turn will check the fFeatures flags variable, and since we have an
array of VARIANTS, it will subsequently call VariantClear; a function that iterates each
member of an array and performs the necessary deinitialization and calls the relevant class
destructor if necessary. In this case, VBScriptClass::Release is called to destroy the object
correctly and handle destructors like Class_Terminate, since the VARTYPE of ArrA(1) is
VT_DISPATCH.

signed __int32 _ stdcall UBScriptClass::Release(UBScriptClass =this)
{

volatile signed _ int32 =u1; 7/ esi

signed __int32 refCount; // eax

int vw3; /7 edi

int ul; fF [esp+Bh] [ebp-16h]

int w5; // [esp+Ch] [ebp-4h]

u1 = {volatile signed int32 *){({char =)}this + 4);
refCount = {(volatile signed _ int32 *)this + 1);
(trefCount)
1
u3 = *({{_ DWORD *)this +);
*({_DWORD =)this + :

refCount =

vt = refCount;

=({_DWORD =)this +)
{ *refCount)

{
(vd)

{(unsigned int)this);
(=(void (_ thiscall ==)(UBScriptClass =)){={_DWORD =)this =+ Y¥{this);
{ &uk *= &uk)
(hu);

{this);
refCount = v5s;

refCount;

8/11

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133315/180508-the-king-is-dead-cve-18-14.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133323/180508-the-king-is-dead-cve-18-15.png

This ends up being the root cause of the vulnerability. Inside the VBScriptClass::Release
function, the reference count is checked only once, at the beginning of the function. Even
though it can be (and actually is, in the PoC) incremented in an overloaded TerminateClass
function, no checks will be made before finally freeing the class object.

Class_Terminate is a deprecated method, now replaced by the ‘Finalize’ procedure. It is
used to free acquired resources during object destruction and is executed as soon as object
is set to nothing and there are no more references to that object. In our case, the
Class_Terminate method is overloaded, and when a call to VBScriptClass::TerminateClass is
made, it is dispatched to the overloaded method instead. Inside of that overloaded method,
another reference is created to the ArrA(1) member. At this point ArrB(1) references ArrA(1),
which holds a soon to be freed ClassVuln object.

After the Class_Terminate sub is finished, the object at ArrA(1) is freed, but ArrB(1) still
maintains a reference to that freed class object. When the execution continues, and ArrB is
erased, the whole cycle repeats, except that this time, ArrB(1) is referencing a freed
ClassVuln object, and so we observe a crash when one of the virtual methods in the
ClassVuln vtable is called.

Conclusion

In this write up we analyzed the core reasons behind CVE-2018-8174, a particularly
interesting Use-After-Free vulnerability that was possible due to incorrect object lifetime
handling in the Class_Terminate VBScript method. The exploitation process is different from

9/11

https://docs.microsoft.com/en-us/dotnet/visual-basic/programming-guide/language-features/objects-and-classes/object-lifetime-how-objects-are-created-and-destroyed
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/08133332/180508-the-king-is-dead-cve-18-16.png

what we’ve seen in exploits for older vulnerabilities (CVE-2016-0189 and CVE-2014-6332)
as the Godmode technique is no longer used. The full exploitation chain is as interesting as
the vulnerability itself, but is out of scope of this article.

With CVE-2018-8174 being the first public exploit to use a URL moniker to load an IE exploit
in Word, we believe that this technique, unless fixed, will be heavily abused by attackers in
the future, as It allows you force IE to load ignoring the default browser settings on a victim’s
system.

We expect this vulnerability to become one of the most exploited in the near future, as it
won'’t be long until exploit kit authors start abusing it in both drive-by (via browser) and spear-
phishing (via document) campaigns. To stay protected, we recommend applying latest
security updates, and using a security solution with behavior detection capabilities.

In our opinion this is the same exploit which Qihoo360 Core Security Team called “Double
Kill” in their recent publication. While this exploit is not limited to browser exploitation, it was
reported as an |IE zero day, which caused certain confusion in the security community.

After finding this exploit we immediately shared the relevant information with Microsoft and
they confirmed that it is in fact CVE-2018-8174, and received an acknowledgement for the
report.

Windows VBScript Engine Remote Code Execution Vulnerability CVE-2018-8174
* Ding Maoyin of Qihoo 360 Core Security
+ Jingquan of Qihoo 360 Core Security

This exploit was found in the wild and was used by an APT actor. More information about
that APT actor and usage of the exploit is available to customers of Kaspersky Intelligence
Reporting Service. Contact: intelreports@kaspersky.com

Detection

Kaspersky Lab products successfully detect and block all stages of the exploitation chain
and payload with the following verdicts:

+ HEUR:Exploit. MSOffice.Generic — RTF document

o PDM:Exploit.Win32.Generic — IE exploit — detection with Automatic Exploit Prevention
technology

 HEUR:Exploit.Script.Generic — IE exploit

e HEUR:Trojan.Win32.Generic — Payload

I0Cs

10/11

https://www.kaspersky.com/enterprise-security/wiki-section/products/behavior-based-protection
https://weibo.com/ttarticle/p/show?id=2309404230886689265523
https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8174
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/10092043/180508-the-king-is-dead-cve-18-20.png
https://www.kaspersky.com/enterprise-security/wiki-section/products/automatic-exploit-prevention-aep

e b48ddad351dd16e4b24f3909c53c8901 — RTF document

o 15eafc24416¢cbf4cfe323e9c271e71e7 — Internet Explorer exploit (CVE-2018-8174)
o 1ce4a38b6ead40a6734f7c049f5c47e2 — Payload

o autosoundcheckers[.Jcom

¢ Microsoft Internet Explorer
¢ Vulnerabilities and exploits
o Zero-day vulnerabilities

Authors

. Expert Vladislav Stolyarov

. Expgrt Boris Larin

. Expert Anton Ivanov

The King is dead. Long live the King!

Your email address will not be published. Required fields are marked *

11/11

https://securelist.com/tag/microsoft-internet-explorer/
https://securelist.com/tag/vulnerabilities-and-exploits/
https://securelist.com/tag/zero-day-vulnerabilities/
https://securelist.com/author/vladislavstolyarov/
https://securelist.com/author/borislarin/
https://securelist.com/author/anton/

