SynAck targeted ransomware uses the Doppelganging
technique

SL securelist.com/synack-targeted-ransomware-uses-the-doppelganging-technique/85431/

I —
HE
| ;
| U NS |
| 11 gl 1] letisl _
L (L ShIE S @ @
il e[]

DBEE SR

Authors

. Expert Anton lvanov

Fedor Sinitsyn

57(+1-1 ¢ 48 Orkhan Mamedov

The Process Doppelganging technique was first presented in December 2017 at the
BlackHat conference. Since the presentation several threat actors have started using this
sophisticated technique in an attempt to bypass modern security solutions.

1/14

https://securelist.com/synack-targeted-ransomware-uses-the-doppelganging-technique/85431/
https://securelist.com/author/anton/
https://securelist.com/author/fedors/
https://securelist.com/author/orkhanmamedov/
https://www.blackhat.com/docs/eu-17/materials/eu-17-Liberman-Lost-In-Transaction-Process-Doppelganging.pdf

In April 2018, we spotted the first ransomware employing this bypass technique — SynAck
ransomware. It should be noted that SynAck is not new — it has been known since at least
September 2017 — but a recently discovered sample caught our attention after it was found

to be using Process Doppelganging. Here we present the results of our investigation of this
new SynAck variant.

Anti-analysis and anti-detection techniques

Process Doppelganging

SynAck ransomware uses this technique in an attempt to bypass modern security solutions.
The main purpose of the technique is to use NTFS transactions to launch a malicious
process from the transacted file so that the malicious process looks like a legitimate one.

LODWORD{u21) = 8;
LODWORD{v17) = B;
u29 = CreateTransaction{(@iéh4, 0i6h, @iéh, Bi6h, vi17, v21, Bi6h4);
if (v29)
{
LODWORD(u22) = 8;
LODWORD{v18) = 3;
u26 = ((OFF_UB1BDA + 2644214))(String, BxCOPEAABALGH, 1164, 8i64, vis, v2?, @i64, v29, Bi64, Bi64);// Ox401D9G - CreateFileTransactedy
if (v26 t= -1)

if (((off_4018DA - 308589321))(v26, hHeap, v33, &ui4, Bi64))// Bx401898 - WriteFile
{

if { hHeap)
Free_8(hHeap);
hHeap = 8ié4;
U3l = Bi6h;
LODWORD(v23) = Bx1000060;
LODWORD (vi9) = 23
if (((off_404383 + 2246834))(&v36, 983071i64, 0i6h4, @id4, v19, v23, v26) >= 8)// Bx4042cP - NiCreateSection
{
vig ((off_4823Dn - 430949376))();// BxL402398 - GetCurrentProcess
vho of f_4B42B3 - 1483169668;
u24 = u36;
LOBYTE({u20) = M43
if { ((off_h042B3 - 1483169668))(&u27, Bx10800000i64, 0is4, v10) >= B)// HtCreateProcessEx
{
ush = 8;
memset{&u55, B, Bx206uibh);
uu2[8] = 8;
menset{&v42[1], @, BxEui6d) ;
({oFf_uB136A + 123898))(String, 260i64, &Sy, Bi64);// 0x481320 - GetFullPathNamey
RtlInitUnicodeString{vu2, &uS4, vid, vi2, v20, v2y, Bi6L, Bi64);
hHeap = @id6h;
LODWORD(u27) = 1;
u26 = Bi6h;
if (((off_4B41B3 + 3365835)){&hHeap, &ui5, Biéh, Bi6h, &ulss, Bish, Ai6h, Bisl) >= 8)// Bx4O4178 - RtlCreateProcessParametersEx
{

Binary obfuscation

To complicate the malware analysts’ task, malware developers often use custom PE packers
to protect the original code of the Trojan executable. Most packers of this type, however, are

effortlessly unpacked to reveal the original unchanged Trojan PE file that’s suitable for
analysis.

This, however, is not the case with SynAck. The Trojan executable is not packed; instead, it
is thoroughly obfuscated prior to compilation. As a result, the task of reverse engineering is
considerably more complicated with SynAck than it is with other recent ransomware strains.

2/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152740/180504-SynAck-ransomware-1.png

The control flow of the Trojan executable is convoluted. Most of the CALLs are indirect, and
the destination address is calculated by arithmetic operation from two DWORD constants.

lea rax, cs:3196F7AZh
lea rcx, [rbp+11Bh+var_F8]
sub rax, 3155F242h

call rax ; sub_ 18568

All of the WinAPI function addresses are imported dynamically by parsing the exports of
system DLLs and calculating a CRC32-based hash of the function name. This in itself is
neither new nor particularly difficult to analyze. However, the developers of SynAck further
complicated this approach by obscuring both the address of the procedure that retrieves the
API function address, and the target hash value.

Let’s illustrate in detail how SynAck calls WinAPI functions. Consider the following piece of
disassembly:

mouv rFax, c5:u?F_hﬂ3313

lea rce, quword_423BB8

Suhb rax, 7BFSECHDh off_4B3B13 dq 7936271Dh
mou [vsp+4Bh+uar_28], J

mou +od, 1

®or r8d, ri8d

®or edx, edx

call Fax

This code takes the DWORD located at 403b13, subtracts the constant 78f5ec4d, with the
result 403adO0, and calls the procedure at this address.

B000D0DOD0403ADEO 51 push rcx
B0BABABOBALAIADT 52 push rdx
000000DOOO4O3ADZ 41 50 push r8

B000800000403ADY 41 51 push ___ r9

BoD0D0DODO4O3ADS 68 A1 BC 7B 87 [push ﬂFFFFFFFFB??BBEH1h]
B000B0DODO403ADE 68 O4 92 39 2F push 2F399204h
PO00BOOOBO4O3AED 48 8D 65 65 16 01 00 Tea Fax, 10C_M15149+3
B000B0BOBO4O3AE7 48 O5 F4 BC 00 00 add rax, BBCF4h
0000000004 O3AED 50 push rax
@0B0B0DOBO4O3AEE 48 8D 05 3E CD 01 00 lea rax, unk_420833
P000BNOOBO4O3AFS 48 05 1D 06 00 00 add rax, 61Dh
80000000004 03AFE 50 push rax
PO0OBOOOBO4O3AFC 48 8D 65 4F 1A E1 AS lea rax, ©5:OFFFFFFFFA6215552h
@0B0B0BOBO403BE3 48 05 2E E1 1E 5A add rax, SA1EE12Eh
0000000060403B69 FF DO (call rax ; sub_4063680)
80008000004 03BOB 41 59 pop o

B0BOBABNBAA4A3BED 41 58 pop r8

80000000004 03BOF 5A pop rdx
B0BABABABALAIB1A 59 pop rFex
B00000DOD0403B11 50 push rax]
a0BABABABALAIB1Z C3 retn

3/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152748/180504-SynAck-ransomware-2.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152754/180504-SynAck-ransomware-3.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152801/180504-SynAck-ransomware-4.png

This procedure pushes two constants (N1 = ffffffff877bbca1 and N2 = 2399204) onto the
stack and passes the execution to the procedure at 403680 which will calculate the result of
N1 xor N2 = a8422ea5.

This value is the hash of the API function name that SynAck wants to call. The procedure
403680 will then find the address of this function by parsing the export tables of system
DLLs, calculating the hash of each function name and comparing it to the value a8422ea5.
When this API function address is found, SynAck will pass the execution to this address.

Notice that instead of a simple CALL in the image above it uses the instructions PUSH +
RET which is another attempt to complicate analysis. The developers of SynAck use different
instruction combinations instead of CALL when calling WinAPI functions:

e push reg
retn
e jmp reg
e mov [rsp-var], reg
jmp gword ptr [rsp-var]

Deobfuscation

To counter these attempts by the malware developers, we created an IDAPython script that
automatically parses the code, extracts the addresses of all intermediate procedures,
extracts the constants and calculates the hashes of the WinAPI functions that the malware
wants to import.

We then calculated the hash values of the functions exported from Windows system DLLs
and matched them against the values required by SynAck. The result was a list showing
which hash value corresponds to which API function.

LA
o]

[}

C

a/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152808/180504-SynAck-ransomware-5.png

Our script then uses this list to save comments in the IDA database to indicate which APl is
going to be called by the Trojan. Here is the code from the example above after
deobfuscation.

mov rax, cs:ioff_483B13

lea rcx, hProw

sub rax, FBFSEC4Dh

mov dword ptr [rsp+48h+var_28], GFO006048h

mov rod, 1

Xor r8d, rid

Xor edx, edx

call Fax ; Bx4B3ad@ - CryptAcquireContextn

vl = BxFoeBoO4a;
((off_483B13 - 2829382733))(&hProv, Pi6k, 0i6h4, 1i64, ve);// Bx4B3add - CryptAcquireContexta

({oFF_uB22Dp3 + 1794966)) (&hCritSect); Ff BxuB2298 - InitializeCriticalSection
vl = 8;
vl = B;

((off_uB38BA + 1315161))(hProv, 4i6k, &u10); // Bx483878 - CryptGenRandom

Language check

At an early stage of execution the Trojan performs a check to find out whether it has been
launched on a PC from a certain list of countries. To do this, it lists all the keyboard layouts
installed on the victim’s PC and checks against a list hardcoded into the malware body. If it
finds a match, SynAck sleeps for 300 seconds and then just calls ExitProcess to prevent
encryption of files belonging to a victim from these countries.

{(off_4B821DA + 1500536))(Bx8007164) ; // Bx4B82198 - SetErrorHode
if | *CheckKeyboardLayouts())
1
({off_u482A3A - 1255812598))(3000001i64) ; /7 Bx4829f8 - Sleep
({off_4B1EB3 + 6698B8))(0i64, vi, vd, vid); /7 Bx481eld - ExitProcess
¥

5/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152815/180504-SynAck-ransomware-6.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152822/180504-SynAck-ransomware-7.png
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152830/180504-SynAck-ransomware-8.png

1jsigned __int64 CheckKeyboardLayouts()

2K

3| /7 [COLLAPSED LOCAL DECLARATIONS. PRESS KEYPAD CTRL-"+" TO EXPAHND]

N

5/ vl = ({off_4B83123 - 1893555383))(0i6k, Bi6hd); 7/ Bz408308ed - GetKeyboardLayoutlist
6] if { tud)

7 return 1i64;

8| layouts = nlluc_1(siﬁh * ull, 3);

9| num_layouts = ({off_483123 - 1893555383))(vH, layouts);// Bx4830e8 - GetKeyboardLayoutlist
18 if (num_layouts)

11| 4
12 ug = Bi6k;
13 u? = num_layouts;

14 if { num_layouts > 8)

15 {

16 while (2)

17 {

18 for { i = Bi64; ; i += 2i64)

19 {

28 vii = Decryptstring(&unk_hZﬂBSh + 8828, vd, v?);// keyboard_layouts:
21 Ff 19 B4 - russian

22 Ff 22 B4 - ukrainian

23 Ff 23 B4 - belorussian

24 /7 37 B4 - georgian

25 Ff 2b 84 - armenian

26 ff 2c B8 - azerbaijani cyrillic
27 F£F 3f B4 - kazakh

28 /7 28 B4 - tajik

29 /7 43 B8 - uzbek cyrillic
3n Ff 43 84 - uzbek latin

31 u12 = =&U11[i];

32 if (vil)

33 Free{uii);

34 if (tvi2)

35 break;

Directory name validation

Shortly after the language check, which can be considered fairly common among modern
ransomware, SynAck performs a check on the directory where its executable is started from.
If there’s an attempt to launch it from an ‘incorrect’ directory, the Trojan won'’t proceed and
will just exit instead. This measure has been added by the malware developers to counter
automatic sandbox analysis.

As with APl imports, the Trojan doesn'’t store the strings it wants to check; instead it stores
their hashes — a tactic that hinders efforts to find the original strings.

SynAck contains nine hashes; we have been able to brute-force two of them:

0x05f9053d == hash("output")
0x2cd2f8e2 == hash("plugins")

In the process we found a lot of collisions (gibberish strings that give the same hash value as
the meaningful ones).

Cryptographic scheme

6/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152838/180504-SynAck-ransomware-9.png

Like other ransomware, SynAck uses a combination of symmetric and asymmetric
encryption algorithms. At the core of the SynAck algorithm lies the hybrid ECIES scheme. It
is composed of ‘building blocks’” which interact with each other: ENC (symmetric encryption
algorithm), KDF (key derivation function), and MAC (message authentication code). The

ECIES scheme can be implemented using different building blocks. To calculate a key for the

symmetric algorithm ENC, this scheme employs the ECDH protocol (Diffie-Hellman over a
chosen elliptic curve).

The developers of this Trojan chose the following implementation:
ENC: XOR

KDF: PBKDF2-SHA1 with one iteration

MAC: HMAC-SHA1

ECDH curve: standard NIST elliptic curve secp192r1

ECIES-XOR-HMAC-SHA1

This is the function that implements the ECIES scheme in the SynAck sample.

Input: plaintext, input_public_key
Output: ciphertext, ecies_public_key, MAC

1. The Trojan generates a pair of asymmetric keys: ecies_private_key and
ecies_public_key;
2. Using the generated ecies_private_key and input_public_key the Trojan calculates

the shared secret according to the Diffie-Hellman protocol on an elliptic curve:
ecies_shared_secret = ECDH(ecies_private_key, input_public_key)

3. Using the PBKDF2-SHA1 function with one iteration, the Trojan derives two byte
arrays, key_enc and key_mac, from ecies_shared_secret. The size of key_enc is
equal to the size of the plaintext;

4. The plaintext is XORed byte to byte with the key_enc;

5. The Trojan calculates the MAC (message authentication code) of the obtained
ciphertext using the algorithm HMAC-SHA1 with key_mac as the key.

Initialization

At the first step the Trojan generates a pair of private and public keys: the private key
(session_private_key) is a 192-bit random number and the public key
(session_public_key) is a point on the standard NIST elliptic curve secp192r1.

7/14

https://en.wikipedia.org/wiki/Integrated_Encryption_Scheme

Then the Trojan gathers some unique information such as computer and user names, OS
version info, unique infection ID, session private key and some random data and encrypts it
using a randomly generated 256-bit AES key. The encrypted data is saved as the
encrypted_unique_data buffer.

To encrypt the AES key, the Trojan uses the ECIES-XOR-HMAC-SHA1 function (see
description above; hereafter referred to as the ECIES function). SynAck passes the AES key
as the plaintext parameter and the hardcoded cybercriminal’s master_public_key as
input_public_key. The field encrypted_aes_key contains the ciphertext returned by the
function, public_key nis the ECIES public key and message _authentication_code is the
MAC.

At the next step the Trojan forms the structure cipher _info.

struct cipher_info

{
uint8_t encrypted_unique_data[240];

uint8_t public_key_n[49];
uint8_t encrypted_aes_key[44];
uint8_t message_authentication_code[20];

}i

It is shown in the image below.

DD EC-CE B8 E6 09-DA EE AA 7B

B6 6A 7C B5-D1 9B DD EC-CE B8 E6 @9-DA EE AA 7B

A5 @D BB @4-76 19 D4 94-77 3A 4B AF-33 72 EB 53 eljevi E

87 69 40 82-8C C4 4D 44-77 94 B6 5F-0C 3B F2 07 «i@89—Dwo| Q;€s
29 69 27 @O-AE 6D 99 E4-5F 4D 69 A1-CC E@ B6 9E)i’ onlih Mi6[ip]i
B6 6A 7C B5-D1 9B DD EC-CE B8 E6 @9-DA EE AA 7B {7 |47bll udh uo pox{
75 D2 57 6B-AB F1 35 C4-28 S5E 4A A8-8A 1C 84 86 uphlkn&5—(*InKLIK
7D 76 @F B5-63 B2 E6 D7-DD 79 20 1F-15 69 DE 48 Jved cBuf]y veile
EF 40 8F 8F-68 1F D3 A7-14 75 E3 CA-A® E4 41 D1 a@nnhv's9uyllacar
2B B6 48 8A-00 E1 7D 24-AA 7F 42 56-37 BA @7 21 +[HK c}$xoBv7msl
AC 57 €7 F9-1C 1B 67 49-93 FC 7A 2A-73 DA 95 C7 mu|-LegI¥hez*s x|}
BA C4 7@ DF-12 EC BB 13-40 73 57 @D-53 2D 5F F8 J|— By I@shas-_°
B9 FD 6C CA-EF A3 8C 9F-2D 18 3B B1-EB 8A 2A 71 - HllarMa-

77 @4 97 FA-AB 1C E@ 29-95 25 59 40-A9 8B BF 3E i Iy >
B6 6A 7C B5-D1 9B DD EC-CE B8 E6 B9-DA EE AA 7B {|j|J1 i uo pok
@4 6B DD D8-25 11 @D @8-46 69 69 31-D2 8F 98 3E #k| F¥)Qriilyni>

77 F5 D3 F2-06 56 AF 5 ES CD 74-D5 66 9E E@ wileAvmTOu—t fiop

83 13 61 2B-91 D6 BC 26-5A 91 AC 56-E8 14 E@ €9 MMa+Cd&zcivupy

1% 8F 9E A9-2A 9B 98 C7-F5 D8 F3 EC-A8 E5 F1 98 tMHi*blll}itesnxéll

B1 85 08 78-9C A3 02 12-E8 02 73 75-76 E9 B3 A6 =EQxbrotudsuvu|x

52 36 F1 3B-DE BS 1A 64-5A 58 DB AE-29 7C 92 8D R6&; Hodoxfe) | TH

9F FD FA 26-C9 C7 81 66-F6 @@ 55 69-BC 99 €D 78 auigp|efy viluep
- - - E]

33

This data is then encoded in base64 and written into the ransom note.

8/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152846/180504-SynAck-ransomware-10.png

)

File Edit Format View Help

SynAck FES
(Files Encryption Software)

Dear client, we apoligize for inconvinience with your files.

So we make a business offer to order file recovery service from us.

We do not extort money, files restore is an optional service.

Also we will do auditing of your network FOR FREE if you order file recovery service.

Some details about SynAck FES:

This software uses ecies-secpl92rl algorithm to create unique pair of private and public keys for the session.

Each file is encrypted with random key using aes-ecb-256 algorithm.

We strongly recommend you not to use third-party decryptors because they can damage your files.

But if you want to try to restore your files by yourself, make sure you have made backup copies of encrypted files.

And please do not remove files with text notes, because they contain important information required for file restoring.

If you want to order file recovery service, please contact our support using one of the following e-mail addresses:

synack@scryptmail.com
synack@countermail.com

If you have not get a response in 24 hours, please do not panic and write on BitMessage (using site https://bitmsg.me/):
BM-2cTp9eosgjlis8SV14kYCDzPN3HIkwYk1LQ

Keep in mind that there are fake services offering decryption; do not believe them or you will lose your money.

Anyway, there is one method you can use for proof: ask to decrypt some files for free.

lNo one except us will be able to do that.

I PLEASE INCLUDE THE FOLLOWING TEXT IN YOUR MESSAGE !!!!

tmp8tdGb3ez0ulYI2ubqe7igfLXRm93szrjmCdrugnulDbsEdhnUlHc6568zcutTB21AAgzETURI1ILIT
DOvyBylpJwCubinkX@lpoczgtpb2anyl@Zvd7Mb4d5gna7qp7ddIXabuvxNcQoXkqoihyEhn12D7VjsubX
3XkgHxVp3kDvQI+PaB,/TpxR148qg5EHRK7ZIigDhfSSqf@IiNwoHIaxXx /kcG2dIk/x6KnPalcebxHDT
Euy7EBBzVWITLV/duflsyu+jjI8tGDuxbloqcXcEl/SrHOAP1SVIQKmLvz62anyl18Zvd7MEeA5gnalqp?
BGvd2CURDQhGaWkx@o+YPnf1e/IGVq9U0enNdNVmnuCDE2Erkda811gRTFboFODIGI+eq5qbmMf12PPs
qOXxmLGFCHicowISHATzdXbps6ZSNVETIrUaZFpY264pfIKNn/38]snHgWb2AFVpvInNcDM=

arus,

Synick Team.

—=============================== SyniAck FES s====================

As we can see, the criminals ask the victim to include this encoded text in their message.

File encryption

The content of each file is encrypted by the AES-256-ECB algorithm with a randomly
generated key. After encryption, the Trojan forms a structure containing information such as
the encryption label 0XA4EF5C91, the used AES key, encrypted chunk size and the original
file name. This information can be represented as a structure:

struct encryption_info

{

uint32_t label = OXA4EF5C91;
uint8_t aes_key[32];

uint32_t encrypted_chunk_size;
uint32_t reserved;

uint8_t original_name_buffer[522];

}i

9/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152856/180504-SynAck-ransomware-11.png

The Trojan then calls the ECIES function and passes the encryption_info structure as the
plaintext and the previously generated session_public_key as the input_public_key. The
result returned by this function is saved into a structure which we dubbed
file_service_structure. The field encrypted_file_info contains the ciphertext returned by the
function, ecc_file_key public is the ECIES public key and message_authentication_code is
the MAC.

struct file_service_structure

{

uint8_t ecc_file_key_public[49];
encryption_info encrypted_file_info;
uint8_t message_authentication_code[20];

7

This structure is written to the end of the encrypted file. This results in an encrypted file
having the following structure:

struct encrypted_file

{

uint8_t encrypted_data[file_size - file_size % AES_BLOCK_SIZE];
uint8_t original trailer[file_size % AES_BLOCK_SIZE];

uint64_t encryption_label = Ox65CE3D204A93A12F;

uint32_t infection_id;

uint32_t service_structure_size;

file_service_structure service_info;

7

The encrypted file structure is shown in the image below.

cP/l>my4o=nle
HaTh#]s *udo
N kar HaB;E
" IS bV

10/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152905/180504-SynAck-ransomware-12.png

After encryption the files will have randomly generated extensions.

Mame Date Type Size Tags
| | ==READ==THI5==PLEASE==34500CA9 4/17/2018 3:27 PM Text Document 3KB
|| Central.docJPuQKpeill 4/21/2017 10:30 PM JPUQKPEILI File 23 KB
|| Dear Joan.docx. QhgzmslKwZ 3/29/2018 8:30 PM QHGZMSIKWE File 12 KB
|| IMPORTANT.txt.Eankduyrlc 2/1772012 7:16 AM EAMNKIUYRLC File 1KB
|| JessjpgyLlgslHipIm 4/15/2008 3:00 PM YLGSIHIPIM File T1 KB
|| Lege final jpg. HHFGZMeltl 4/15/2008 3:00 PM HHFGZMEITL File T1 KB
|| Lego.jpg.SHjHjmswle 4/15/2008 3:00 PM SHIHIMSWIE File T1 KB
|| Loyce-1243,jpg.LLUfgvlgVP 4/15/2008 3:00 PM LLUFGVLQWP File 83 KB
|| Photo 1.jpg.BCWWOVCYGC 4/15/2008 3:00 PM BCOWWOVCYGC File 83 KB
|| Photo 2.jpg.jOVAzdVZuA 4/15/2008 3:00 PM JOVAZDVZUA File 83 KB
|| Phote 3.jpg.BHbLczGGdL 4/15/2008 3:00 PM BHBLCZGGOL File 29 KB
|| Photo 4.jpg.5505LsENtw 4/15/2008 3:00 PM SS0SLSENTW File 29 KB

Other features

Termination of processes and services

Prior to file encryption, SynAck enumerates all running processes and all services and
checks the hashes of their names against two lists of hardcoded hash values (several
hundred combined). If it finds a match, the Trojan will attempt to kill the process (using the

TerminateProcess API function) or to stop the service (using ControlService with the
parameter SERVICE_CONTROL_STOP).

To find out which processes it wants to terminate and which services to stop, we brute-forced

the hashes from the Trojan body. Below are some of the results.

Processes Services

Hash Name Hash Name
0x9a130164 dns.exe 0x11216a38 vss
0xf79b0775 lua.exe 0xe3f1f130 mysql
0x6475ad3c mmc.exe Oxc82cea8d gbvss
Oxe107acf0 php.exe Oxebcd4079 sesvc
Oxf7f811c4 vds.exe 0xf3d0e358 vmvss
0xcf96a066 lync.exe 0x31c3fbb6 wmsvc
0x167f833f nssm.exe 0x716f1a42 w3svc

11/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152914/180504-SynAck-ransomware-13.png

0x255¢7041

ssms.exe 0xa6332453 memtas

Oxbdcc75a9

w3wp.exe 0x82953a7a mepocs

0x410de6a4

excel.exe

0x9197b633

httpd.exe

0x83ddb55a

ilsvc.exe

Oxb27761ed

javaw.exe

0xfd8b9308

melsc.exe

Oxa105f60b

memis.exe

0x10e94bcc

memta.exe

Oxb8de9%e34

mepoc.exe

Oxeaa98593

monad.exe

0x67181e9b

magsvc.exe

0xd6863409

msoia.exe

Ox5fcab0fe

named.exe

0x7d171368

gbw32.exe

0x7216db84

skype.exe

Oxd2f6ce06

steam.exe

0x68906b65

store.exe

Ox6d6daa28

vksts.exe

0x33cc148e

VSSVC.exe

0x26731ae9

conime.exe

0x76384ffe

fdhost.exe

0x8cc08bd7

mepopc.exe

0x2e883bd5

metray.exe

Oxd1b5c8df

mysqld.exe

0xd2831¢c37

python.exe

12/14

Oxf7dc2ed4e srvany.exe

Ox8a37ebfa tabtip.exe

As we can see, SynAck seeks to stop programs related to virtual machines, office
applications, script interpreters, database applications, backup systems, gaming applications
and so on. It might be doing this to grant itself access to valuable files that could have been
otherwise used by the running processes.

Clearing the event logs

To impede possible forensic analysis of an infected machine, SynAck clears the event logs
stored by the system. To do so, it uses two approaches. For Windows versions prior to Vista,
it enumerates the registry key SYSTEM\CurrentControlSet\Services\EventLog and uses
OpenEventLog/ClearEventLog API functions. For more modern Windows versions, it uses
the functions from EvtOpenChannelEnum/EvtNextChannelPath/EvtClearLog and from
Wevtapi.dll.

SynAck is also capable of adding a custom text to the Windows logon screen. It does this by
modifying the LegalNoticeCaption and LegalNoticeText keys in the registry. As a result,
before the user signs in to their account, Windows shows a message from the
cybercriminals.

user

SynAck FES

Attack statistics

13/14

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/05/04152924/180504-SynAck-ransomware-14.png

We have currently only observed several attacks in the USA, Kuwait, Germany, and Iran.

This leads us to believe that this is targeted ransomware.

Detection verdicts

Trojan-Ransom.Win32.Agent.abwa
Trojan-Ransom.Win32.Agent.abwb
PDM:Trojan.Win32.Generic

loCs

Ox6F772EB660BCO5FC26DF86C98CA49ABC
0x911D5905CBE1DD462F171B7167CD15B9

o Malware Descriptions
o Malware Technologies
 Obfuscation

e Ransomware
 Trojan

Authors

Anton lvanov

Fedor Sinitsyn

. Expert Orkhan Mamedov

SynAck targeted ransomware uses the Doppelganging technique

Your email address will not be published. Required fields are marked *

14/14

https://securelist.com/tag/malware-descriptions/
https://securelist.com/tag/malware-technologies/
https://securelist.com/tag/obfuscation/
https://securelist.com/tag/ransomware/
https://securelist.com/tag/trojan/
https://securelist.com/author/anton/
https://securelist.com/author/fedors/
https://securelist.com/author/orkhanmamedov/

