
1/9

Smoke Loader malware improves after Microsoft spoils
its Campaign

spamhaus.org/news/article/774/smoke-loader-improves-encryption-after-microsoft-spoils-its-campaign

Tweet Follow
@spamhaus Smoke Loader malware improves after Microsoft spoils its Campaign

2018-04-16 15:15:55 UTC | by Spamhaus Malware Labs | Category: malware

Recent
News
Articles

Spamhaus
Botnet Threat
Update: Q4-
2021

SERVICE
UPDATE |
Spamhaus
DNSBL users
who query via
Cloudflare
DNS need to
make
changes to
email set-up

Spamhaus
Botnet Threat
Update: Q3-
2021

Early this year, in March 2018, Microsoft’ Windows Defender Research
Team in Redmond published some interesting insights into a massive
malware campaign distributing a dropper/loader called Smoke Loader
(also known as Dofoil). The main purpose of the documented campaign
was to distribute a coin miner payload that is using infected machines to
mine crypto currencies. Within 12 hours, Windows Defender recorded
more than 400,000 instances, but could deploy appropriate
countermeasures on computers running Windows within seconds. As
further analysis from Spamhaus Malware Labs revealed, these
countermeasures did not stay unattended by the malware authors behind
Smoke Loader.

Apparently, as a reaction on Microsoft’ countermeasures, the malware
authors behind Smoke Loader made some significant code changes in
order to bypass Windows Defender and other Antivirus software. These
code changes include:

Change in the infection techniques
Introduction of 64bit payload

Anti-VM and Anti-Analysis techniques in the packer
What stares out with Smoke Loader is that the packer and the main
executable (unpacked payload) is related to each other. It is necessary for
the unpacked payload to be loaded by the packer in order to run. In
addition, the unpacked code checks for certain markers created by the
packer in order to run. When Smoke Loader gets executed in a sandbox
(for example a virtual environment), the sample fails to start. The reason
for this are Anti-VM and Anti-Analysis techniques that Smoke Loader
implemented in the code recently. An initial examination under IDA
reveals that the code is obfuscated with jump chains whose sole purpose
is to make the static analysis harder.

https://www.spamhaus.org/news/article/774/smoke-loader-improves-encryption-after-microsoft-spoils-its-campaign
https://twitter.com/share
https://twitter.com/spamhaus
https://www.spamhaus.org/news/tags/malware/
https://www.spamhaus.org/news/article/817/spamhaus-botnet-threat-update-q4-2021
https://www.spamhaus.org/news/article/816/service-update-spamhaus-dnsbl-users-who-query-via-cloudflare-dns-need-to-make-changes-to-email-set-up
https://www.spamhaus.org/news/article/815/spamhaus-botnet-threat-update-q3-2021
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/07/behavior-monitoring-combined-with-machine-learning-spoils-a-massive-dofoil-coin-mining-campaign/

2/9

Spammer
Abuse of
Free Google
Services

Spamhaus
Botnet Threat
Update: Q2-
2021

Emotet Email
Aftermath

Wordpress
compromises:
What's
beyond the
URL?

You can't buy
data hygiene

Older News
Articles:

Spamhaus
News INDEX

Runtrace
The code at line number 19 (0040295C Main CMP DWORD PTR DS:
[EAX+A4],) reveals that Smoke Loader checks the version of the
operating system in PEB structure. In case the operating system where
the malware sample gets executed on is less than version 6 (Windows NT
6, which equals to Windows Vista), the malware sample immediately stop
the execution. In addition, there are a handful other checks based on
debugging flags, which can be traced back using the same tracing
technique.

Furthermore, the recent Smoke Loader version also overwrites some of its
own code section with new instruction that do also contain anti-analysis
code and code related to packer loading.

A call trace helps to determine the functionality of that modified mode as
shown below.

Anti-VM checks
The code snipped shown above show code that checks for certain signs
of a virtual environment, for example the presence of certain drivers of
VirtualBox or certain strings that would trace the environment where the
malware sample gets executed to Qemu.

In previous versions, Smoke Loader would create a hollow process and
then inject the unpacked code into it. However, after Microsoft spoiled the
massive Smoke Loader campaign in March 2018, the most recent version
of Smoke Loader injects itself into a running instance of Windows Explorer
(explorer.exe) instead of creating a hollow process. The injection is now
based on the same technique as used by PowerLoader, which uses
SendNotifyMessage for code injection. Also, while previous versions of
Smoke Loader were using 32bit code, the most recent version of Smoke
Loader contains 64bit code in order to inject itself into explorer.exe on
computers that are running a 64bit operating system.

https://www.spamhaus.org/news/article/814/spammer-abuse-of-free-google-services
https://www.spamhaus.org/news/article/813/spamhaus-botnet-threat-update-q2-2021
https://www.spamhaus.org/news/article/812/emotet-email-aftermath
https://www.spamhaus.org/news/article/811/wordpress-compromises-whats-beyond-the-url
https://www.spamhaus.org/news/article/810/you-cant-buy-data-hygiene
https://www.spamhaus.org/news/
https://www.spamhaus.org/news/rss/
https://www.spamhaus.org/news/images/dofoil_runtrace.png
https://www.spamhaus.org/news/images/dofoil_antivm_checks.png

3/9

Smoke Loader injecting into explorer.exe
The following code change highlights that the final payload is supposed to
be run as thread instead of a separate process.

Previous version (process based)

Recent version (thread based)
The packer creates a shared file map which contains various information
on the initial infection, such as the packed binary. This file map is later
being used by the executing thread.

Shared file map

https://www.spamhaus.org/news/images/dofoil_injection_explorerexe.png
https://www.spamhaus.org/news/images/dofoil_process_based.png
https://www.spamhaus.org/news/images/dofoil_thread_based.png
https://www.spamhaus.org/news/images/dofoil_shared_map.png

4/9

The name of the shared file map is generated from VolumeSerialNumber
of root drive of the infected machine. This shared file map can be used as
an indicator of compromise (IOC).

Additional changes in the code
While the previously string encoding algorithm used by Smoke Loader
was based on xor, the most recent version includes an RC4 based string
encryption as highlighted on the screenshot above.

RC4 based string decryption
The following IDA python script can help with static decoding of Smoke
Loader: download

In earlier versions of Smoke Loader, the botnet controller domain names
(C&C) were encoded using an algorithm that was based on a simple xor
subtraction:

def Decodec2(data):
 XorKey = struct.unpack("<B", data[0])[0]
 dst = array.array("B")
 base = data[5:]
 PackLen = struct.unpack("<B", data[4])[0]
 print PackLen
 for i in range(0, PackLen - 1, 2):
 #print chr(((ord (base[i]) ^ XorKey) & 0xff) -
((ord(base[i + 1]) ^ XorKey) & 0xff) & 0xff),
 dst.append(((ord (base[i]) ^ XorKey) & 0xff) -
((ord(base[i + 1]) ^ XorKey) & 0xff) & 0xff)
 return dst.tostring()

The most recent version of Smoke Loader has been modified by the
authors to make use of a more complex encoding scheme which is based
on multiple operations:

https://www.spamhaus.org/news/images/dofoil_string_decryption.png
https://www.spamhaus.org/downloads/smoke_loader_decoding.py%20

5/9

def swap32(x):
 return (((x << 24) & 0xFF000000) |
 ((x << 8) & 0x00FF0000) |
 ((x >> 8) & 0x0000FF00) |
 ((x >> 24) & 0x000000FF))
def Decodec2(buf):
 BufLen = struct.unpack("<B", buf[0])[0]
 print "[] Buf len = %d" % BufLen
 XORDword = struct.unpack("<I", buf[BufLen + 1 : BufLen + 1 + 4])
[0]
 print "[] XorDword is %d" % XORDword
 XORDword = swap32(XORDword)
 print hex(XORDword)
 x = 0
 dst = array.array("B")

 for i in buf[1:BufLen + 1]:
 x = ord(i)

 x = x ^ (XORDword & 0xff)

 XORDword = (XORDword >> 8)
 x = x ^ (XORDword & 0xff)

 XORDword = (XORDword >> 8)
 x = x ^ (XORDword & 0xff)

 XORDword = (XORDword >> 8)
 x = x ^ (XORDword & 0xff)

 x = x - (1 << 8)
 x = -x & 0xff
 print chr(x- 1),
 dst.append ((x-1))
 XORDword = swap32(struct.unpack("<I", buf[BufLen + 1 :
BufLen + 1 + 4])[0])
 return dst.tostring()

An HTTP request from Smoke Loader to the botnet controller (C&C
server) consists of some internals constants as well as system information
from the infected machine. The request is formatted as shown below.

C2 packet format
The HTTP response from the botnet controller (C&C server) is typically an
RC4 encrypted payload that can include multiple, so called “plugins” (such
as the coin miner mentioned by the Windows Defender Team). The RC4

https://www.spamhaus.org/news/images/dofoil_c2_packet_format.png

6/9

encrypted payload also includes one of the following commands:

i - Download a file from http location field from using command ID
102
r - Uninstall Dofoil from system (followed by ack packet using
command ID 114)
u - Update dofoil (download from http location field updated binary)

Based on way Smoke Loader calculates the mutex name an infected
machine, we can create a vaccine to prevent Smoke Loader from infecting
a machine:

7/9

#define WIN32_LEAN_AND_MEAN
#include <windows.h>

#include <wincrypt.h>

void MD5(BYTE* data, ULONG len, unsigned char *out)
{

HCRYPTPROV hProv = 0;
HCRYPTPROV hHash = 0;
BYTE rgbHash[16]= {0};
DWORD cbHash = 16;
char hash[3] = {0};
int i = 0;
CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL,

CRYPT_VERIFYCONTEXT);
CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);

CryptHashData(hHash, data, len, 0);

CryptGetHashParam(hHash, HP_HASHVAL, rgbHash, &cbHash, 0);
for (i = 0 ; i < 16; i++)
{
 sprintf(hash, "%.2X", rgbHash[i]);
 strcat(out, hash);
}
CryptDestroyHash(hHash);
CryptReleaseContext(hProv, 0);

}

int main(int argc, char **argv)
{

unsigned char *Source = (unsigned char *)
malloc(sizeof(char) * 265);

unsigned char *md5Sum = (unsigned char *)
malloc(sizeof(char) * 34);

DWORD lpVolumeSerialNumber = 0;

unsigned char *FtString = (unsigned char *)

malloc(sizeof(char) * 34);

int ComNameSize = 16;
char CompName[MAX_COMPUTERNAME_LENGTH + 0x10] = {0};

memset(md5Sum, 0x00, 34);
memset(FtString, 0x00, 34);
memset(Source, 0x00, 265);

GetComputerName(CompName,&ComNameSize);

GetSystemDirectoryA(Source, 260);

Source[3] = 0x00;
GetVolumeInformationA(Source, 0, 0, &lpVolumeSerialNumber,

0, 0, 0, 0);

sprintf(FtString, "%s%08X%08X", CompName, 0xFEE7D621,

lpVolumeSerialNumber);

MD5(FtString, strlen(FtString), md5Sum);

8/9

sprintf(md5Sum, "%s%08X", md5Sum, lpVolumeSerialNumber);
printf("%s", md5Sum);
CreateMutex(0,0,md5Sum);
while(1) Sleep(0x1000);

}

During the binary code analysis, Spamhaus Malware Labs found some
sections in the code that are obviously being used by the author of Smoke
Loader for debug purpose. This proves that Smoke Loader is still under
heavy development of its authors and is constantly evolving.

Debug variables
Conclusion
Since late 2017, Spamhaus Malware Labs could identify more than 8,000
smoke loader malware samples which call out to over 1,000 unique botnet
controllers (C&C servers). In addition, to the latest code changes made by
the authors of Smoke Loader in response to the countermeasures by
Windows Defender, we do also see a trend in certain Smoke Loader
campaigns that are shifting away from the official TLDs over to
decentralized TLDs (dTLDs) such as Namecoins .bit. By using
decentralized TLDs for botnet C&C hosting, botnet operators try to make
their botnet C&C infrastructure more resilient against takedown attempts
by security researchers and law enforcement agencies (LEA).

Spamhaus Malware Labs continues to follow the further development of
Smoke Loader and takes the appropriate actions to protect Spamhaus
users from this threat.

Further reading
Microsoft Secure: Behavior monitoring combined with machine
learning spoils a massive Dofoil coin mining campaign
Microsoft Secure: Poisoned peer-to-peer app kicked off Dofoil coin
miner outbreak
Microsoft Secure: Hunting down Dofoil with Windows Defender ATP
abuse.ch: .bit - The next Generation of Bulletproof Hosting
Spamhaus Botnet Threat Report 2017

https://www.spamhaus.org/news/images/dofoil_debug_variables.png
https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/07/behavior-monitoring-combined-with-machine-learning-spoils-a-massive-dofoil-coin-mining-campaign/
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/13/poisoned-peer-to-peer-app-kicked-off-dofoil-coin-miner-outbreak/
https://cloudblogs.microsoft.com/microsoftsecure/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/
https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://www.spamhaus.org/news/article/772/spamhaus-botnet-threat-report-2017

9/9

Related Spamhaus tools & products
Spamhaus DROP (Don't Route Or Peer Lists)
Spamhaus Response Policy Zone (RPZ)
Spamhaus Zero Reputation Domain (ZRD)
Spamhaus Botnet + Malware Domain List
Spamhaus Botnet Controller List (BCL)
Spamhaus/Deteque Passive DNS service

https://www.spamhaus.org/drop/
https://www.spamhaustech.com/protecting-networks/security-solutions/dns-rpz/
https://www.spamhaustech.com/news/recently-registered-domains/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/malware-domains/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/bcl/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/passive-dns/

