Smoke Loader malware improves after Microsoft spoils
its Campaign

spamhaus.org/news/article/774/smoke-loader-improves-encryption-after-microsoft-spoils-its-campaign

Tweet Follow

@spamhaus gpoke Loader malware improves after Microsoft spoils its Campaign
2018-04-16 15:15:55 UTC | by Spamhaus Malware Labs | Category: malware
Recent Early t.his year, in March 2018, MichSoﬁ’ V\(indpwg Def_ender Resegrch
News Team in Redmond pgbllg.heq some interesting_insights into a massive
Articles malware campaign distributing a dropper/loader called Smoke Loader
(also known as Dofoil). The main purpose of the documented campaign
was to distribute a coin miner payload that is using infected machines to
mine crypto currencies. Within 12 hours, Windows Defender recorded
more than 400,000 instances, but could deploy appropriate
countermeasures on computers running Windows within seconds. As
further analysis from Spamhaus Malware Labs revealed, these
countermeasures did not stay unattended by the malware authors behind
Smoke Loader.
Apparently, as a reaction on Microsoft’ countermeasures, the malware
Spamhaus authors behind Smoke Loader made some significant code changes in
Botnet Threat ©order to bypass Windows Defender and other Antivirus software. These
Update: Q4- code changes include:
2021 : : . .
¢ Change in the infection techniques
« Introduction of 64bit payload
SERVICE
UPDATE | Anti-VM and Anti-Analysis techniques in the packer
Spamhaus

DNSBL users
who query via

Cloudflare
DNS need to
make
changes to
email set-up

Spamhaus
Botnet Threat
Update: Q3-
2021

What stares out with Smoke Loader is that the packer and the main
executable (unpacked payload) is related to each other. It is necessary for
the unpacked payload to be loaded by the packer in order to run. In
addition, the unpacked code checks for certain markers created by the
packer in order to run. When Smoke Loader gets executed in a sandbox
(for example a virtual environment), the sample fails to start. The reason
for this are Anti-VM and Anti-Analysis techniques that Smoke Loader
implemented in the code recently. An initial examination under IDA
reveals that the code is obfuscated with jump chains whose sole purpose
is to make the static analysis harder.

https://www.spamhaus.org/news/article/774/smoke-loader-improves-encryption-after-microsoft-spoils-its-campaign
https://twitter.com/share
https://twitter.com/spamhaus
https://www.spamhaus.org/news/tags/malware/
https://www.spamhaus.org/news/article/817/spamhaus-botnet-threat-update-q4-2021
https://www.spamhaus.org/news/article/816/service-update-spamhaus-dnsbl-users-who-query-via-cloudflare-dns-need-to-make-changes-to-email-set-up
https://www.spamhaus.org/news/article/815/spamhaus-botnet-threat-update-q3-2021
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/07/behavior-monitoring-combined-with-machine-learning-spoils-a-massive-dofoil-coin-mining-campaign/

Spammer
Abuse of
Free Google
Services

Spamhaus
Botnet Threat
Update: Q2-
2021

Emotet Email
Aftermath

Wordpress

compromises:

What's
beyond the
URL?

You can't buy
data hygiene

Older News
Articles:

Spamhaus
News INDEX

Address Thread
0040291B Main
0040291D Main
00402923 Main
00402924 Main
00402930 Main
00402927 Main
0040292D Main
00402934 Main
00402936 Main
0040293D Main
0040293F Main
00402946 Main
00402947 Main
00402951 Main
0040294B Main
0040294E Main
00402954 Main
0040295C Main
00402963 Main JL SHORT 1075e8d7.004029B82
00402982 Main RETN

7C817067 Main PUSH EAX

7C817068 Main CALL kernel32.ExitThread

Runtrace

The code at line number 19 (0040295C Main CMP DWORD PTR DS:
[EAX+A4],) reveals that Smoke Loader checks the version of the
operating system in PEB structure. In case the operating system where
the malware sample gets executed on is less than version 6 (Windows NT
6, which equals to Windows Vista), the malware sample immediately stop
the execution. In addition, there are a handful other checks based on
debugging flags, which can be traced back using the same tracing
technique.

Command
INZ SHORT 1075e8d7.00402923
JE SHORT 1075e8d7.00402923
POP EBX

; Registers and comments

; EBX=0040291B
JMP SHORT 1075e8d7.00402930
JMP SHORT 1075e8d7.00402927
SUB EBX,291B

JMP SHORT 1075e8d7.00402934
JE SHORT 1075e8d7.0040293D
JNZ SHORT 1075e8d7.0040293D
PUSH 30

JNZ SHORT 1075e8d7.00402946
POP EAX

JMP SHORT 1075e8d7.00402951
JMP SHORT 1075e8d7.0040294B

; EBX=00400000

; EAX=00000030

MOV EAX,DWORD PTR FS: [EAX]

JMP SHORT 1075e8d7.00402954
JMP SHORT 1075e8d7.0040295C
CMP DWORD PTR DS: [EAX+A4],6

; EAX=7FFDAQ0Q

Furthermore, the recent Smoke Loader version also overwrites some of its
own code section with new instruction that do also contain anti-analysis
code and code related to packer loading.

A call trace helps to determine the functionality of that modified mode as
shown below.

Anti-VM checks
The code snipped shown above show code that checks for certain signs
of a virtual environment, for example the presence of certain drivers of
VirtualBox or certain strings that would trace the environment where the
malware sample gets executed to Qemu.

In previous versions, Smoke Loader would create a hollow process and
then inject the unpacked code into it. However, after Microsoft spoiled the
massive Smoke Loader campaign in March 2018, the most recent version
of Smoke Loader injects itself into a running instance of Windows Explorer
(explorer.exe) instead of creating a hollow process. The injection is now
based on the same technique as used by PowerLoader, which uses
SendNotifyMessage for code injection. Also, while previous versions of
Smoke Loader were using 32bit code, the most recent version of Smoke
Loader contains 64bit code in order to inject itself into explorer.exe on
computers that are running a 64bit operating system.

2/9

https://www.spamhaus.org/news/article/814/spammer-abuse-of-free-google-services
https://www.spamhaus.org/news/article/813/spamhaus-botnet-threat-update-q2-2021
https://www.spamhaus.org/news/article/812/emotet-email-aftermath
https://www.spamhaus.org/news/article/811/wordpress-compromises-whats-beyond-the-url
https://www.spamhaus.org/news/article/810/you-cant-buy-data-hygiene
https://www.spamhaus.org/news/
https://www.spamhaus.org/news/rss/
https://www.spamhaus.org/news/images/dofoil_runtrace.png
https://www.spamhaus.org/news/images/dofoil_antivm_checks.png

0x1d31000 4kB RW+G
0x2461000
0x29d1000
(01570000 50 kB R
0x2650000
0x290000 8kB RX
0x350000 8kB RX

1
El

t==2F

680

=

Close

Smoke Loader injecting into explorer.exe
The following code change highlights that the final payload is supposed to
be run as thread instead of a separate process.

A==)
lea eax, [ebp-4]
push eax

push ebx
push ODh
push 2711h

call sub AT71EBA
push eax
XOr eax, eax

call sub A7317C
push ebx

call ExitProcess

Previous version (process based)
¥

(il i 55

push MainMutexHandle

call CloseHandle

push ebx

call ExitThread

Recent version (thread based)

The packer creates a shared file map which contains various information
on the initial infection, such as the packed binary. This file map is later
being used by the executing thread.

Kkop\API Call Logger
. Common-Controls_6595b64144ccf1dF_6.0,2600,5512_x-ww_35d4ced3 _0x40

Baseflar 40-11D1-BC68-00ADCI03L2E1 -
Token RAASHID-D3927DE | Admiris Oxfedt

4

2R RS RBMS SRR RER F

REZOHMIGEIAZEZER g

Shared file map

3/9

https://www.spamhaus.org/news/images/dofoil_injection_explorerexe.png
https://www.spamhaus.org/news/images/dofoil_process_based.png
https://www.spamhaus.org/news/images/dofoil_thread_based.png
https://www.spamhaus.org/news/images/dofoil_shared_map.png

The name of the shared file map is generated from VolumeSerialNumber
of root drive of the infected machine. This shared file map can be used as
an indicator of compromise (I0C).

Additional changes in the code

While the previously string encoding algorithm used by Smoke Loader
was based on xor, the most recent version includes an RC4 based string
encryption as highlighted on the screenshot above.

16

==
loc_TEFT1IEA14B52:
MOVEX edi, byte ptr [rai]
ast edi, edi
jz short loc_TFF71EAL4BSB
" E
inc edx
i
]
loe TFFT1EA14BSB:
femp edx, rid
ik short leoe VFFT1EAL4B7Y
r—A
FE
lea eax, [rdi+l]
Lo zBd
ovsxd rox, eax
povsxd rax, rid
ladd rai, rox
fomp rax, 20Fh
b short loc TFF71EAR14B52
T
'
|
T1EALABARA|
loc_TFFT1EAL4BTI:
lea eax, [rdi+2]

movaxd rex, eax : Size
call HeapAllock

lea rdx, [rei+l] : Source
oV r8, rdi i Length
v Fox, Fax i Destination|
oV rbx, rax

call es:RtlCopyMemory

Llea rdx, [rap+28h+arg_8]

o rib, 4

oy rid, edi

oy rex, rbx

call RcdDecode

RC4 based string decryption
The following IDA python script can help with static decoding of Smoke
Loader: download

In earlier versions of Smoke Loader, the botnet controller domain names
(C&C) were encoded using an algorithm that was based on a simple xor
subtraction:

def Decodec2(data):
XorKey = struct.unpack("<B", data[0])[0]
dst = array.array("B")
base = data[5:]
PackLen = struct.unpack("<B", data[4])[0]
print PackLen
for i in range(©, PackLen - 1, 2):
#print chr(((ord (base[i]) N XorKey) & Oxff) -
((ord(base[i + 1]) N XorKey) & Oxff) & oxff),
dst.append(((ord (base[i]) N XorKey) & Oxff) -
((ord(base[i + 1]) AN XorKey) & Oxff) & Oxff)
return dst.tostring()

The most recent version of Smoke Loader has been modified by the
authors to make use of a more complex encoding scheme which is based
on multiple operations:

4/9

https://www.spamhaus.org/news/images/dofoil_string_decryption.png
https://www.spamhaus.org/downloads/smoke_loader_decoding.py%20

def swap32(x):
return (((x << 24) & OxXFFO00000) |
((x << 8) & OXOOFFEEO0) |
((x >> 8) & OXOOOOFFEO) |
((x >> 24) & OXOOOOOOFF))
def Decodec2(buf):
BufLen = struct.unpack("<B", buf[0])[0]
print "[] Buf len = %d" % BufLen
XORDword = struct.unpack("<I", buf[BufLen + 1 : BufLen + 1 + 4])
(o]
print "[] XorDword is %d" % XORDword
XORDword = swap32(XORDword)
print hex(XORDword)
X =0
dst = array.array("B")

for i in buf[1:BufLen + 1]:
X = ord(1)

X = X N (XORDword & Oxff)

XORDword = (XORDword >> 8)
X = X N (XORDword & Oxff)

XORDword = (XORDword >> 8)
X = X N (XORDword & Oxff)

XORDword = (XORDword >> 8)
X = X N (XORDword & Oxff)

X =X - (1 << 8)
X = -X & Oxff
print chr(x- 1),
dst.append ((x-1))
XORDword = swap32(struct.unpack("<I", buf[BufLen + 1
BufLen + 1 + 4])[0])
return dst.tostring()

An HTTP request from Smoke Loader to the botnet controller (C&C
server) consists of some internals constants as well as system information
from the infected machine. The request is formatted as shown below.

RequestType = a2;

ve = 63;

vli3 = 63;

if (SavedPayloadHash

{
v7 = lstrlenA (SavedPayloadHash);
v6 = vl + 63;
v1l3 = v7 + 63;

}
AllocHeapX (v6 + 1);
v9 = (int)v8;
*v8 = 2018;
lstrcatA(v8 + 1, &MutexName HexBuffer);
lstrcatA(v9 + 43, &unk _10005079);
*(_BYTE *) (v9 + 49) = unk_ 10005293 + 16 * unk 1000528F;
*(_BYTE *) (v9 + 50) = unk 1000539F;
*(_BYTE *) (v9 + 51) = ProcessTokenInfo;
*(_WORD *) (v9 + 52) = RequestType;
*(_DWORD *) (v9 + 54) = Const2;
*(_DWORD *) (v9 + 58) = InstByte;
if (SavedPayloadHash)
lstrcatA(v9 + 62, SavedPayloadHash);
v10 = ConnectToC2((int)&vl13, (void *)1, 1);

C2 packet format

The HTTP response from the botnet controller (C&C server) is typically an
RC4 encrypted payload that can include multiple, so called “plugins” (such
as the coin miner mentioned by the Windows Defender Team). The RC4

5/9

https://www.spamhaus.org/news/images/dofoil_c2_packet_format.png

encrypted payload also includes one of the following commands:

¢ i- Download a file from http location field from using command 1D
102

¢ r - Uninstall Dofoil from system (followed by ack packet using
command ID 114)

¢ u - Update dofoil (download from http location field updated binary)

Based on way Smoke Loader calculates the mutex name an infected
machine, we can create a vaccine to prevent Smoke Loader from infecting
a machine:

6/9

#define WIN32_LEAN_AND_MEAN
#include <windows.h>

#include <wincrypt.h>

void MD5(BYTE* data, ULONG len, unsigned char *out)
{

HCRYPTPROV hProv 0,

HCRYPTPROV hHash 0,

BYTE rgbHash[16]= {0};

DWORD cbHash = 16;

char hash[3] = {0},

int i = 0;

CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL,
CRYPT_VERIFYCONTEXT);

CryptCreateHash(hProv, CALG_MD5, 0, 0, &hHash);

CryptHashData(hHash, data, len, 0);

CryptGetHashParam(hHash, HP_HASHVAL, rgbHash, &cbHash, 0);
for (1 =0 ; i < 16; i++)
{
sprintf(hash, "%.2X", rgbHash[i]);
strcat(out, hash);
}
CryptDestroyHash(hHash);
CryptReleaseContext(hProv, 0);

¥
int main(int argc, char **argv)

{

unsigned char *Source = (unsigned char *)
malloc(sizeof(char) * 265);

unsigned char *md5Sum = (unsigned char *)
malloc(sizeof(char) * 34);

DWORD lpVolumeSerialNumber = 0;

unsigned char *FtString = (unsigned char *)
malloc(sizeof(char) * 34);

int ComNameSize = 16;
char CompName[MAX_COMPUTERNAME_LENGTH + 0x10] = {0},

memset (md5Sum, 0x00, 34);

memset (FtString, 0x00, 34);

memset (Source, 0x00, 265);
GetComputerName (CompName, &ComNameSize);
GetSystemDirectoryA(Source, 260);

Source[3] = 0x00;

GetVolumeInformationA(Source, 0, 0, &lpVolumeSerialNumber,

0, 0, 0, 0);

sprintf(FtString, "%s%08X%08X", CompName, OXFEE7D621,
1pVolumeSerialNumber);

MD5(FtString, strlen(FtString), md5Sum);

7/9

sprintf(md5Sum, "%s%08X", md5Sum, lpVolumeSerialNumber);
printf("%s", md5Sum);

CreateMutex (0,0, md5Sum);

while(1) Sleep(0x1000);

}

During the binary code analysis, Spamhaus Malware Labs found some
sections in the code that are obviously being used by the author of Smoke
Loader for debug purpose. This proves that Smoke Loader is still under
heavy development of its authors and is constantly evolving.

7
FEE]
cmp Debug DoNotInject, bl
nz short loc 100019B9
—

[FEE]

cmp Const0, bl

jz short loc_100019B9S

‘I—

FEE]
call InjectPayload

div

[1

Debug variables
Conclusion

Since late 2017, Spamhaus Malware Labs could identify more than 8,000
smoke loader malware samples which call out to over 1,000 unique botnet
controllers (C&C servers). In addition, to the latest code changes made by
the authors of Smoke Loader in response to the countermeasures by
Windows Defender, we do also see a trend in certain Smoke Loader
campaigns that are shifting away from the official TLDs over to
decentralized TLDs (dTLDs) such as Namecoins .bit. By using
decentralized TLDs for botnet C&C hosting, botnet operators try to make
their botnet C&C infrastructure more resilient against takedown attempts
by security researchers and law enforcement agencies (LEA).

Spamhaus Malware Labs continues to follow the further development of
Smoke Loader and takes the appropriate actions to protect Spamhaus
users from this threat.

Further reading

* Microsoft Secure: Behavior monitoring_combined with machine
learning_spoils a massive Dofoil coin mining_campaign

» Microsoft Secure: Poisoned peer-to-peer app kicked off Dofoil coin
miner outbreak

¢ Microsoft Secure: Hunting_ down Dofoil with Windows Defender ATP

e abuse.ch: .bit - The next Generation of Bulletproof Hosting

o Spamhaus Botnet Threat Report 2017

8/9

https://www.spamhaus.org/news/images/dofoil_debug_variables.png
https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/07/behavior-monitoring-combined-with-machine-learning-spoils-a-massive-dofoil-coin-mining-campaign/
https://cloudblogs.microsoft.com/microsoftsecure/2018/03/13/poisoned-peer-to-peer-app-kicked-off-dofoil-coin-miner-outbreak/
https://cloudblogs.microsoft.com/microsoftsecure/2018/04/04/hunting-down-dofoil-with-windows-defender-atp/
https://abuse.ch/blog/dot-bit-the-next-generation-of-bulletproof-hosting/
https://www.spamhaus.org/news/article/772/spamhaus-botnet-threat-report-2017

Related Spamhaus tools & products

Spamhaus DROP (Don't Route Or Peer Lists)
Spamhaus Response Policy Zone (RPZ)
Spamhaus Zero Reputation Domain (ZRD)
Spamhaus Botnet + Malware Domain List
Spamhaus Botnet Controller List (BCL)
Spamhaus/Deteque Passive DNS service

9/9

https://www.spamhaus.org/drop/
https://www.spamhaustech.com/protecting-networks/security-solutions/dns-rpz/
https://www.spamhaustech.com/news/recently-registered-domains/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/malware-domains/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/bcl/
https://www.spamhaustech.com/protecting-networks/threat-intelligence-data/passive-dns/

