From Russia(?) with Code

¥ lastline.com/labsblog/attribution-from-russia-with-code/

March 9, 2018

Posted by Labs Team ON MAR 9, 2018

The Olympic Destroyer cyberattack is a very recent and notable attack by sophisticated
threat actors against a globally renowned 2-week sporting event that takes place once every
four years in a different part of the world. Successfully attacking the Winter Olympics requires
motivation, planning, resources and time.

Cyberattack campaigns are often a reflection of real world tensions and provide insight into
the possible suspects in the attack. Much has been written about the perpetrators behind
Olympic Destroyer emanating from either North Korea or Russia. Both have motivations.
North Korea would like to embarrass its sibling South Korea, the holders of the 23rd Winter
Olympics. Russia could be seeking revenge for the IOC ban on their team. And Russia has
precedence, having previously been blamed for attacks on other sporting organizations, such
as the intrusion at the World Anti Doping Agency that was targeted via a stolen International
Olympic Committee account.

There has been much said about attribution, with accusations of misleading false flags and
anti-forensics built into the malware. As Talos points out in their report, attribution is hard.

But attribution is not just hard, it's often a wilderness of mirrors and, more often than not, a bit
anticlimactic.

1/14

https://www.lastline.com/labsblog/attribution-from-russia-with-code/
https://www.lastline.com/author/labs-team/
https://arstechnica.com/information-technology/2018/02/russia-accused-of-false-flag-attack-on-olympic-opening/
https://blog.talosintelligence.com/2018/02/who-wasnt-responsible-for-olympic.html

The motivation of our following analysis is not to point the finger of blame about who did the
attacking, but to utilize our expertise in analyzing malware code and understanding the
behaviors it exhibits to highlight the heritage, evolution and commonalities we found in the
code of the Olympic Destroyer malware.

Initial Samples of Code Reuse

Besides analyzing the behavior of a sample, our sandbox performs several levels of code
analysis, eventually extracting all code components, regardless if they are run at run-time or
not. As we described in a blog_post a few years ago, this technique is essential if we are to
detect any dormant functionality that might be present within the sample.

After decomposing the code components in normalized basic blocks, the sandbox computes
smart code hashes that are stored and indexed in our threat intelligence knowledge base.
Over the last 3 years we have been collecting code hashes for millions of files, so when we
want to hunt for other samples related to the same actor, we are able to query our backend
for any other binaries that have been reusing significant amounts of code.

The rationale being that actors usually build up their code base over time, and reuse it over
and over again across different campaigns. Code surely might evolve, but some components
are bound to remain the same. This is the intuition that drove our investigation on Olympic
Destroyer further. The first results were obviously some variants of the Olympic Destroyer
binaries which we have already mentioned in our previous post. However, it quickly got way
more interesting.

A very specific code hash led us through this process:
7CE26E95118044757D3C7A97CF9D240A (Lastline customers can use it to query our
Global Threat Intelligence Network). This rare code hash surprisingly linked
21ca710ed3bc536bd5394f0bff6d6140809156¢f, a payload of the Olympic Destroyer
campaign, with some other samples of a remote access trojan, “TVSpy.” Though the actual
internal name of the threat is TVRAT, the malware is known and labelled in VirusTotal as
Trojan.Pavica or Trojan.Mezzo, none of which were previously connected to the original
Olympic Destroyer campaign.

Figure 1 shows the actual code referenced by the code hash: it is a function used to read a
buffer, and subsequently parse PE header from it.

2/14

https://www.lastline.com/labsblog/awakening-dormant-functionality-in-malware-programs/
https://www.lastline.com/labsblog/olympic-destroyer-south-korea/

gigned int _ usercall ParsePeHeader@<{eax>{PE_HEADER =ctx@<ecx>, PARSING_RESULT =ctx_ 1)}
i

PE_HEADER =v2; [] esiBl

LONG v3; /] ecxR@3

int va;] eaxl®7

SIZE T v5; }| eax@s

LPYOID v6; [} eb=@8

int v8: [} ed=z@18

int v3: }] ecx=@1@

v2 = ctx;
if { ctz 1->flags >= @x48u)
{

mencopy {ctx, ctx 1->size, B@xd8u);

if { v2->dos_hdr. e_magic *= Bx5a4D)}
return 2;

vi = w2->dos_hdr. e_lfanew;

if § tv3)
return 2;

if § {v3 + B=F8) <= ctx 1->flags }

memcopy {&vZ2->hdr, {v3 + ctx 1->zize), BxFBu};
if { v2->hdr. Signature == Bx4558 BE v?->hdr. OptionalHeader. Hagic == Bx18B)}
{

wi = v2->hdr. FileHeader. HumberOfSections;

if { va)

{

vh = 48 = vi;
v2-»zize section_headers = v5;
vE = malloc {v5);
v2->sect = vb;
if { B)
return 3;
v8 = v2->hdr. FileHeader. SizeOfOptionalHeader + v2->dos_hdr.e_lfanew + 24;
v2->file_offset_section_headers = v&;
vl = v2-»size_section_headers;
if { o)
return 8;
if { {ve + v9) <= ctx 1->flags }
{

memcopy{vG, {v8 + cix 1->size), v2->szize_section_headers}:
return 8;
}

return 1;

}
}

return 2;

}
}

return 1:

}
Figure 1: The code referenced by the code hash 7CE26E95118044757D3C7A97CF9D240A shared
by both the Olympic Destroyer sample 21ca710ed3bc536bd5394f0bff6d6140809156¢f sha1 and
TVSpy sample a61b8258e080857adc2d7da3bd78871f88edec2c.

This is not where code re-usage ends, as the actual function referencing and invoking the
following fragment (see Figure 2) also shares almost all of the same logic. This function is
responsible for loading PE file from the memory buffer and executing an entry point.

3/14

int _ usercall LoadPeFromBuffer@<eax>{int al@<{edx>, int a2, int ad)
{ int v3; J} eba

int vad; J} edi@

int result; [] ea=@2

char v6; }] [sp+1ch] [bp-178h]@3

int v7; ! [sp+D4ah] [bp-Ceh]@i@

LPUOID v8; }} [sp+154h] [bp-48h]@1

int v9; !} [sp+ti168h] [bp-34h]@18

LPYOID lpAaddress; ff [spti164h] [bp-306h]@18

LPYOID lpMem; #} [sp+168h] [bp-2ch]@1

int v12; }} [sp+16Ch] [bp-28h]@1

int v13; }{ [sp+178h] [bp-2ah]@1

int v14; }} [sp+174h] [bp-28h]@1

CPPEH_RECORD ms_exc: /] [sp+17Ch] [bp-128h]@l

v3 = al;
vg =
1pHem
pwl3d =
gl12 =
vig =
ns exc, registration. TryLevel = 1;
vd = ParsePeHeader (a1);
it { va

{v4 = sub_418CDB{8&vE)) *= 8

{ns exc.registration. TryLevel = 2, (v4 = sub_418BB8{v31)) '= 8)

I
Il (va = gsub_410a70(&vE)) *= 8
|l {v4 = sub_4188FB{&vE}) *= @
Il {vd = sub_a18838(8&vE}} *= B
Il (v = sub_410790(&v6)) *= 0)
sub 483CCOA{E security cookie, Bnz exc. registration, -2);
result = va:

)

elze
it { 2a3)
{

»{ _DWORD x)a3 = 32;

x{ DWORD =) {a3 + 4) = B;

u{ DWORD =) {a3 + 8) = v3;

®{ DWORD =} {a3 + 12) = lpaddress;
={ DWORD =) {a3 + 16) = v14;

#(DWORD =} (a3 + 28) = w7;

w{ DWORD =) {a3 + 24) = lpMem;

»{ DWORD =) {a3 + 28) = v12;

mz exc., registration. TryLevel = 2;

}
sub_483cco(B_ security cookie, &ns exc. registration, -2);
result = B;

}
return rezult;
}
Figure 2: Function responsible for loading PE file from memory reused in both Olympic Destroyer

and TV Spy

A Deeper Dive Based on Unusual Code

We decided to further investigate this piece of code since loading PE from memory is not all
that common. Its origin opened several questions:

a/14

1. Why is that piece of code the only link between the two samples?
2. Were there any other samples sharing the same code?

Ouir first discovery was a Remote Access trojan called TVSpy, mentioned above. This family
has been the subject of a few previous research investigations, and a recent Benkow Lab

blog_post (from November 2017) even reported that the source code was available on github.

Unfortunately, all links to github are now dead. But that didn’t stop us from finding the actual
source code (or at least evidence that it was indeed published at some point). Apparently it
was sold for $US500 on an underground Russian forum in 2015. Even though the original
post and links are gone, a Russian information security forum kept a copy of the source code
package alongside a description of the original sale announcement (see Figure 3).

5/14

https://benkowlab.blogspot.com/2017/11/

15002015]

Onwucanme:

HMcxogHeid kog cxpomoro TeamViewer Sota c agmwn naqenso. Bot npeacrasnner w3 ceba dll secom 84 kb, koTopan ynpasnseT Team\Viewer om.
Bungurea & Visual Studio 2010,

@aian Microsoft Excel ¢ pacwwperwen xis ¢ 3anpocom o scmoderny maxpoca sec 121 x6 nogrpysaet n yctanasnueaert Bota

CHPWNT CXAHWPYOLLIWA KOMMNBIOTED MEPTEL, GUISILKK, COTABLM LUAPS!, JAKAAAKM W KCTOPWI0 GPaYIBPOE HA KMDHeBLIE CNOBA M CObLNKM HANPHMED
"bank.ru, bitcoin, wallet.dat, webmoney” - PeayNLTETLE NOWCKE BLICHINAET HA NOMTY B TEKCTOBOM DEANe C NYTAMK K BrycHATHMHE, BvecTe ¢ ID Gota e
JAroNOBKE MMCEMA ONA yooScTea woeHTHhUKALMW XepTa.

Kednorep na ocrose Punto Switcher

BoamommocTn TeamViewer Gova:

+ AgmuH narens ¢ GeolP, ¢ wsthopmaumei o cucTeme - MuKpohoH, Befkamepa, OTNPaBKa KOMaHA 60TaM, BOIMOKHOCT: COPTHDOBKK 60TOB, NOKA3
poax GoToB - BpeMA ornaiH, odgnain, BReMA JADAMEHNA

+ Jarpyaka w aanyck dil wa namaT TeamViewer, BBTO3arpy3Ka C HAMM

+ WnwdposaHan Koddwirypaums, Ganne S0Ta CHPLITLIS W CACTEMHbIg

+ Xopowwe HOBOCTH ANR HoBWuKE! BONLLIE HE HY#HO MYHETCA C XOCTUHIOM, QUHAMWSECKHM dns u Tn. BoT otnpaanneT ceod ID Ha email »
paforaer yepes cepeepa TeamViewer ouerib CTaliNsHo 1 BoicTpo (ofxon NAT, BackConnect)

+ Crpsitan sarpyaxa 6oTa nocne pecTapTa KoMNbKoTepa

+ Crpuiran yerasosxa TeamViewer VPN (ecnu npasa noasonamT)

+ RDP yepea TeamViewer VPN. PaSotaet Gea narunmra termsnv.dil - 310 osens crabunsso moxHo ke BorTer obkoaneswin Windows

+ Coapaer cxpeTeil ROP akkay-T B cucTese

+ CoapaeTr soamoxHOCTs ckpemon ADP cecowmn B ogroR yuaTke C xepTeoi

+ Crpuimeid TeamViewer 5aT He KOHNWKTYET C pades yoTaHoaneHHoA TeamViewer

+ MNpocwoTp sxpana, ynpaane-Hne, Gann me-Hamxep, cmd, BOIMOKHOCTD JaNYCKa hainos NPAMO M3 Bain MeHa0Xepa (CKDLMToIA M oburiHbIR)
+ Omnpaska wosmaHg wa Team\Viewer wara

+ CralwnsHo pabotaeT Ma scex wind2 / x64 » Tom yscne Windows 10

+ OpvruHancHeie dadns TeamViewsr He AIMeHeHb UMDPOoBGLIE NOANKCKA HE TROHYTL, YTO GAST NOANLHOCTE AB 1 NpoaxTHacK

+ MNpocuoTp pelxamep, NPOCYILKE MUKPODOHA

+ bor pabotaer gaxe a rocTescd ywaTke, LAC monumr

+ MHOMAE OPYTWE LKA MO MEN04M

Buaeo obsop crapoh pepcnm Gea GeolP p agmunme, CHpHnTa M GPYTHI NAKLWESK

Npopameueen nponadt sa 500 Gakcos

Napons ma apxeae: 111

Figure 3: TVSpy code as sold in an underground forum (according to researchers from ru-sfera.org)

Not Enough — The Investigation Continued

Although interesting, this connection was eventually not enough to connect Olympic
Destroyer to Russia or to TVSpy. So we kept digging. Further research finally identified the
code in Figures 1 and 2 to be part of an open source project called LoadDLL (see Figure 4)
and available on codeproject.com (first published back in March 2014).

6/14

Figure 4: Fragment of LoadDLL source code from LoadDLL project

However, a couple things still didn’t add up: why had we only managed to identify samples
from 2017 even if the source code was released in 20147 What about older versions of
TVSpy? How come our search didn’t return any of those samples? Were Olympic Destroyer
and TVSpy samples from 2017 sharing more than just the LoadDLL code?

Apparently TVSpy went through a few transformations. Samples from 2015 did embed and
use the LoadDLL code, but the compiler did some specific optimizations that made the code
unique (see Figure 5). In particular the compiler optimized out both “flags” (not used in the
function) and “read_proc” (statically link function) from the parameters of LoadDll, but it
couldn’t optimize out a “if (read_proc)” check even though it is useless since “read_proc” is
not passed as a parameter anymore.

7/14

int _ usercall LoadDLLB<eax>{LOAD DLL_FROM_MEMORY STRUCT =read proc_param, LOAD DLL_INFO =info)
{

int result; [} eax@2

int res; }f esi@3

LOAD DLL_CONTEXT ctx; !} [sp+Ch] [bp-17Ch]@3

int vwb; J} [sp+i168h] [bp-28h]Ee3

int dl1_main; }} [sp+164ah] [bp-24h]E3

int finished_successfully; [{ [sp+16Ch] [bp-1Ch]@1

CPPEH_RECORD ms_exc; [} [sp+170h] [bp-18h]@3

finished successfully = @;
if { read_proc }

cle sect = @;

ctx loaded _import_modules_array = @;

LR H

*{ DWORD =) &ctx nun_import_modules = 8;

dll main = 8;

ms exc. registration. TryLevel = 1;

res = LoadDLL_LoadHeaders({Bclx, read proc_param);

if { res
|| {res = LoadDLL_AllocateMemory(Bctx)) =80
|| {n= exc.registration. TryLevel = 2, (res = LoadDLL_LoadSections(Bctx)) ¥= 8)
|| {rez = LoadDLL_PerformRelocation{&ct=)) ¥= @
Il {res = LoadDLL_Resolvelmports{Bclix)) *= @
|l {res = LoadDLL_SetSectionMemoryProtection{8ctx)} '= 8
|| {res = LoadDLL_CallDLLEntryPoint{&ctx)) ¥= @ }
_local _unwind2{{int)&n: exc. registration, OxFFFFFFFF)
result = res;
}
else
{ _
it { info}
{
info-»size = BxAB;
info->flags = @;
info->image_base = ctx image_base;
info->mem_block = clx image;
info=>dll main = dll main;
info-»export dir rva = ctx hdr. OptionalHeader. DataDirectory[8]. VirtualAddress;
info-*loaded_import_modules_array = ctx loaded_import_modules_array;
info->num_import_modules = ={ DWORD =)}8&ctx num_import_modules;
s exc. registration. TrylLevel = 2;
finished successfully = 1;
_local_unwind2{{int)&ns exc. registration, @xFFFFFFFF}:
result = @; {{ ELoadDLLResul t_0K
}
}
else
result = -2u; {{ ELoadDLLResult WrongFunctionParameters

return result;

]
Figure 5. Reconstructed source code of LoadDIl from TVSpy dated back to 2015

The “read_proc” function itself is also identical to one from source code (see Figures 6 and
7) and as you can see in Figure 8, it also gets called exactly the same way as the original
source code from codeproject.com.

8/14

int _ cdecl read proc(void =buff, int data, size t size, LOAD DLL_FROM_MEMORY STRUCT =a4)

if { size)}
if { data + size » ad->dll_size)
return 8;
memcpy {buff, {const woid =) {data + ad->dll_data), =ize}):

return 1;

Figure 6: read_proc function implementation

Figure 7: read_proc function implementation

The most interesting aspect for us is in fact the version of TVSpy that dates back to 2017-

2018 and shares with Olympic Destroyer almost the exact binary code of LoadDLL. You can

see LoadDIl_LoadHeaders for those samples in Figure 9: as you might notice the function
looks different then the one from the older version (see Figure 8).

9/14

signed int __usercall LoadDLL_LoadHeaders@<eax> (LOAD_DLL_CONTEXT =ctx@<{ecx>, LOAD_DLL_FROM_MEMORY_STRUCT =info)

LOAD_DLL_CONTEXT =ctx_1; [} esi@l
int v3; J] eawxR@3

signed int result;] eax@5

int w5; | eawen

size t size; JJ edi@g

IMAGE_SECTION _HEADER =sect; J] eax@3

int file offset _section_headers; J] ecx@11

ctx 1 = ctx;
if { read_proc{ctx, 8, 8x48u, info})}

if { ctx 1->dos_hdr.e_magic *= 0x5a4D)
return 2;
vi = ctx 1->dos_hdr. e_lfanew;
it { tva)
return 2;
if { *read_proc{8ctx 1->hdr, v3, B8xF8u, info))
return 1;
it { ctx 1->hdr. Signature ¥= Bx=4550)
return 2;
it { ctx 1->hdr. OptionalHeader. Hagic *= @x108)
return 2:
v5 = ctx 1->hdr. FileHeader. NumberOfSections;
if { *{ woRD)vs)
return 2;
size = 48 » v5;
ctx 1-»size_section_headers = 48 = v5;
sect = (IMAGE_SECTION_HEADER =)malloc (4@ » v5);
ctx 1->sect = sect;
if Ysect)
return 3;
file offset section headers = ctx 1->hdr. FileHeader. SizeOfOptionalHeader + cix 1->dos_hdr.e_lfanew + 24;
ctx 1-»ftile_offset_section_headers = file offset section headers;
it { ?read_proc{sect, file_offset_section_headers, size, info})
return 1;
result = 0;

else
{ -

result = 1;
}

return result;

}

Figure 8. Reconstructed source code of LoadDLL_LoadHeaders function from TVSpy dated back to
2015

First, we thought that the authors added new checks before calling read_proc function,
making clear link between Olympic Destroyer and TVSpy (how, after all, could there be the
same code modifications if the authors were not the same?). However, after further review
we figured that read_proc didn’t exist anymore. Instead it was compiled inline resulting in a
statically linked memcpy function.

10/14

signed int _ wsercall LoadDLL_LoadHeaders@<{eax> (LOAD_DLL_CONTEXT =ctx@<{ecx>, LOAD_DLL_FILE_TO LOAD =file_data)
{

LOAD_DLL_CONTEXT

wctx 1: [esi@l

LONG e lfanew; [} ecx@3

int wa;] eawer

SIZE_T sectionTableSize; [} eax@8
IMAGE_SECTION_HEADER =sect; }} ebhx@8
int file_offset_section_headers; [edx@18

int size_section

®* 1= ctx;

headers; [} ecx@18

ct
if (file_data-»size >= Dx40u) {! inline check from read_proc
i

nencopy_static{{unsigned int)ctx, {const void =}file data—>buffer, 0x40u);
if { ctx 1->dos_hdr. e_magic Y= @x504D)

return 2;
e_lfanew = ctx
it { te_lfanew

return 2;
it { (unsigned

nencopy_static({{unsigned int)Bctx 1->hdr,
if { ctx 1->hdr. Signature == 0x4550 &8 ctx 1->hdr. OptionalHeader. Magic == 8x10B)

{
vd = ctx 1->hdr. FileHeader. NumberOfSections:
it { { worDjwa)
{
sectionTableSize = 40 = v4;
ctx 1-»size_section_headers = sectionTableSize;
sect = [IMAGE_SECTION _HEADER =)malloc_static{sectionTableSize);
ctx_1-»sect = sect;
it { tsect)
return 3;
file offset section headers = ctw 1->hdr. FileHeader. SizeOfOptionalHeader + cix 1->dos_hdr.e_lfanew + 24;
ctx l—)”]e_oi[set_section_headers = file offset section headers:
size_section_headers = ctx 1-»size_section_headers;
if (*size_section_headers)
return 0;
{{ inline check from read_proc
it { (unsigned int){file offset section headers + size section_headers) <= file data->size)
{
nemcopy_static(|
{unsigned int)sect,
{const void =} {file offset_section_headers + file_data->buffer),
ctx 1-»size_section_headers);
return 9;
return 1;
}
return 2;
return 1;

Figure 9. Reconstructed LoadDLL_LoadHeaders from TVSpy and OlympicDestroyer samples,

1-»dos_hdr. e_1fanew;

)

inty{e_lfanew + OxFB) <= file_data->size)/{ inline check from read_proc

including additional check due to inlining of the read_proc function.

Also the meaningless check in LoadDII (“if (read_proc)”) we mentioned before has
disappeared in the new version of the code (see Figure 10).

{const void =) {e lfanew + file_data->buffer), 0xFiu);

11/14

int _ usercall LoadDLL@E<eax>{L04AD DLL FILE TO LOAD =al@<{edx>, int a2, LOAD DLL_INFO =info)

{
int v3; !} ebp@a
LOAD DLL_FILE TO LO&D =file data; {{ ebx@1
int res; }} edi@i
int result; }] eaw@2
LOAD DLL_CONTEXT ctx; [{ [sp+i1Ch] [bp-178h]@1
int dll_main: {} [sp+174h] [bp-2@h]@1
CPPEH_RECORD ms_exc; /! [sp+17Ch] [bp-18h]@1

{f no "if {read proc)™ check anymore.
/! =zince read_proc function doesn' t exist
file_data = al;
ctx sect = B;
ctx loaded_import_modules_array = 8;
ctx dll main = 8;
*(DWORD =}Bctx num_import_modules = 8;
dll main = 8;
ms exc. reqistration. TryLevel = 1;
res = LoadDLL_loadHeaders {Bctx, al):
if { res
|| {res = LoadDLL_éllocateMemory(Bcix)) *= 8
|| {m=_exc. regiztration. TryLevel = 2,

{rez = LoadDLL LoadSections (Bctx, (LOAD DLL FROM HMEMORY STRUCT =}file data}) %= @)

|| {res = LoadDLL_PerformRelocation{Bctx)) *= @

|| {res = LoadDLL_Resolvelmports (Bctx)) *= 8@

|| {res = LoadDLL_SetSectionMemoryProtection(Bctx}) *= 0@
|| {res = LoadDLL_CallDLLEntryPoint(Bctx}) *= 8)

local _unwind2({v3, & security_cookie, (int}Bmz exc. registration, BxFFFFFFFE};

result = res:

}
elze
it { info '}
{
info->size = 32;
info->tlags = 8;
info->image_base = ctx image_base;
info->mem_block = cix. image;
info->dl1l_main = dll_main;
info->export_dir_rva = ctx hdr. OptionalHeader. DataDirectory[B]. Virtualaddress:;
info->loaded_import_modules_array = ctx loaded_import_modules_array:
info->num_import_modules = ={ DWORD =)8ctx num_import_modules;
ms_exc. registration. TrylLevel = 2;
}

local unwind2{v3, & security cookie, {int)8&msz exc. registration, @xFFFFFFFE}:

result = @;

}

return result;

}

Figure 10. Reconstructed LoadDLL_LoadHeaders from TVSpy and Olympic Destroyer samples,

including additional check due to inlining of the read_proc function.

The Bottom Line — Evidence is Inconclusive

In conclusion, we believe that this is not enough evidence to substantiate a claim that
Olympic Destroyer and new versions of TVSpy using the same modified source code are

built by the same author.

The more probable version for us is that the sample was built on a new compiler that further
optimized the code. It would still mean that both new version of TVSpy and Olympic
Destroyer are built using the same toolchain configured in the very same way (to enable full

12/14

optimization and link C++ runtime statically). We actually went to the extent of compiling the
LoadDLL on MS Visual Studio 2017 with C++ runtime statically linked, and we managed to
get the very same code as the one included in both Olympic Destroyer and TVSpy.

Although we would have liked to finally solve the dilemma, and unveil which were the actors
behind the Olympic Destroyer attack, we ended up with more questions than answers, but
admittedly, that’'s what research sometimes is about.

First, why would the authors of an allegedly state sponsored malware use an old LoadDLL
project from an open source project from 20147 It is hard to believe that they could not come
up with their own implementation or use much more advanced open-source projects for that,
and definitely not relying on an educational prototype buried way beyond the first page of
results in Google.

Or maybe the actors were not that much advanced as we would like to think, maybe seeing
this as a one-time job, without enough resources to avoid using publicly available source

code to quickly build their malware? Or maybe it’s just another red flag, and the real authors
decided to use the TVSpy source code as released in 2015 to leave a “Russian fingerprint”?

Maybe all of the above?

At the beginning of this article we stated that attribution is not just hard, it's often a
wilderness of mirrors and more often than not, a bit anticlimactic. As a matter of fact, that
was quite a precise prediction.

e About
o |Latest Posts

X

las;.i ne
labs

Labs Team

Lastline Labs is where some of the most brilliant minds in the threat prevention community
collaborate to develop advanced cyber security solutions. Our research team tracks the
evolution, proliferation, and impact of advanced malware. The Lastline Labs Team
continually monitors the threat landscape and analyzes new security threats and
vulnerabilities.

13/14

https://www.lastline.com/author/labs-team/
https://www.lastline.com/author/labs-team/
https://www.lastline.com/author/labs-team/

Latest posts by Labs Team (see all)

o Threat Actor “Cold River”: Network Traffic Analysis and a Deep Dive on Agent Drable -
January 11, 2019

o Tales From the Field: The Surge of Agent Tesla - August 28, 2018

o From Russia(?).with Code - March 9, 2018

Tags:
APT, attribution, code hash, code re-usage, code re-use, Global Threat Intelligence Network,
Olympic Destroyer, TVSpy.

14/14

https://www.lastline.com/author/labs-team/
https://www.lastline.com/labsblog/threat-actor-cold-river-network-traffic-analysis-and-a-deep-dive-on-agent-drable/
https://www.lastline.com/labsblog/surge-of-agent-tesla-threat-report/
https://www.lastline.com/labsblog/attribution-from-russia-with-code/
https://www.lastline.com/tag/apt/
https://www.lastline.com/tag/attribution/
https://www.lastline.com/tag/code-hash/
https://www.lastline.com/tag/code-re-usage/
https://www.lastline.com/tag/code-re-use/
https://www.lastline.com/tag/global-threat-intelligence-network/
https://www.lastline.com/tag/olympic-destroyer/
https://www.lastline.com/tag/tvspy/

