
1/17

Tales of a Threat Hunter 2
eideon.com/2018-03-02-THL03-WMIBackdoors/

About Me

What is WMI?

WMI is Microsoft’s implementation of WBEM (Web Based Enterprise Management) which is
based on CIM and allows for the remote management of multiple system components in
Windows environments. WMI is used on a daily basis by sysadmins across large domains

https://www.eideon.com/2018-03-02-THL03-WMIBackdoors/
https://www.eideon.com/aboutme
https://eideon.com%20/
http://www.dmtf.org/standards/cim

2/17

due to its flexibility and scalability. Easy to deploy, scripts that leverage WMI can be seen
everywhere. Unfortunately, as with everything that is widely deployed, has “remote”
capabilities and runs on “windows”: the dark force is strong around it (just for fun: MS17-
010).

It is known that WMI can be abused in many ways to either gather information, make
changes and create persistence mechanisms. An excellent article by Matt Graeber
(@mattifestation) called Abusing Windows Management Instrumentation (WMI) to Build a
Persistent, Asyncronous, and Fileless Backdoor was an eye opener for many of us in the
cybersec world. We knew this was possible, but forgot how flexible it was. The main
strength of WMI persistence is its stealthiness and effectiveness. When a command is
executed by WMI as a result of “evil” the only thing you will see is WmiPrvse.exe as the
process. Distinguishing a valid system action from an invalid one is very hard under these
circumstances. In other words, WMI persistence defeats non-repudiation!

What I will cover here are different methods for detecting WMI persistence that you could
leverage within your network to hunt for this treat.

Understanding WMI Persistence

First, rather than re-inventing the wheel, I will link here below the sources that I consulted to
learn more about WMI:

Matt Graeber’s article (mentioned above)
Pentestarmoury article “Creeping on Users with WMI Events” by Sw4mp_f0x. He also
developed PowerLurk (see below)
Permanent WMI Subscriptions
Derbycon 2015 presentation by Matt

How does a WMI persistent object look like?

Let’s use two scripts that allow us to easily create a malicious persistence without having to
do it step by step (have a look at the PS files to understand all the bits and pieces involved),
namely:

PowerLurk by Sw4mp_f0x
WMI Persistence Template Gist by Matt G.
Alternatively, you can also use an adaptation of Matt’s work by n0pe-sled WMI-
Persistence.ps1

WMI Persistence Template by Matt G.

https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
https://twitter.com/mattifestation?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://www.blackhat.com/docs/us-15/materials/us-15-Graeber-Abusing-Windows-Management-Instrumentation-WMI-To-Build-A-Persistent%20Asynchronous-And-Fileless-Backdoor-wp.pdf
https://pentestarmoury.com/2016/07/13/151/
https://learn-powershell.net/2013/08/14/powershell-and-events-permanent-wmi-event-subscriptions/
https://www.youtube.com/watch?v=HJLCvBq3oms
https://github.com/Sw4mpf0x/PowerLurk/blob/master/PowerLurk.ps1
https://gist.github.com/mattifestation/e55843eef6c263608206
https://github.com/n0pe-sled/WMI-Persistence/blob/master/WMI-Persistence.ps1

3/17

We tweaked some of the parameters in the script to make sure the timer event launches
every minute and that no cleanup is performed at the end. After launching it, we can inspect
the newly created Event Consumers/Filters/Bindings as follows:

EventFilter

Get-WmiObject -Namespace root\subscription -Class __EventFilter

Result:

__GENUS : 2
__CLASS : __EventFilter
__SUPERCLASS : __IndicationRelated
__DYNASTY : __SystemClass
__RELPATH : __EventFilter.Name="TimerTrigger"
__PROPERTY_COUNT : 6
__DERIVATION : {__IndicationRelated, __SystemClass}
__SERVER : W10B1
__NAMESPACE : ROOT\subscription
__PATH : \\W10B1\ROOT\subscription:__EventFilter.Name="TimerTrigger"
CreatorSID : {1, 5, 0, 0...}
EventAccess :
EventNamespace : root/cimv2
Name : TimerTrigger
Query : SELECT * FROM __TimerEvent WHERE TimerID = 'PayloadTrigger'
QueryLanguage : WQL
PSComputerName : W10B1

EventConsumer

Get-WmiObject -Namespace root\subscription -Class __EventConsumer

Result: [snip]

__GENUS : 2
__CLASS : CommandLineEventConsumer
__SUPERCLASS : __EventConsumer
__DYNASTY : __SystemClass
__RELPATH : CommandLineEventConsumer.Name="ExecuteEvilPowerShell"
__PROPERTY_COUNT : 27
__DERIVATION : {__EventConsumer, __IndicationRelated, __SystemClass}
__SERVER : W10B1
__NAMESPACE : ROOT\subscription
__PATH :
\\W10B1\ROOT\subscription:CommandLineEventConsumer.Name="ExecuteEvilPowerShell"
**CommandLineTemplate : powershell.exe -NoP -C "iex
([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String((Get-ItemProperty -
Path HKLM:\SOFTWARE\PayloadKey -Name PayloadValue).PayloadValue)))"**

FilterToConsumerBinding

Get-WmiObject -Namespace root\subscription -Class __FilterToConsumerBinding

4/17

Result: [snip]

__NAMESPACE : ROOT\subscription
**__PATH :
\\W10B1\ROOT\subscription:__FilterToConsumerBinding.Consumer="CommandLineEventConsume

Consumer : CommandLineEventConsumer.Name="ExecuteEvilPowerShell"
CreatorSID : {1, 5, 0, 0...}
DeliverSynchronously : False
DeliveryQoS :
Filter : __EventFilter.Name="TimerTrigger"

As we can observe, this persistence is based off a Timer intrinsic Event type. If you
launched it and head to C:\ you will see the payload_result.txt file as per the script:

$TimerArgs = @{
 IntervalBetweenEvents = ([UInt32] 6000) # 6000 ms == 1 min
 SkipIfPassed = $False
 TimerId = $TimerName
}

$Payload = {
 # Prep your raw beacon stager along with Invoke-Shellcode here
 "Owned at $(Get-Date)" | Out-File C:\payload_result.txt
}

Let’s look at the persistent registry key generated by the script via Invoke-WmiMethod -
Namespace root/default -Class StdRegProv -Name CreateKey -ArgumentList

@($HiveVal, $PayloadKey) (creating the Registry Key) & Invoke-WmiMethod -
Namespace root/default -Class StdRegProv -Name SetStringValue -ArgumentList

@($HiveVal, $PayloadKey, $EncodedPayload, $PayloadValue) (storing the payload
value inside the key)

PS C:\Windows\system32> Get-ItemProperty 'HKLM:\SOFTWARE\PayloadKey'

PayloadValue :
DQAKACAAIAAgACAAIwAgAFAAcgBlAHAAIAB5AG8AdQByACAAcgBhAHcAIABiAGUAYQBjAG8AbgAgAHMAdABhA

PSPath :
Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\PayloadKey
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE
PSChildName : PayloadKey
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry

5/17

Alternatively:

We can observe the BASE64 ciphered payload (hold on to this, as it will become one of our
detection artifacts later).

Now let’s throw in that juicy iex keyword to the Splunk mix and see what it comes up with:
Query: WmiPrvse OR powershell AND "iex" (NOT *google* NOT splunk NOT
TargetImage=*powershell* NOT TargetImage=*wmiprvse* NOT
TargetImage=*chrome* NOT TargetImage=*vmware* NOT EventCode=600) | reverse
| table _time, EventCode, Message

We start observing some other interesting events popping up here. Disregarding Sysmon
EventCode 20 (belongs to the new 6.10 version) which will be dissected later, we can see
5861 (Source: Microsoft-Windows-WMI-Activity/Operational), 400 (Source: Windows
Powershell / Message: Engine state is changed from None to Available) and 403
(Source: Windows Powershell / Message: Engine state is changed from Available to
Stopped) . All of them are standard Windows Events, I haven’t “enabled” anything in
particular here. I’m just farming what the OS already gives you by default.

The interesting thing about all these events is that they all reveal the powershell code used
as payload: powershell.exe -NoP -C iex
([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String((Get-

1

2

6/17

ItemProperty -Path HKLM:\SOFTWARE\PayloadKey -Name

PayloadValue).PayloadValue))) ― ―

Most interesting of them all is Event 5861, which is giving us a lot of information about the
persistence, namely the Binding itself.

WMI Persistence via PowerLurk by Sw4mpf0x

We can reproduce the same Timer Triggered Event as above with more ease with this great
script which allows for a lot of flexibility.

Register-MaliciousWMIEvent -EventName MaliciousWMIEvent -LocalScriptBlock {Invoke-
Expression -Command "cmd /c calc.exe"} -Trigger Interval -IntervalPeriod 60 -TimerId
MaliciousTimer

this will simply start calc every 60 seconds and we can see the timer event

__GENUS : 2
__CLASS : __IntervalTimerInstruction
__SUPERCLASS : __TimerInstruction
__DYNASTY : __SystemClass
__RELPATH : __IntervalTimerInstruction.TimerId="MaliciousTimer"
__PROPERTY_COUNT : 3
__DERIVATION : {__TimerInstruction, __EventGenerator, __IndicationRelated,
__SystemClass}
__SERVER : W10B1
__NAMESPACE : ROOT\cimv2
__PATH :
\\W10B1\ROOT\cimv2:__IntervalTimerInstruction.TimerId="MaliciousTimer"
IntervalBetweenEvents : 60000
SkipIfPassed : False
TimerId : MaliciousTimer
PSComputerName : W10B1

Let’s go ahead and remove it though:

Get-WMIObject -Namespace root\Subscription -Class __FilterToConsumerBinding |
Remove-WmiObject -Verbose
Get-WMIObject -Namespace root\Subscription -Class __EventFilter | Remove-WmiObject -
Verbose
Get-WMIObject -Namespace root\Subscription -Class __EventConsumer | Remove-WmiObject
-Verbose
Get-WmiObject -Class __IntervalTimerInstruction | Remove-WmiObject -Verbose

We can do many more things, but this post is mainly about how to detect such sneaky
persistence mechanisms, so let’s go ahead and grab our majestic free install of Splunk
Enterprise with a 60 day trial and let’s make use of our best friend Sysmon the Great.

WMI Persistence Detection

7/17

For the purposes of this test, I’ve used a “log all” approach with Sysmon, you can find a
sample config file here (Threat Hunting Ecosystem as a Code is my next project, don’t look
at it yet, it’s ugly!)

So let’s go ahead and create a new TimerEvent and see what our logs come up with. We
shall use the following search:

LogName=Microsoft-Windows-WMI-Activity/Operational AND NOT EventCode=5858 AND NOT
"sysmon"

1. First thing we notice is that Windows already comes with a default “WMI-Event
Detector” which is Event Id 5860 in the Microsoft-Windows-WMI-Activity/Operational
Log

2. Second, becase I am running Powershell v5, Script Block Auditing is enabled by
default, hence, the malicious script was also captured:

https://github.com/darkquasar/THL/blob/master/Templates/SysmonConfig-LogAll.xml

8/17

3. We also notice via another Event Id 5860 that some application with the Process Id
2024 issued a query to the WMI provider:

Who is this guy?

PS C:\WINDOWS\system32> Get-Process -Id 2024

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 425 20 22676 21804 174.56 2024 0 Sysmon64

Note: TL;DR. Well it seems that the new capability added by Sysmon to monitor WMI
Events (SYSMON EVENT ID 19 & 20 & 21 : WMI EVENT MONITORING [WmiEvent]) is
nothing else but a few queries issued to the WMI service which are then reported back to
their own log space (Sysmon/Operational). Essentially sysmon is registering itself here as a
subscriber for intrinsic events. This pretty much means Sysmon is duplicating on effort here,
since Windows already comes with native events to detect WMI operations. It doesn’t mean
though that this feature is plain redundant, since our logging architecture could be simplified
by just looking at Sysmon events rather than having to fork to Windows native events for
WMI. Anyway, let’s keep digging shall we ;)

The only problem we noticed here is that, for Timer-based WMI Events, sysmon wasn’t
generating any logs. So you need to monitor Windows Event Id 5859/5861 if you want to
catch those. ― ―

What would happen if we create a script event consumer?

$script = @’
Set objFSO=CreateObject("Scripting.FileSystemObject")
outFile="c:\test\log.txt"
Set objFile = objFSO.CreateTextFile(outFile,True)
objFile.Write "%TargetInstance.ProcessName% started at PID
%TargetInstance.ProcessId%" & vbCrLf
objFile.Close
‘@

Register-MaliciousWmiEvent -EventName CalcMalicious -PermanentScript $script -
Trigger ProcessStart -ProcessName notepad.exe -ScriptingEngine VBScript

9/17

As we can observe, this pretty handy Windows Event Id 5861 provides all the information
pertaining to the FilterToConsumerBinding, the EventConsumer and EventFilter

We also observe Windows Event Id 5859 showing the EventFilter which is effectively
registered in the NotificationQueue:

LogName=Microsoft-Windows-WMI-Activity/Operational
SourceName=Microsoft-Windows-WMI-Activity
EventCode=5859
EventType=0
Type=Information
ComputerName=W10B1
User=NOT_TRANSLATED
Sid=S-1-5-18
SidType=0
TaskCategory=The operation completed successfully.
OpCode=Info
RecordNumber=321
Keywords=None
Message=Namespace = //./root/CIMV2; NotificationQuery = SELECT * FROM
Win32_ProcessStartTrace WHERE ProcessName='notepad.exe'; OwnerName = S-1-5-21-
2876542525-3899777576-1000537697-1001; HostProcessID = 972; Provider= WMI Kernel
Trace Event Provider, queryID = 0; PossibleCause = Permanent

And one other small but important piece of information is the presence of Event Id 5857
which is telling us who the provider is (an executable) whose task is to carry out the actions
determined in the EventConsumer class:

10/17

LogName=Microsoft-Windows-WMI-Activity/Operational
SourceName=Microsoft-Windows-WMI-Activity
EventCode=5857
EventType=0
Type=Information
ComputerName=W10B1
User=NOT_TRANSLATED
Sid=S-1-5-18
SidType=0
TaskCategory=The operation completed successfully.
OpCode=Info
RecordNumber=322
Keywords=None
Message=ActiveScriptEventConsumer provider started with result code 0x0. HostProcess
= wmiprvse.exe; ProcessID = 972; ProviderPath =
%SystemRoot%\system32\wbem\scrcons.exe

Let’s commit that to memory for a second:
%SystemRoot%\system32\wbem\scrcons.exe. What the event is telling us is the
executable in charge of running our script. Riding the Google brave horses I was able to
obtain good answers from the Internet Elders: https://msdn.microsoft.com/en-
us/library/aa940177(v=winembedded.5).aspx Here it says that these are the handlers for
common event consumers:

 Scrcons.exe. ActiveScriptEventConsumer
 Smtpcons.dll. SMTPEventConsumer
 Wbemcons.dll. CommandLineEventConsumer, NTEventLogEventConsumer,
LogFileEventConsumer

So essentially, even if you are NOT monitoring for either Sysmon Events 19, 20 & 21 or
Windows native Events in the WMI/Operational space Ids 5857, 5859, 5860 & 5861, you
can still detect the presence of potentially malicious WMI persistence by leveraging the
event consumer handlers listed above. Let’s ask Sysmon for Scrcons.exe

11/17

Now what a surprise! you would be expeting that WmiPrvse.exe would start scrcons.exe,
instead it’s this regular non-profit bloke svchost.exe. Sysmon is even providing us with the
name Description: WMI Standard Event Consumer - scripting Looking for further
clues of scrcons.exe returns a Sysmon Event Id 11 (File Created) event where our little
friend created a file.

12/17

If we were expecting to see this file, written to disk by wscript.exe we will be disappointed ―
―

This time though, Sysmon seems to have noticed that a malicious event subscription was
created and here we have it:

Get-WinEvent -FilterHashtable @{logname="Microsoft-Windows-
Sysmon/Operational";id=20} | Select-Object -ExpandProperty Message

WmiEventConsumer activity detected:
EventType: WmiConsumerEvent
UtcTime: 2018-03-02 14:17:53.442
Operation: Created
User: W10B1\Artanis
Name: "CalcMalicious"
Type: Script
Destination: "Set
objFSO=CreateObject(\"Scripting.FileSystemObject\")\noutFile=\"c:\\test\\log.txt\"\nS
objFile = objFSO.Cre
ateTextFile(outFile,True)\nobjFile.Write \"%TargetInstance.ProcessName% started at
PID %TargetInstance.ProcessId%\" & vbCrLf\no
bjFile.Close"

If you are using Sysmon events to monitor for WMI event subscriptions, you only need to
capture the results of Event Id 19 as it will display the event consumer which is were the
juicy information is that allows us to discriminate benign from malicious.

13/17

What happens if we instead create a CommandLine Event Subscription instead of a Script
based one? The command would look like this with PowerLurk:

Register-MaliciousWmiEvent -EventName LogCalc1 -PermanentCommand “cmd.exe /c msg
Artanis This is Persistence!” -Trigger ProcessStart -ProcessName calculator.exe

This time, instead of scrcons.exe we shall see wbemcons.dll as the event handler, and
instead of a process being a child of another process we shall see WmiPrvse.exe loading
wbemcons.dll. In all my experimental hunts I can assure you that the presence of
wbemcons.dll being loaded as a module by WmiPrvse.exe is extremely rare, so do pay
attention to those if you are not monitoring WMI/Operational native Windows events.

I will leave it as an exercise to the reader to investigate which events are generated by
creating a CommandLine Event Consumer.

What about DFIR?

It happens to be the case that any permanent event subscription gets written to a WMI
database file called OBJECTS.DATA that can be located here:

C:\Windows\System32\wbem\Repository\OBJECTS.DATA
C:\Windows\System32\wbem\Repository\FS\OBJECTS.DATA

It turns out that the information pertaining WMI event subscriptions can be located there in
plain text. The file has a binary format and its structure, AFAIK, is undocumented. However,
there are a few out there that were brave enough to come up with some cool python scripts
that make use of The Sword of RegEx The Great and Meticulous that allow for
parsing of these files, namely:

https://github.com/darkquasar/WMI_Persistence (developed by me)
https://github.com/davidpany/WMI_Forensics (David Pany script)
https://github.com/fireeye/flare-wmi (a few scripts by FireEye analysts)

So even if you are (well… luckily after reading this post “were”) not collecting any WMI
telemetry data in your environment, you can still go out there and hunt for these threats by
collecting all the OBJECTS.DATA files in your hosts. The scripts listed above allow for easy
parsing of a folder full of these files so the heavy lifting will be on the collecting side of
things ;)

Detection Logics & Lessons Learned

You may think that WMI fileless persistence and malware execution mechanisms are a very
low risk threat thus spending business cycles into creating a detection for this drops way
down the list of priorities. It is, however, an extremely easy to detect tactic and if your

14/17

priority list is not packed with threat scenarios like this one then you are not putting together
a proper list!

We all know looking at detailed TTPs is a tedious process, but only by adopting a systemic
approach you will be able to extend your detection & prevention surface. It’s an ants work,
mixed with that of a dragon ― ―

So, to summarize

Monitor Detect Suited for

Sysmon Event Id 11 (File Write) where
“Image” is
“C:\WINDOWS\system32\wbem\scrcons.exe”.

Suspicious
files written by
the script
event
consumer
handler

Environments with
Sysmon monitoring

Sysmon Event Id 1 where “ParentImage” is
C:\Windows\System32\svchost.exe AND
Image is
“C:\WINDOWS\system32\wbem\scrcons.exe”.
Alternatively Windows Security Log Event ID
4688 (Process Created) can also be
monitored.

Instances of
an Active
Script Event
Consumer
WMI
Persistence

When you are not
monitoring Windows
native WMI/Operational
events OR,when a
malicious actor
disabled native
windows event logging
and you have another
technology in place (for
example EDR)

Sysmon Event Id 7 where “Image” is
C:\Windows\System32\wbem\WmiPrvSE.exe
AND “ImageLoaded” contains
“wbemcons.dll”.

Instances of
an Active
CommandLine
Event
Consumer
Persistence

When you are not
monitoring Windows
native WMI/Operational
events,OR,when a
malicious actor
disabled native
windows event logging
and you,have another
technology in place (for
example EDR)

Windows Event Id 5859 in WMI-
Activity/Operational

Suspicious
Event
Consumers

Environments with no
Sysmon monitoring
using solely native
Windows Events OR for
Intrinsic Timer Events
(Sysmon doesn’t catch
those!)

15/17

Monitor Detect Suited for

Windows Event Id 5861 in WMI-
Activity/Operational

Suspicious
Event Filters

Environments with no
Sysmon monitoring
using solely native
Windows Events OR for
Intrinsic Timer Events
(Sysmon doesn’t catch
those!)

Hopefully in my next post I will resume the Mimikatz one and then I will jump into
Meterpreter detections ;)

Changes to your Sysmon Config

We will add a tag for the new event that has a pretty tight condition: it will only collect WMI
events when they are created. This way, the FP ratio is reduced to a minimum, but as a
trade off you need to be really paying attention and treat Alarms pertaining to these events
as critical always.

<!--SYSMON EVENT ID 19,20,21 : WMIEvent-->
<WmiEvent onmatch="include">

<Operation condition="is">Created</Operation>
</WmiEvent>

Some references

Malware using WMI Persistence: WMIGhost / Actors: APT29POSHSPY
Yeap, cryptominers WMI’ing the # out of Browsers
This dude man! mattifestation
List of modules involved in each WMI event https://msdn.microsoft.com/en-
us/library/aa940177(v=winembedded.5).aspx
https://msdn.microsoft.com/en-us/library/aa392282(v=vs.85).aspx This explains how
to create an NTEventLogEventConsumer class and how to setup one of its properties
(insertionstrings) to a string. It also does this via MOF and compiling the MOF. The
MOF then is embedded in OBJECTS.DATA. WMIPers is not parsing the
“_EventConsumer” for these events very well, must look into that. The interesting
thing though is that you could store anything in those “strings”, why not a payload?
https://msdn.microsoft.com/en-us/library/aa393016(v=vs.85).aspx Ability to register
EventConsumers and EventFilters can be restricted by setting the EventAccess
attribute of the EventFilter instance.

arrivederci my friends, wine and fettuccine awaits!

EventCode 400 sample contents

https://secrary.com/ReversingMalware/WMIGhost/
https://www.fireeye.com/blog/threat-research/2017/03/dissecting_one_ofap.html
http://blog.trendmicro.com/trendlabs-security-intelligence/cryptocurrency-miner-uses-wmi-eternalblue-spread-filelessly/
https://twitter.com/mattifestation/status/899646620148539397

16/17

09/19/2017 11:44:22 PM
LogName=Windows PowerShell
SourceName=PowerShell
EventCode=400
EventType=4
Type=Information
ComputerName=W10B1
TaskCategory=Engine Lifecycle
OpCode=Info
RecordNumber=56
Keywords=Classic
Message=Engine state is changed from None to Available.

Details:
NewEngineState=Available
PreviousEngineState=None

SequenceNumber=13

HostName=ConsoleHost
HostVersion=5.1.14393.206
HostId=9ebd19fb-d695-44ec-a9b1-51d48db8b1ef
HostApplication=powershell.exe -NoP -C iex

([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String((Get-ItemProperty -
Path HKLM:\SOFTWARE\PayloadKey -Name PayloadValue).PayloadValue)))

EngineVersion=5.1.14393.206
RunspaceId=0a4191f5-9ee9-417b-9ebe-fbb73aa20b37
PipelineId=
CommandName=
CommandType=
ScriptName=
CommandPath=
CommandLine=

EventCode 403 sample contents

17/17

09/19/2017 11:44:23 PM
LogName=Windows PowerShell
SourceName=PowerShell
EventCode=403
EventType=4
Type=Information
ComputerName=W10B1
TaskCategory=Engine Lifecycle
OpCode=Info
RecordNumber=57
Keywords=Classic
Message=Engine state is changed from Available to Stopped.

Details:
NewEngineState=Stopped
PreviousEngineState=Available

SequenceNumber=15

HostName=ConsoleHost
HostVersion=5.1.14393.206
HostId=9ebd19fb-d695-44ec-a9b1-51d48db8b1ef
HostApplication=powershell.exe -NoP -C iex

([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String((Get-ItemProperty -
Path HKLM:\SOFTWARE\PayloadKey -Name PayloadValue).PayloadValue)))

EngineVersion=5.1.14393.206
RunspaceId=0a4191f5-9ee9-417b-9ebe-fbb73aa20b37
PipelineId=
CommandName=
CommandType=
ScriptName=
CommandPath=
CommandLine=

1. EventCode 400 sample contents: ↩

2. EventCode 403 sample contents: ↩

Tags: threat hunting, hunting, wmi, windows management instrumentation, backdoor,
persistene, siem, ioc, splunk, elk, darkquasar, volatility

← Previous Post
Next Post →

https://www.eideon.com/2017-10-15-THL02-Events_Threats_Incidents/
https://www.eideon.com/2018-11-10-THL04-AwesomeKB/

