
1/16

March 1, 2018

FinFisher exposed: A researcher’s tale of defeating traps, tricks, and
complex virtual machines

cloudblogs.microsoft.com/microsoftsecure/2018/03/01/finfisher-exposed-a-researchers-tale-of-defeating-traps-tricks-and-complex-virtual-
machines/

Office 365 Advanced Threat Protection (Office 365 ATP) blocked many notable zero-day exploits in 2017. In our
analysis, one activity group stood out: NEODYMIUM. This threat actor is remarkable for two reasons:

Its access to sophisticated zero-day exploits for Microsoft and Adobe software
Its use of an advanced piece of government-grade surveillance spyware FinFisher, also known as FinSpy
and detected by Microsoft security products as Wingbird

FinFisher is such a complex piece of malware that, like other researchers, we had to devise special methods to
crack it. We needed to do this to understand the techniques FinFisher uses to compromise and persist on a
machine, and to validate the effectiveness of Office 365 ATP detonation sandbox, Windows Defender Advanced
Threat Protection (Windows Defender ATP) generic detections, and other Microsoft security solutions.

This task proved to be nontrivial. FinFisher is not afraid of using all kinds of tricks, ranging from junk instructions
and “spaghetti code” to multiple layers of virtual machines and several known and lesser-known anti-debug and
defensive measures. Security analysts are typically equipped with the tools to defeat a good number of similar
tricks during malware investigations. However, FinFisher is in a different category of malware for the level of its
anti-analysis protection. It’s a complicated puzzle that can be solved by skilled reverse engineers only with good
amount of time, code, automation, and creativity. The intricate anti-analysis methods reveal how much effort the
FinFisher authors exerted to keep the malware hidden and difficult to analyze.

This exercise revealed tons of information about techniques used by FinFisher that we used to make Office 365
ATP more resistant to sandbox detection and Windows Defender ATP to catch similar techniques and generic
behaviors. Using intelligence from our in-depth investigation, Windows Defender ATP can raise alerts for
malicious behavior employed by FinFisher (such as memory injection in persistence) in different stages of the
attack kill chain. Machine learning in Windows Defender ATP further flags suspicious behaviors observed related
to the manipulation of legitimate Windows binaries.

https://cloudblogs.microsoft.com/microsoftsecure/2018/03/01/finfisher-exposed-a-researchers-tale-of-defeating-traps-tricks-and-complex-virtual-machines/
https://products.office.com/en-us/exchange/online-email-threat-protection?ocid=cx-blog-mmpc
https://cloudblogs.microsoft.com/microsoftsecure/2017/11/21/office-365-advanced-threat-protection-defense-for-corporate-networks-against-recent-office-exploit-attacks/
https://blogs.technet.microsoft.com/mmpc/2016/12/14/twin-zero-day-attacks-promethium-and-neodymium-target-individuals-in-europe/
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win32/Wingbird.A!dha
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://cloudblogs.microsoft.com/microsoftsecure/2017/08/03/windows-defender-atp-machine-learning-detecting-new-and-unusual-breach-activity/


2/16

Figure 1. Generic Windows Defender ATP detections trigger alerts on FinFisher behavior

While our analysis has allowed us to immediately protect our customers, we’d like to share our insights and add
to the growing number of published analyses by other talented researchers (listed below this blog post). We hope
that this blog post helps other researchers to understand and analyze FinFisher samples and that this industry-
wide information-sharing translate to the protection of as many customers as possible.

Spaghetti and junk codes make common analyst tools ineffective

In analyzing FinFisher, the first obfuscation problem that requires a solution is the removal of junk instructions
and “spaghetti code”, which is a technique that aims to confuse disassembly programs. Spaghetti code makes
the program flow hard to read by adding continuous code jumps, hence the name. An example of FinFisher’s
spaghetti code is shown below.



3/16

Figure 2. The spaghetti code in FinFisher dropper

This problem is not novel, and in common situations there are known reversing plugins that may help for this
task. In the case of FinFisher, however, we could not find a good existing interactive disassembler (IDA) plugin
that can normalize the code flow. So we decided to write our own plugin code using IDA Python. Armed with this
code, we removed this first layer of anti-analysis protection.

Removing the junk instructions revealed a readable block of code. This code starts by allocating two chunks of
memory: a global 1 MB buffer and one 64 KB buffer per thread. The big first buffer is used as index for multiple
concurrent threads. A big chunk of data is extracted from the portable executable (PE) file itself and decrypted
two times using a custom XOR algorithm. We determined that this chunk of data contains an array of opcode
instructions ready to be interpreted by a custom virtual machine program (from this point on referenced
generically as “VM”) implemented by FinFisher authors.



4/16

Figure 3. The stages of the FinFisher multi-layered protection mechanisms

Stage 0: Dropper with custom virtual machine

The main dropper implements the VM dispatcher loop and can use 32 different opcodes handlers. Th 64KB
buffer is used as a VM descriptor data structure to store data and the just-in-time (JIT) generated code to run.
The VM dispatcher loop routine ends with a JMP to another routine. In total, there are 32 different routines, each
of them implementing a different opcode and some basic functionality that the malware program may execute.

Figure 4. A snapshot of the code that processes each VM opcode and the associate interpreter

The presence of a VM and virtualized instruction blocks can be described in simpler terms: Essentially, the
creators of FinFisher interposed a layer of dynamic code translation (the virtual machine) that makes analysis
using regular tools practically impossible. Static analysis tools like IDA may not be useful in analyzing custom
code that is interpreted and executed through a VM and a new set of instructions. On the other hand, dynamic
analysis tools (like debuggers or sandbox) face the anti-debug and anti-analysis tricks hidden in the virtualized
code itself that detects sandbox environments and alters the behavior of the malware.

At this stage, the analysis can only continue by manually investigating the individual code blocks and opcode
handlers, which are highly obfuscated (also using spaghetti code). Reusing our deobfuscation tool and some
other tricks, we have been able to reverse and analyze these opcodes and map them to a finite list that can be
used later to automate the analysis process with some scripting.

The opcode instructions generated by this custom VM are divided into different categories:

1. Logical opcodes, which implement bit-logic operators (OR, AND, NOT, XOR) and mathematical operators
2. Conditional branching opcodes, which implement a code branch based on conditions (equals to JC, JE, JZ,

other similar branching opcodes)
3. Load/Store opcodes, which write to or read from particular addresses of the virtual address space of the

process
4. Specialized opcodes for various purposes, like execute specialized machine instruction that are not

virtualized

We are publishing below the (hopefully) complete list of opcodes used by FinFisher VM that we found during our
analysis and integrated into our de-virtualization script:



5/16

INDEX MNEMONIC DESCRIPTION

0x0 EXEC Execute machine code

0x1 JG Jump if greater/Jump if not less or equal

0x2 WRITE Write a value into the dereferenced internal VM value (treated as a pointer)

0x3 JNO Jump if not overflow

0x4 JLE Jump if less or equal (signed)

0x5 MOV Move the value of a register into the VM descriptor (same as opcode 0x1F)

0x6 JO Jump if overflow

0x7 PUSH Push the internal VM value to the stack

0x8 ZERO Reset the internal VM value to 0 (zero)

0x9 JP Jump if parity even

0xA WRITE Write into an address

0xB ADD Add the value of a register to the internal VM value

0xC JNS Jump if not signed

0xD JL Jump if less (signed)

0xE EXEC Execute machine code and branch

0xF JBE Jump if below or equal or Jump if not above

0x10 SHL Shift left the internal value the number of times specified into the opcodes

0x11 JA Jump if above/Jump if not below or equal

0x12 MOV Move the internal VM value into a register

0x13 JZ JMP if zero

0x14 ADD Add an immediate value to the internal Vm descriptor

0x15 JB Jump if below (unsigned)

0x16 JS Jump if signed

0x17 EXEC Execute machine code (same as opcode 0x0)

0x18 JGE Jump if greater or equal/Jump if not less

0x19 DEREF Write a register value into a dereferenced pointer

0x1A JMP Special obfuscated “Jump if below” opcode

0x1B * Resolve a pointer

0x1C LOAD Load a value into the internal VM descriptor

0x1D JNE Jump if not equal/Jump if not zero

0x1E CALL Call an external function or a function located in the dropper



6/16

0x1F MOV Move the value of a register into the VM descriptor

0x20 JNB Jump if not below/Jump if above or equal/Jump if not carry

0x21 JNP Jump if not parity/Jump if parity odd

Each virtual instruction is stored in a special data structure that contains all the information needed to be properly
read and executed by the VM. This data structure is 24 bytes and is composed of some fixed fields and a
variable portion that depends on the opcode. Before interpreting the opcode, the VM decrypts the opcode’s
content (through a simple XOR algorithm), which it then relocates (if needed), using the relocation fields.

Here is an approximate diagram of the opcode data structure:

Figure 5. A graphical representation of the data structure used to store each VM opcode

The VM handler is completely able to generate different code blocks and deal with relocated code due to address
space layout randomization (ASLR). It is also able to move code execution into different locations if needed. For
instance, in the case of the “Execute” opcode (0x17), the 32-bit code to run is stored entirely into the variable
section with the value at offset 5 specifying the number of bytes to be copied and executed. Otherwise, in the
case of conditional opcodes, the variable part can contain the next JIT packet ID or the next relative virtual
address (RVA) where code execution should continue.

Of course, not all the opcodes are can be easily read and understood due to additional steps that the authors
have taken to make analysis extremely complicated. For example, this is how opcode 0x1A is implemented: The
opcode should represent a JB (Jump if below) function, but it’s implemented through set carry (STC) instruction
followed by a JMP into the dispatcher code that will verify the carry flag condition set by STC.

Figure 6. One of the obfuscation tricks included by the malware authors in a VM opcode dispatcher

Even armed with the knowledge we have described so far, it still took us many hours to write a full-fledged
opcode interpreter that’s able to reconstruct the real code executed by FinFisher.

Stage 1: Loader malware keeps sandbox and debuggers away



7/16

The first stage of FinFisher running through this complicated virtual machine is a loader malware designed to
probe the system and determine whether it’s running in a sandbox environment (typical for cloud-based
detonation solution like Office 365 ATP).

The loader first dynamically rebuilds a simple import address table (IAT), resolving all the API needed from
Kernel32 and NtDll libraries. It then continues executing in a spawned new thread that checks if there are
additional undesired modules inside its own virtual address space (for example, modules injected by certain
security solutions). It eventually kills all threads that belong to these undesired modules (using
ZwQueryInformationThread native API with ThreadQuerySetWin32StartAddress information class).

The first anti-sandbox technique is the loader checking the code segment. If it’s not 0x1B (for 32-bit systems) or
0x23 (for 32-bit system under Wow64), the loader exits.

Next, the dropper checks its own parent process for indications that it is running in a sandbox setup. It calculates
the MD5 hash of the lower-case process image name and terminates if one of the following conditions are met:

1. The MD5 hash of the parent process image name is either D0C4DBFA1F3962AED583F6FCE666F8BC or
3CE30F5FED4C67053379518EACFCF879

2. The parent process’s full image path is equal to its own process path

If these initial checks are passed, the loader builds a complete IAT by reading four imported libraries from disk
(ntdll.dll, kernel32.dll, advapi32.dll, and version.dll) and remapping them in memory. This technique makes use of
debuggers and software breakpoints useless. During this stage, the loader may also call a certain API using
native system calls, which is another way to bypass breakpoints on API and security solutions using hooks.

Figure 7. FinFisher loader calling native Windows API to perform anti-debugging tricks

At this point, the fun in analysis is not over. A lot of additional anti-sandbox checks are performed in this exact
order:

1. Check that the malware is not executed under the root folder of a drive
2. Check that the malware file is readable from an external source
3. Check that the hash of base path is not 3D6D62AF1A7C8053DBC8E110A530C679
4. Check that the full malware path contains only human readable characters (“a-z”, “A-Z”, and “0-9”)
5. Check that no node in the full path contains the MD5 string of the malware file



8/16

6. Fingerprint the system and check the following registry values:
1. HKLM\SOFTWARE\Microsoft\Cryptography\MachineGuid should not be “6ba1d002-21ed-4dbe-afb5-

08cf8b81ca32”
2. HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\DigitalProductId should not be “55274-

649-6478953-23109”, “A22-00001”, or “47220”
3. HARDWARE\Description\System\SystemBiosDate should not contain “01/02/03”

7. Check that the mutex WininetStartupMutex0 does not already exist
8. Check that no DLL whose base name has hash value of 0xC9CEF3E4 is mapped into the malware address

space

The hashes in these checks are most likely correspond to sandbox or security products that the FinFisher
authors want to avoid.

Next, the loader checks that it’s not running in a virtualized environment (VMWare or Hyper-V) or under a
debugger. For the hardware virtualization check, the loader obtains the hardware device list and checks if the
MD5 of the vendor ID is equal to a predefined list. In our tests, the malware sample was able to easily detect both
VMWare and Hyper-V environments through the detection of the virtualized peripherals (for example, Vmware
has VEN_15AD as vendor ID, HyperV has VMBus as bus name). Office 365 ATP sandbox employs special
mechanisms to avoid being detected by similar checks.

The loader’s anti-debugger code is based on the following three methods:

1. The first call aims to destroy the debugger connection:

NOTE: This call completely stops the execution of WinDbg and other debuggers

1. The second call tries to detect the presence of a debugger:

1. The final call tries to destroy the possibility of adding software breakpoint:

Finally, if the loader is happy with all the checks done so far, based on the victim operating system (32 or 64-bit) it
proceeds to decrypt a set of fake bitmap resources (stage 2) embedded in the executable and prepares the
execution of a new layer of VM decoding.

Each bitmap resource is extracted, stripped of the first 0x428 bytes (BMP headers and garbage data), and
combined into one file. The block is decrypted using a customized algorithm that uses a key derived from the
original malware dropper’s TimeDateStamp field multiplied by 5.



9/16

Figure 8. The fake bitmap image embedded as resource

The 32-bit stage 2 malware uses a customized loading mechanism (i.e., the PE file has a scrambled IAT and
relocation table) and exports only one function. For the 64-bit stage 2 malware, the code execution is transferred
from the loader using a well-known technique called Heaven’s Gate. In the next sections, for simplicity, we will
continue the analysis only on the 64-bit payload.

Figure 9. Heaven’s gate is still in use in 2017

Stage 2: A second multi-platform virtual machine

The 64-bit stage 2 malware implements another loader combined with another virtual machine. The architecture
is quite similar to the one described previously, but the opcodes are slightly different. After reversing these
opcodes, we were able to update our interpreter script to support both 32-bit and 64-bit virtual machines used by
FinFisher.

INDEX MNEMONIC DESCRIPTION

0x0 JMP Special obfuscated conditional Jump (always taken or always ignored)

0x1 JMP Jump to a function (same as opcode 0x10)

0x2 CALL Call to the function pointed by the internal VM value

0x3 CALL Optimized CALL function (like the 0x1E opcode of the 32-bit VM)

0x4 EXEC Execute code and move to the next packet

0x5 JMP Jump to an internal function

0x6 NOP No operation, move to the next packet

https://www.malwaretech.com/2014/02/the-0x33-segment-selector-heavens-gate.html
http://www.alex-ionescu.com/?p=300


10/16

0x7 CALL Call an imported API (whose address is stored in the internal VM value)

0x8 LOAD Load a value into the VM descriptor structure *

0x9 STORE Store the internal VM value inside a register

0xA WRITE Resolve a pointer and store the value of a register in its content

0xB READ Move the value pointed by the VM internal value into a register

0xC LOAD Load a value into the VM descriptor structure (not optimized)

0xD CMP Compare the value pointed by the internal VM descriptor with a register

0xE CMP Compare the value pointed by the internal VM descriptor with an immediate value

0xF XCHG Exchange the value pointed by the internal VM descriptor with a register

0x10 SHL Jump to a function (same as opcode 0x1)

This additional virtual machine performs the same duties as the one already described but in a 64-bit
environment. It extracts and decrypts the stage 3 malware, which is stored in encrypted resources such as fake
dialog boxes. The extraction method is the same, but the encryption algorithm (also XOR) is much simpler. The
new payload is decrypted, remapped, and executed in memory, and represents the installation and persistence
stage of the malware.

Stage 3: Installer that takes DLL side-loading to a new level

Stage 3 represents the setup program for FinFisher. It is the first plain stage that does not employ a VM or
obfuscation. The code supports two different installation methods: setup in a UAC-enforced environment (with
limited privileges), or an installation with full-administrative privileges enabled (in cases where the malware gains
the ability to run with elevated permissions). We were a bit disappointed that we did not see traces of a true
privilege escalation exploit after all this deobfuscation work, but it seems these FinFisher samples were designed
to work just using UAC bypasses.

The setup code receives an installation command from the previous stage. In our test, this command was the
value 3. The malware creates a global event named 0x0A7F1FFAB12BB2 and drops some files under a folder
located in C:\ProgramData or in the user application data folder. The name of the folder and the malware
configuration are read from a customized configuration file stored in the resource section of the setup program.

Here the list of the files potentially dropped during the installation stage:

FILE NAME STAGE DESCRIPTION

d3d9.dll Stage 4 Malware loader used for UAC environments with limited privileges; also
protected by VM obfuscation

aepic.dll, sspisrv.dll,
userenv.dll

Stage 4 Malware loader used in presence of administrative privileges; executed from
(and injected into) a fake service; also protected by VM obfuscation

msvcr90.dll Stage 5 Malware payload injected into the explorer.exe or winlogon.exe process;
also protected by VM obfuscation

<randomName>.cab Config Main configuration file; encrypted

setup.cab Unknown Last section of the setup executable; content still unknown

<randomName>.7z Plugin Malware plugin used to spy the victim network communications



11/16

wsecedit.rar Stage 6 Main malware executable

After writing some of these files, the malware decides which kind of installation to perform based on the current
privilege provided by the hosting process (for example, if a Microsoft Office process was used as exploit vector):

1. Installation process under UAC

When running under a limited UAC account, the installer extracts d3d9.dll and creates a persistence key under
HKCU\Software\Microsoft\Windows\Run. The malware sets a registry value (whose name is read from the
configuration file) to “C:\Windows\system32\rundll32.exe c:\ProgramData\AuditApp\d3d9.dll, Control_Run”.
Before doing this, the malware makes a screenshot of the screen and displays it on top of all other windows for
few seconds. This indicates that the authors are trying to hide some messages showed by the system during the
setup process.

When loaded with startup command 2, the installer can copy the original explorer.exe file inside its current
running directory and rename d3d9.dll to uxtheme.dll. In this case the persistence is achieved by loading the
original explorer.exe from its startup location and, using DLL side-loading, passing the execution control to the
stage 4 malware (discussed in next section).

Finally, the malware spawns a thread that has the goal to load, remap, and relocate the stage 5 malware. In this
context, there is indeed no need to execute the stage 4 malware. The msvcr90.dll file is opened, read, and
decrypted, and the code execution control is transferred to the RunDll exported routine.

In the case of 32-bit systems, the malware may attempt a known UAC bypass by launching printui.exe system
process and using token manipulation with NtFilterToken as described in this blog post.

1. Installation process with administrative privilege

This installation method is more interesting because it reveals how the malware tries to achieve stealthier
persistence on the machine. The method is a well-known trick used by penetration testers that was automated
and generalized by FinFisher

The procedure starts by enumerating the KnownDlls object directory and then scanning for section objects of the
cached system DLLs. Next, the malware enumerates all .exe programs in the %System% folder and looks for an
original signed Windows binary that imports from at least one KnownDll and from a library that is not in the
KnownDll directory. When a suitable .exe file candidate is found, it is copied into the malware installation folder
(for example, C:\ProgramData). At this point the malware extracts and decrypts a stub DLL from its own
resources (ID 101). It then calls a routine that adds a code section to a target module. This section will contain a
fake export table mimicking the same export table of the original system DLL chosen. At the time of writing, the
dropper supports aepic.dll, sspisrv.dll, ftllib.dll, and userenv.dll to host the malicious FinFisher payload. Finally, a
new Windows service is created with the service path pointing to the candidate .exe located in this new directory
together with the freshly created, benign-looking DLL.

In this way, when the service runs during boot, the original Windows executable is executed from a different
location and it will automatically load and map the malicious DLL inside its address space, instead of using the
genuine system library. This routine is a form of generic and variable generator of DLL side-loading
combinations.



12/16

Figure 10. Windows Defender ATP timeline can pinpoint the service DLL side-loading trick (in this example, using
fltlib.dll).

In the past, we have seen other activity groups like LEAD employ a similar attacker technique named “proxy-
library” to achieve persistence, but not with this professionalism. The said technique brings the advantage of
avoiding auto-start extensibility points (ASEP) scanners and programs that checks for binaries installed as
service (for the latter, the service chosen by FinFisher will show up as a clean Windows signed binary).

The malware cleans the system event logs using OpenEventLog/ClearEventLog APIs, and then terminates the
setup procedure with a call to StartService to run the stage 4 malware.



13/16

Figure 11. The DLL side-loaded stage 4 malware mimicking a real export table to avoid detection

Stage 4: The memory loader – Fun injection with GDI function hijacking

Depending on how stage 4 was launched, two different things may happen:

In the low-integrity case (under UAC) the installer simply injects the stage 5 malware into the bogus
explorer.exe process started earlier and terminates
In the high-integrity case (with administrative privileges or after UAC bypass), the code searches for the
process hosting the Plug and Play service (usually svchost.exe) loaded in memory and injects itself into it

For the second scenario, the injection process works like this:

1. The malware opens the target service process.
2. It allocates and fills four chunks of memory inside the service process. One chunk contains the entire

malware DLL code (without PE headers). Another chunk is used to copy a basic Ntdll and Kernel32 import
address table. Two chunks are filled with an asynchronous procedure call (APC) routine code and a stub.

3. It opens the service thread of the service process and uses the ZwQueueApcThread native API to inject an
APC.

The APC routine creates a thread in the context of the svchost.exe process that will map and execute the stage 5
malware into the winlogon.exe process.

The injection method used for winlogon.exe is also interesting and quite unusual. We believe that this method is
engineered to avoid trivial detection of process injection using the well-detected CreateRemoteThread or
ZwQueueApcThread API.

The malware takes these steps:

1. Check if the system master boot record (MBR) contains an infection marker (0xD289C989C089 8-bytes
value at offset 0x2C), and, if so, terminate itself

2. Check again if the process is attached to a debugger (using the techniques described previously)
3. Read, decrypt, and map the stage 5 malware (written in the previous stage in msvcr90.dll)
4. Open winlogon.exe process



14/16

5. Load user32.dll system library and read the KernelCallbackTable pointer from its own process environment
block (PEB) (Note: The KernelCallbackTable points to an array of graphic functions used by Win32 kernel
subsystem module win32k.sys as call-back into user-mode.)

6. Calculate the difference between this pointer and the User32 base address.
7. Copy the stage 5 DLL into winlogon.exe
8. Allocate a chunk of memory in winlogon.exe process and copy the same APC routine seen previously
9. Read and save the original pointer of the __fnDWORD internal User32 routine (located at offset +0x10 of

the KernelCallbackTable) and replace this pointer with the address of the APC stub routine

After this function pointer hijacking, when winlogon.exe makes any graphical call (GDI), the malicious code can
execute without using CreateRemoteThread or similar triggers that are easily detectable. After execution it takes
care of restoring the original KernelCallbackTable.

Stage 5: The final loader takes control

The stage 5 malware is needed only to provide one more layer of obfuscation, through the VM, of the final
malware payload and to set up a special Structured Exception Hander routine, which is inserted as
Wow64PrepareForException in Ntdll. This special exception handler is needed to manage some memory buffers
protection and special exceptions that are used to provide more stealthy execution.

After the VM code has checked again the user environment, it proceeds to extract and execute the final un-
obfuscated payload sample directly into winlogon.exe (alternatively, into explorer.exe) process. After the payload
is extracted, decrypted, and mapped in the process memory, the malware calls the new DLL entry point, and then
the RunDll exported function. The latter implements the entire spyware program.

Stage 6: The payload is a modular spyware framework for further analysis

Our journey to deobfuscating FinFisher has allowed us to uncover the complex anti-analysis techniques used by
this malware, as well as to use this intel to protect our customers, which is our top priority. Analysis of the
additional spyware modules is future work.

It is evident that the ultimate goal of this program is to steal information. The malware architecture is modular,
which means that it can execute plugins. The plugins are stored in its resource section and can be protected by
the same VM. The sample we analyzed in October, for example, contains a plugin that is able to spy on internet
connections, and can even divert some SSL connections and steal data from encrypted traffic.

Some FinFisher variants incorporate an MBR rootkit, the exact purpose of which is not clear. Quite possibly, this
routine targets older platforms like Windows 7 and machines not taking advantage of hardware protections like
UEFI and SecureBoot, available on Windows 10. Describing this additional piece of code in detail is outside the
scope of this analysis and may require a new dedicated blog post.

Defense against FinFisher

Exposing as much of FinFisher’s riddles as possible during this painstaking analysis has allowed us to ensure
our customers are protected against this advanced piece of malware.

Windows 10 S devices are naturally protected against FinFisher and other threats thanks to the strong code
integrity policies that don’t allow unknown unsigned binaries to run (thus stopping FinFisher’s PE installer) or
loaded (blocking FinFisher’s DLL persistence). On Windows 10, similar code integrity policies can be configured
using Windows Defender Application Control.

http://artemonsecurity.blogspot.com/2017/01/finfisher-rootkit-analysis.html
https://www.microsoft.com/en-us/windows/windows-10-s?ocid=cx-blog-mmpc
https://www.microsoft.com/en-us/windows/get-windows-10?ocid=cx-blog-mmpc
https://cloudblogs.microsoft.com/microsoftsecure/2017/10/23/introducing-windows-defender-application-control/


15/16

Office 365 Advanced Threat Protection secures mailboxes from email campaigns that use zero-day exploits to
deliver threats like FinFisher. Office 365 ATP blocks unsafe attachments, malicious links, and linked-to files using
time-of-click protection. Using intel from this research, we have made Office 365 ATP more resistant to
FinFisher’s anti-sandbox checks.

Generic detections, advanced behavioral analytics, and machine learning technologies in Windows Defender
Advanced Threat Protection detect FinFisher’s malicious behavior throughout the attack kill chain and alert
SecOps personnel. Windows Defender ATP also integrates with the Windows protection stack so that protections
from Windows Defender AV and Windows Defender Exploit Guard are reported in Windows Defender ATP portal,
enabling SecOps personnel to centrally manage security, and as well as promptly investigate and respond to
hostile activity in the network.

We hope that this writeup of our journey through all the multiple layers of protection, obfuscation, and anti-
analysis techniques of FinFisher will be useful to other researchers studying this malware. We believe that an
industry-wide collaboration and information-sharing is important in defending customers against this complex
piece of malware. For further reading, we recommend these other great references:

To test how Windows Defender ATP can help your organization detect, investigate, and respond to advanced
attacks, sign up for a free trial.

Andrea Allievi, Office 365 ATP Research team
with Elia Florio, Windows Defender ATP Research team

Sample analyzed:

MD5: a7b990d5f57b244dd17e9a937a41e7f5
SHA-1: c217d48c4ac1555491348721cc7cfd1143fe0b16
SHA-256: b035ca2d174e5e4fd2d66fd3c8ce4ae5c1e75cf3290af872d1adb2658852afb8

https://products.office.com/en-us/exchange/online-email-threat-protection?ocid=cx-blog-mmpc
https://cloudblogs.microsoft.com/microsoftsecure/2017/11/21/office-365-advanced-threat-protection-defense-for-corporate-networks-against-recent-office-exploit-attacks/
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://www.microsoft.com/en-us/windows/windows-defender?ocid=cx-blog-mmpc
https://blogs.technet.microsoft.com/mmpc/2017/10/23/windows-defender-exploit-guard-reduce-the-attack-surface-against-next-generation-malware/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-atp/use-windows-defender-advanced-threat-protection
https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc


16/16

Talk to us

Questions, concerns, or insights on this story? Join discussions at the Microsoft community and Windows
Defender Security Intelligence.

https://www.microsoft.com/en-us/windowsforbusiness/windows-atp?ocid=cx-blog-mmpc
https://answers.microsoft.com/en-us/protect
https://www.microsoft.com/en-us/wdsi

