New Hide 'N Seek loT Botnet using custom-built Peer-to-
Peer communication spotted in the wild

B labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-
the-wild/

Anti-Malware Research
6 min read

Bogdan BOTEZATU

January 24, 2018

One product to protect all your devices, without slowing them down.
Free 90-day trial

1/7


https://labs.bitdefender.com/2018/01/new-hide-n-seek-iot-botnet-using-custom-built-peer-to-peer-communication-spotted-in-the-wild/
http://10.10.0.46/blog/labs/tag/antimalware-research/
http://10.10.0.46/blog/labs/author/bbotezatu/
http://10.10.0.46/blog/labs/author/bbotezatu/
http://10.10.0.46/media/html/consumer/new/get-your-90-day-trial-opt/index.html

Bitdefender researchers have uncovered an emerging botnet that uses advanced
communication techniques to exploit victims and build its infrastructure. The bot, dubbed
HNS, was intercepted by our loT honeypot system following a credentials dictionary attack
on the Telnet service.

The bot was first spotted on Jan. 10 then faded away in the following days, only to re-
emerge on Jan. 20 in a significantly improved form.

Update 26/01/2018 — 14.06 GMT+3

The botnet now controls 32,312 loT devices. Also, the botnet seems to undergo massive
development as new samples compiled for a variety of architectures have been added as
payloads:

0c90ea12275cadd96a67f8ee07e2fa04af91e51e: ELF 32-bit LSB executable, Intel 80386,
version 1 (SYSV), statically linked, stripped
19f54473a721105982281b7b87503e3d60585042: ELF 32-bit MSB executable, MIPS,
MIPS-I version 1 (SYSV), statically linked, stripped
2b36305f7dcb63b4f55bffabOf0dbbaaabf83b28: ELF 32-bit MSB executable, Motorola
68020 — invalid byte order, version 1 (SYSV), statically linked, stripped
4dcca2094b55b6576¢c1b27597e4b10db9b6bfab3: ELF 32-bit MSB executable, SPARC
version 1 (SYSV), statically linked, stripped
6e5a74d0e39f7e17effb54270c41910b99f7e873: ELF 32-bit LSB executable, MIPS, MIPS-I
version 1 (SYSV), statically linked, stripped

2/7



788f52dfraeae720c90fe21eeb946409dcd2fed7: ELF 32-bit LSB executable, ARM, version
1, statically linked, stripped

a82c¢3cd904315131845d56101b7af8cc2b1eee7b: ELF 32-bit LSB executable, ARM,
version 1, statically linked, stripped

b7ccfbbch3a29de4ae507415ddca93029d90923d: ELF 32-bit MSB executable, PowerPC or
cisco 4500, version 1 (SYSV), statically linked, stripped
ed24e8f5eb277e8b58fb39c15ece3d60af418459: ELF 32-bit LSB executable, Renesas SH,
version 1 (SYSV), statically linked, stripped

f7631f2bc30bb5a570bafa966¢c2f0d5fb7960e94: ELF 64-bit LSB executable, x86-64, version
1 (SYSV), statically linked, stripped

Update 01/25/2018 — 11.50 GMT+3
Hide ‘N Seek currently counts more than 24,000 bots.
Update 01/24/2018 — 20.00 GMT+3

The botnet now counts more than 20,000 loT devices geographically distributed as per the
graphic below.

Update 01/24/2018 — 17.30 GMT+3
18,000 compromised devices and counting.
Update 01/24/2018 — 14.00 GMT+3

The botnet now counts more than 14K devices geographically distributed as per the
heatmap below. What initially started as a 12-device network has become a phenomenon
that spreads from Asia to the United States.

Impact

The HNS botnet communicates in a complex and decentralized manner and uses multiple
anti-tampering techniques to prevent a third party from hijacking/poisoning it. The bot can
perform web exploitation against a series of devices via the same exploit as Reaper (CVE-
2016-10401 and other vulnerabilities against networking equipment).

The bot embeds a plurality of commands such as data exfiltration, code execution and
interference with a device’s operation.

Operation

The bot features a worm-like spreading mechanism that randomly generates a list of IP
addresses to get potential targets. It then initiates a raw socket SYN connection to each
host in the list and continues communication with those that answer the request on specific
destination ports (23 2323, 80, 8080). Once the connection has been established, the bot

3/7



looks for a specific banner (“buildroot login:”) presented by the victim. If it gets this login
banner, it attempts to log in with a set of predefined credentials. If that fails, the botnet
attempts a dictionary attack using a hardcoded list.

Once a session is established with a new victim, the sample will run through a “state
machine” to properly identify the target device and select the most suitable compromise
method. For example, if the victim has the same LAN as the bot, the bot sets up TFTP
server to allow the victim to download the sample from the bot. If the victim is located on the
internet, the bot will attempt a specific remote payload delivery method to get the victim to
download and run the malware sample. These exploitation techniques are preconfigured
and are located in a memory location that is digitally signed to prevent tampering. This list
can be updated remotely and propagated among infected hosts.

The samples identified in our honeypots on Jan. 10 revolved around IP cameras
manufactured by a Korean company. These devices seemed to play a major role in the
botnet as, out of the 12 IP addresses hardcoded in the sample, 10 used to belong to Focus
H&S devices. The new version, observed on Jan. 20, dropped the hardcoded IPs.

Like other loT bots, the newly discovered HNS bot cannot achieve persistence, and a
reboot would bring the compromised device back to its clean state. It is the second known
IoT botnet to date, after the notorious Hajime botnet, that has a decentralized, peer-to-peer
architecture. However, if in the case of Hajime, the p2p functionality was based on the
BitTorrent protocol, here we have a custom-built p2p communication mechanism.

UDP communication mechanism

The bot opens a random port on the victim, and adds firewall rules to allow inbound traffic
for the port. It then listens for connections on the open port and only accepts the specific
commands described below. Our initial look at the sample revealed an elliptic curve key
inside the file that is used to authenticate the command which updates the memory zone
where configuration settings are stored, to prevent infiltration or poisoning attempts against
the botnet.

The botnet binary can have the following arguments at runtime:

‘k’ + [some_port_number] — Kills all processes running on the specified port at startup.
‘I + [some_port_number] - Listens on the specified port number after startup

‘s’ + path — Reads files starting from the path and loads them into memory. Then, the
content can be retrieved by other peers via the ‘m’, ‘y’ and Y’ commands. There’s also a
sha256-checksums for each file that gets created. As a side effect, this will keep the

malicious binary on the system.

‘a’ + [IP:PORT] — Adds IP:PORT to the list of internally stored IP:PORT

47



‘e’ + IP:PORT - Adds a new target to the otherwise randomly generated target list.
Supported commands

To understand the capabilities of the bot, we looked into the messages received from other
peers. Below is a list of the supported commands, along with a description of the expected
results:

‘i + u32(config_size) — If the config_size received is larger than the size of the current
configuration, an acknowledgement message is sent back to the peer. The peer is
eventually set as a communication endpoint to get the larger config. If the dht_size is
smaller, an ‘I’ message is sent back to the peer advertising the larger config.

‘I + u32(config_size) — The config_size received should be larger than the size of the
current config (following an ‘i message query). An acknowledgement message is sent back
and eventually the peer is set as a communication endpoint to get the larger config.

‘m’ + u8[32](hash) + u32(ip) + u16(port) + u16(seq) + u8(hops) + u8(unk) — This
message attempts to find data based on the hash given. It first checks locally if the hash is
known and data is available. If data is available, it starts sending it to ip:port via a Y’
message. If data is not locally available, the bot broadcasts the current ‘m’ message (with
hops decremented, but not more than 5 hops) to all its known peers.

‘A’ + u8(flags) + u16(port) + u32(ip) — Signals a new peer at ip:port. The new peer gets
added to the list of known peers (it can also replace a peer if too many are present).

‘~’ — Requests a new peer. Upon receiving this, a random peer is selected from the list of
known peers and sent via a ‘’ message

‘Y’ + u16(chunk_index) + u16(seq) + u8[](data) — This is the data received message. The
data is copied in chunks of at most 0x100 bytes (i.e. the current offset is chunk_index *
0x100). The chunk_index is the current offset being read from and it should correspond to
the current size of a communicated buffer.

There are multiple possible outcomes once the file is downloaded:

« If the data is a new config, it gets verified (via ECDSA — the elliptic curve key
mentioned above) and, if OK, it will replace the current config”
» The file can get dropped and executed (i.e. an update mechanism)

‘y’ + u8[32](hash) + u16(chunk_index) + u16(seq) — This command attempts to read from
chunk_index the data corresponding to the cache via a ‘Y’ message. If, for whatever
reason, the data is not available locally, an ‘m’ message gets broadcast.

‘O’ + u8(checksum) — This is an acknowledgement message. The checksum is done on
the received message.

5/7



‘i, ‘I (first version)’h’, ‘H’ (second version) — Commands for configuration updates

‘m’,’Y’,’y’ Data exfiltration mechanism (“m” communicates a hash, while “Y” and “y” move
data around)

“z” scanning component (sends to a peer valid credentials that have been found via
dictionary attack)

(73]

“O” ack on “z” credentials received OK (however, the same ack can be sent in several
other occasions)

“A” add a new peer to the list of known peers
“~” send a peer IP as a response (when queried for a peer IP)
Conclusions

While IoT botnets have been around for years, mainly used for DDoS attacks, the
discoveries made during the investigation of the Hide and Seek bot reveal greater levels of
complexity and novel capabilities such as information theft — potentially suitable for
espionage or extortion.

It is also worth noting that the botnet is undergoing constant redesign and rapid expansion.
Known hashes

efcd7abfeb9ca8223cd282bfe501a2f92b18312¢c
05674f779ebf9dc6b0176d40ff198e94f0b21ff9

TAGS

anti-malware research

AUTHOR

Bogdan BOTEZATU

Information security professional. Living my second childhood at @Bitdefender as director
of threat research.

6/7


http://10.10.0.46/blog/labs/tag/antimalware-research/
http://10.10.0.46/blog/labs/author/bbotezatu/
http://10.10.0.46/blog/labs/author/bbotezatu/

7/7


http://10.10.0.46/blog/labs/author/bbotezatu/
http://10.10.0.46/blog/labs/author/bbotezatu/

