A coin miner with a “Heaven’s Gate”

blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/amp/

hasherezade

. hasherezade
4 years ago

You might call the last two years the years of ransomware. Ransomware was, without a
doubt, the most popular type of malware. But at the end of last year, we started observing
that ransomware was losing its popularity to coin miners. It is very much possible that this
trend will grow as 2018 progresses.

From the point of view of the victim, this is a huge relief, because miners are not as much of
a threat as ransomware. They slow down the system, yes, but once you get rid of them you
can continue using your computer as before. No data is stolen, or lost as in the case with a

ransomware infection.

From the point of view of a malware researcher, miners are so far disappointing. They don’t
give enough interesting material for a deeper analysis, mostly because they are based on
well-known open source components with little or no obfuscation.

However, from time to time, we find coin miners incorporating interesting tricks. In one recent
sample, we observed a technique called “Heaven’s Gate” that allows the malware to make
injections to 64-bit processes from 32-bit loaders. This trick is not new—its introduction is
dated to 2009—but it’s curious to see it implemented in this new sample captured in wild.

Those who are beginners in malware analysis can read on for a guide about what Heaven’s
Gate is and how to approach analyzing it.

1/11

https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate/amp/

Analyzed samples

7b3491e0028d443f11989efaeb0fbec?2 — dropper #1

This sample

was found in the continuation of the Ngay campaign (more about it here). A

background check on similar samples lead me to the article of @_gaz_qgaz, who described
an earlier campaign with a similar sample. However, his analysis skipped details on the
Heaven’s Gate technique.

Behavioral analysis

To observe the mentioned injection, we must run the sample on a 64-bit system. We can see
that it runs an instance of notepad, with parameters typical for mining cryptocurrency:

MSiExes EXe 0.02 1568 K 4864 K 2932 Windows® installer
(= {8 F9c6 73132 30bfcdbbaBffebetab.. 1504 K 3496 K 3020
Mjrmtq}ad e 0.02 7036 K H464 K 2252 Notepad

CPU Usage: 2.4]

Command Line:
"CAWindows notepad .exe” -0 pool minexmr.com:5555 1 45CYQmng PZLyHOdMY 26JGig 3MScxFi S USSPy SEXAPVREI

kSWwjBJdh2pJRP HVA1ZTCQGwivo 1a6454wNk fias Lp D2VGne px v 004 1
Path:
CAWindows notepad exe

—

Looking at the in-memory strings in ProcessExplorer, we can clearly see that it is not a real
notepad running, but the xmrig Monero miner:

2/11

https://www.virustotal.com/#/file/f9c67313230bfc45ba8ffe5e6abeb8b7dc2eddc99c9cebc111fcd7c50d11dc80/details
https://blog.malwarebytes.com/threat-analysis/2018/01/rig-exploit-kit-campaign-gets-deep-into-crypto-craze/
http://malware-traffic-analysis.net/2018/01/11/index.html
https://secrary.com/ReversingMalware/CoinMiner/
https://twitter.com/_qaz_qaz
https://github.com/xmrig/xmrig

E notepad.exe: 1808 Properties =nac [ﬂ]

Image Performance I Performance Graph | Threads |
TCP/TP Security | Environment | Job | Strings

Printable strings found in the scan:

apiport -
api-accesstoken

api-worcerdid

ackhBp:PorRst TouwOwM:S

IUsage: xmrig [OPTIONS])

Ciptions:
-a, —algo=ALG0 cryptonight (default) or cryptonightdite
-0, -un=JRL IURL of mining server

0, -usempass=LI:P usemame:password pair for mining server

41, —uger=ISERMAME usemame for mining server

0, pass=PASSWORD password for mining server

1, -threads=MN number of miner threads

v, —av=N algorithm variation, 0 auto select

40, teepalive send keepalived for prevent timeout (need pool support)

+, —etries=N number of times to retry before switch to backup server i
-R, —retrypause=M time to pause between retries (default: &) L
—cpu-affinity st process affinity to CPLU corels), mask (x3 for cores 0 and
—cpu-pronty set process priorty (0idle, 2 nomal to 5 highest)
-notugepages disable huge pages support

—no-calor disable colored output
—donatedevel=M donate level, default 5% (5 minutes in 100 minutes)
—user-agent set custom user-agent string for pool

-B, -background run the miner in the background
¢, —config=FILE load a JSOMfomat configuration file

1 le = Ll TIL T | [P | IR DR N P £

4 1L 2

©lmage @ Memory | save | [Fnd |

So, at this moment we’re confident that the notepad’s image has been replaced in memory,
most probably by the RunPE (Process Hollowing) technique.

The main dropper is 32-bit, but it injects a payload into a 64-bit notepad:

3/11

ﬁ f9c67313230bfcd5badffeSefabebBbTdc2eddc99c9cebdll.. | = || [E || 21

ﬁ notepad.exe:2252 Properties

Tcpp | Securty | Environment | 1ob | strings | toppe | seaurity | Envionment | Job | strings
Image | Performance I Performance Graph I Threads Image | Performance | Performance Graph I Threads
Image File Image File

—‘LT “"‘] Notepad

s e Microsoft Corporation

Version: nfa Version: 6.1,7600,16385

Build Time: Sun May 11 22:03:30 2014 Build Time: Tue Jul 14 01:56:35 2008

Path: Path:

C:\Users\tester\Desktop\fc67313230bfc45badffe Sebabebat
Command line:

"Cr\Usershtester \Desktop a6 73132 30bfc45bas ffe SefabebibTdc 2edd
Current directory:

C:\UsersitesterppDataLocal Templ
Autostart Location:

nfa Explore
<Mon-existent Process »(1508)

User; testmachine\tester
; Bring to Front
Started: 16:13:08 2018-01-15 Image: 32-bit
Kill Process

Parent:

Comment:

VirusTotal: The server name or address co

Data Execution Prevention (DEF) Status: Enabled
Address Space Load Randomization: Disabled

Contral Flow Guard:

C:\windows'\notepad.exe

Command line:

"C:\Windows'\notepad, eke” -0 pol.minexmr,com: 5555 -u 42CYQrmrgP.

Current directory:
C:\Usershtester\AppData'Local{Temp',
Autostart Location:

nfa Explore
Parent: f9c67313230bfc45basffe 5e6abeb8h7d

User: testmachine \tester

Started: 16:13:08 2013-01-15 IImage: 64—hit| Eling fn Front
Kill Process

Comment:

VirusTotal: The server name or address co

Data Execution Prevention (DEF) Status: Enabled
Address Space Load Randomization: Enabled

Control Flow Guard:

[ok | [canel | ok | [canel

The fun part is that this type of injection is not supported by the official Windows API. We can
read/write the memory of 32-bit processes from a 64-bit application (using Wow64 API), but
not the other way around.

There are, however, some unofficial solutions to this, such as the technique called “Heaven’s
Gate.”

Heaven’s Gate overview

The Heaven’s Gate technique was first described in 2009, by a hacker nicknamed Roy G.
Biv. Later, many adaptations were created, such as a library Wow64ext or, basing in it,
W640WoW64. In the blog post from 2015, Alex lonescu described mitigations against this
technique.

But let’'s have a look at how it works.

Running 32-bit processes on 64-bit Windows

Every 32-bit process that runs on a 64-bit version of Windows runs in a special subsystem
called WoW64 that emulates the 32-bit environment. We can explain it as a 32-bit sandbox
that is created inside a 64-bit process. So, first the 64-bit environment for the process is
created. Then, inside it, the 32-bit environment is created. The application is executed in this
32-bit environment and it has no access to the 64-bit part.

4/11

https://github.com/rwfpl/rewolf-wow64ext
https://github.com/georgenicolaou/W64oWoW64
http://www.alex-ionescu.com/?p=300
https://en.wikipedia.org/wiki/WoW64

If we scan the 32-bit process from outside, via the 64-bit scanner, we can see that it has
inside both 32 and 64 DLLs. Most importantly, it has two versions of NTDLL: 32-bit (loaded
from a directory SysWow64) and 64-bit (loaded from a directory System32):

C:wUzersstester~Desktoprpe—sievebd.exe 1636

PID: 1636

Modules filter: 3

Output filter: A
Scanning: C:sWindowssSysWOWed~notepad.exe
Scanning: CisWindowssSysWOWGc4sntdll.d11l
Scanning: C:xWindowsssyswowbdskernel3Z2.dll
Scanning: C:xWindowsssyzwowbtd~KERNELBASE.d11l
Scanning: GC:sWindowsssyswowbd~ADUAPI3Z.d11
Scanning: GC:isWindowsssyswowbd msvcrt.dll
Scanning: C:sWindowssSysWoledszechost.dll
Scanning: C:sWindowsssyswowb4~RPCRT4.d11
Scanning: C:sWindowsssyswowb4~SspiCli.dll
Scanning: C:xWindowsssyswowbtd~CRYPTBASE.d11
Scanning: C:xWindowsssyswowbd~GDI32.d11
Scanning: GC:sWindowsssyswowbd~USER32.d11
Scanning: C:xWindowsssyswowbd~LPK.d11
Scanning: C:sWindowsssyswowbd~USP1A.d4d11
Scanning: C:sWindowsssyswowbd~COMDLG3Z.d11
Scanning: C:sWindowsssyswowb4~SHLWAPT .d11
Scanning: C:xWindowssWinSx5“xB6_microsoft._windows.common—controls_6595bh64144

ccfidf 6.8.7601.17514_none_41e6?75%e2bdbf2h2~COMCTL32.d11
Scanning: GC:sWindowsssyswowb4~SHELL32.d11
Scanning: C:sWindowssSysWOUs4~WINSPOOL . DRU
Scanning: C:sWindowsssyswowbdsole3d2. dll
Scanning: C:s\Windowsssyswowb4~0LEAUT3Z . d11
Scanning: C:xWindowssSysWOUG4~UERSION.d11
Scanning: C:xWindowsssystemd2~IMH32.DLL
Scanning: GC:sWindowsssyswowb4~MSCTF.d11
Scanning: C:sWindowsssystemdZ2saxtheme.dll
Scanning: C:sWindowssSysWOUs4~duwmapi.dll
Scanning: C:sWindowssSYSTEM3IZ2%ntdll.d11l
Scanning: C:sWindowssSYSTEM3IZ“wowb4.d11l
Scanning: C:xWindows SY¥STEM3IZ2“wowbduwin.dll
Scanning: GC:sWindowssSYSTEM3Z2~wowbdcpu.dll

However, the 32-bit process itself can’t see the 64-bit part and is limited to using the 32-bit
DLLs. To make an injection to a 64-bit process, we'd need to use the 64-bit versions of
appropriate functions.

Code segments

In order to access the forbidden part of the environment, we need to understand how the
isolation is made. It turns out that it’'s quite simple. The 32- and 64-bit code execution is
accessible via a different address of the code segment: 32-bit is 0x23 and 64-bit is 0x33.

If we call an address in a typical way, the mode that is used to interpret it is the one set by
default. However, we can explicitly request to change it using assembler instructions.

Inside the miner: the Heaven’s Gate implementation

| will not do a full analysis of this miner because it has already been described here. Let’s
jump directly to the place where the fun begins. The malware checks its environment, and if
it finds that it's running on a 64-bit system, it takes a different path to make an injection into a
64-bit process:

5/11

https://secrary.com/ReversingMalware/CoinMiner/

aopoapaoea4e271C
pEaaaoaaeda2721
gRaaoaoaaE4E2725
gRaeoaeaRRAB2727
BRaeaaoeERLB2T2E
BaaeaaEeERLB2T2F
gaaaapeaaaLa2738
pEaaaaoaRRAa2T37
ppaoopoeER4B2739
BEaoopeaeaLa273A
goaaoeoaaE4E2741
gRaeoaeaERLE2742

call
push
test
lea
push
push
lea
Mo
push
lea
push

jz

is_ wowsd

[esp+25AGh+var_258C] ; int

eax, eax

eax, [esp+25A4h+Data]

ECX
Eax

eax, [esp+25ACh+CommandLline]

ecx, esi
eax

; int
; lpData

3 lpCommandLine

eax, [esp+25B@h+var 1258]

eax
short loc_482749

; 1nt

FIZE
GE0e00E8804682744 call

gpaBaaaaRLB2740

run_pe conéd

gpeaaaeeaa48107C
gpeaepeeaRdalDe2
apaaaaeeaa481083
apaaaapaaadaliDsA
apeaaaoaaadalDab
gpeoagaooaadalDsD
gpeooaooapdalDaF
gpeaaopaaedalDod
gpeaaaeeaa481096
gpeaepeeaada1098
gpaaaapaaa4a109A
apeaaaeaaadalDal
apeaapoaaadalDaz
apaaapoaaadtalDAs

movdga
push
lea
push
push
push
push
push
push
push
lea
push
push
call

800Ea60000482749 loc_482749:
geppaaBRER4B2749 call run_pe_on32

geepaaee88482749 sub_ 482108 endp

After some anti-analysis checks, it creates a new, suspended 64-bit process (in this case, it
is a notepad):

xmmword ptr [esp+@F5@h+hProcess], xmm@

eax 3 lpProcessInformaticon
eax, [esp+BFs4h+StartupInfo]

eax ; lpStartupInfo

8 ; lpCurrentDirectory
@ 3 lpEnvirenment
geeeeadh ; dwCreaticnFlags

8 ; bInheritHandles

8 ; lpThreadAttributes
e 3 lpProcessAttributes
eax, [esp+BF7eh+5tringl]

eax ; lpCommandLine

[esp+eF?ah+lpipplicationiame] ; lpaApplicationName
ds:CreateProcessi

This is the target into which the malicious payload is going to be injected.

As we discussed before, in order to inject the payload into a 64-bit process, we need to use

the appropriate 64-bit functions.

First, the loader takes a handle to a 64-bit NTDLL:

epaoe000004810EE call
geaaaeoaaedalDFe mov
gRaaaeeaee481DF5 mov

near ptr get ntdll
dword 4B6718, eax
dword 4B6714, edx

6/11

What happens inside this function get ntdll requires some deeper explanation. As a

reference, we can also have a look at the analogical code in the ReWolf’s library.

To get access to the 64-bit part of the process environment, we need to manipulate the
segments selectors. Let’'s see how our malware enters the 64-bit mode:

~text:
text:
text:
text:
text:
dext:
~text:
dext
dext
Ldext
Ldext
LText
Ldext
Ldext
Ldext
dext
dext
Ldext
Ldext

aadqaz2h3e
aada2h3e
ea482A38
ea482A38
aa482A38
aa482A38
aa4a2A38

1BB482A31
1 BB4B2A33
L BE4B2A59
1 BB4B2A5A
188482458
1 BB4B2A5E
1 BB4B2A3F
reB4e2A44
1 BB482A46
1 8B482A46
rBadB2A4F
1 BB4B2A4F

55
a6
a8l
53
56
BF
57
66
BA
EB
a3
CEB

EC
EC

57

ar
33
e
a4

get ntdll proc far ; CODE XREF:
; sub_ 4820484
var_5E8 = dword ptr -SEBh
var_1e = gword ptr -18h
push ebp
mov ebp, esp
D4 85 ee+ sub esp, SD4h
push ebx
push esi
ce norps WmmE, xmme
push edi
13 45 F@ movlpd [ebp+var_18], xmm@
push 3k
Be oe ae call 5+5
24 @5 add [esp+5EBh+var SEZ], S
retf ; enter 64
get ntdll endp ; sp-analysis failed

This code seems to be directly copied from the open source library:
https.//github.com/rwipl/rewolf-wow64ext/blob/master/src/internal. h#L 26

The segment selector 0x33 is pushed on the stack. Then, the malware calls the next line: (By

this way, the next line’s address is also pushed on the stack.)

L& push ebp
8B EC mov ebp,esp
81 EC D4 05 00 00| sub esp,SD4
L3 push ebx
L& push esi
OF 57 CO XOorps xmmo , Xmmo
L7 push edi
66 OF 13 45 FO movipd gword ptr ssilfebp-10§,xmmo
6A 33 push 33
ES 00 OO0 OO0 00 call miner32__013b3000. 402A4B call $o
0040ZA4E 83 04 24 05 add dword ptr =s:[esp],S
00402A4F CB ret far enter &4 bit
1
00402A4B | return to miner3z___013b3000.00402A48 Trom miner32___013b3000, 00402A4E
Qooo0033
00000000
0oo0oo00
00000000
4 | 004000ES | "PE"

An address that was pushed is fixed by adding 5 bytes and set after the retf :

7/11

https://github.com/rwfpl/rewolf-wow64ext/blob/fd28b57fe926f3e57540850c37cdbcc766173dba/src/wow64ext.cpp#L298
https://github.com/rwfpl/rewolf-wow64ext/blob/master/src/internal.h#L26

o a2 T 1w IR R R RN W R 3 e R LU g S

64 33 push 33

ES 00O 00 00 00 call miner22___013b3000. 402A4B cal o

53 04 24 05 add dword ptr ss:iffespd, s

CE ret far enter &4 bit
49 dec ecx

54 push esp

I

00402A50 |miner32__013b3000. 00402A50
1| 00000033
5| 00000000

e et

At the end, the instruction RETF is called. RETF is a “far return,” and in contrast to the
casual RET, it allows to specify not only the address where the execution should return, but
also the segment. It takes as arguments two DWORDs from the stack. So, when the RETF is
hit, the actual return address is:

0Xx33:0x402A50

Thanks to the changed segment, the code that starts at the specified address is interpreted
as 64-bit. So, the code that is visible under the debugger as 32-bit...

Hex Dizasm

...is, in reality, 64-bit.

For the fast switching of those views, | used a feature of PE-bear:

Hex Disasm

Follow RVA: 2850
Copy offset

Settings RVA -> VA

Bit mode Automatic
16
32

And this is how this piece of code looks, if it is interpreted as 64-bit:

8/11

Hex Dizasm

hizl

-
-
£
-

hiel
oy oy A A
[= O % TR = T B % |

hed

So, the code that is executed here is responsible for moving the content of the R12 register
into a variable on the stack, and then switching_back to the 32-bit mode. This is done for the
purpose of getting 64bit Thread Environment Block (TEB), from which next we fetch the 64-
bit Process Environment Block (PEB) —check the analogical code.

The 64-bit PEB is used as a starting point to search the 64-bit version of NTDLL. This part is
implemented in a casual way (a “vanilla” implementation of this technique can be found here)
using a pointer to the loaded libraries that is one of the fields in the PEB structure. So, from
PEB we get a field called Ldr :

+0=000 Inheritediddres=sSpace : UChar

+0=001 FeadImageFileExecOption=s : UChar

+0x002 Beinglebugged o UChar

+0x003 BitField . IChar

+0=003 Imagelsz=e=zLargePages : Fo= 0. 1 Bit

+0x003 I=sProtectedProces=s : Po= 1, 1 Bit

+0=003 I=legacyFrocess Po= 2. 1 Bit

+0=003 I=ImnagelDvnamicallvRelocated : Po= 3. 1 Bit
+0x003 SkipPatchinglUser3ZForwarders : Po=z 4. 1 Bit

+0=003 SparseBit= Po= 5. 3 Bit=
+0=008 Mutant . Ptred Void
+0=010 ImageBazehiddre=z=s @ Ptred Void

+0=z018

Ldris a structure of the type _PEB_LDR DATA . It contains an entry called
InMemoryOrderModulelList :

ntdll!_FEE 1IDE DATA

+0=000 Length : Tint 4B

+0=004 Initialized o UChar

+0=z008 S=Handle . Ptred Void
+0=010 InloadOrderModuleli=t @ LIST ENTRY

+0x020 InMemorwvOrderModulelist : TIST ENTEY

+0x030 InlnitializationOrderModuleli=t : _LIST EHNTREY
+0=040 EntrvInFrogress : Ptred Void

+0=048 ShutdownInProgress : TChar

+0=050 ShutdownThreadId : Ptred Void

This list contains all the loaded DLLs that are present in the memory of the examined
process. We browse through this list until we find the DLL of our interest that, in this case, is
NTDLL. This is exactly what the mentioned function get_ntdll does. In order to find the
appropriate name, it calls the following function—denoted as is_ntdll_1lib —that checks
the name of the library character-by-character and compares it with ntdll.dll. It is an
equivalent of this code.

9/11

https://github.com/rwfpl/rewolf-wow64ext/blob/master/src/internal.h#L34
https://en.wikipedia.org/wiki/Win32_Thread_Information_Block
https://en.wikipedia.org/wiki/Process_Environment_Block
https://github.com/rwfpl/rewolf-wow64ext/blob/fd28b57fe926f3e57540850c37cdbcc766173dba/src/wow64ext.cpp#L283
https://github.com/rwfpl/rewolf-wow64ext/blob/fd28b57fe926f3e57540850c37cdbcc766173dba/src/wow64ext.cpp#L303
https://github.com/hasherezade/demos/tree/master/functions_loader/src
https://github.com/rwfpl/rewolf-wow64ext/blob/fd28b57fe926f3e57540850c37cdbcc766173dba/src/wow64ext.cpp#L324

04082750 ; int _ fastcall fis_ntdll lib(int al, unsigned _ intl6 *input_lib)
88482758 is ntdll_lib proc near

|8482758 push ebp

88482751 mov ebp, esp

288482753 push ecx

88482754 push ebx

88482755 push esi

@88482756 push edi

@R4a2757 mov esi, offset aNtdllDll @ ; "ntdll.dll”
8848275C lea esp, [espt+2]

[l il =1

Ba482768

Be482768 loc_482760:
884682768 movzx ebx, word ptr [esi]

@R4B2763 mov ecx, ebx

88482765 lea eax, [ecx-41h]

88482768 cmp ax, 19h

8e48276C ja short loc_482771
Y

[l e =
@p4a276E add ecx, 28h ; convert to lowercase

If the name matches, the address to the library is returned in a pair of registers:

BE482C06 mov edwx, ebx

8848208 call is_ntdll lib

B2482C00 push ebx ; Memory
Ba482CDE test 2ax, eax

Be482CEe jz short found

ol e = il e =

aa4a2013 88482CE2 call _free

ee482013 [Found: Be482CEY mov ecx, [ebpt+var_118]
88482013 mov edi, [ebpt+var_E@] @e482CED add esp, 4

28482019 mov esi, [ebptvar_DC] @e482CF8 mov eax, [ebptvar_l@C]
2848201F call _free 88482CF6 cmp ecx, [ebptvar 14]
88482024 add esp, 4 Be482CF9 jnz loc_4@2BFB
AR482027 mov eax, edi !

AR482029 mov edwx, esi

88482026 pop edi

@8e48202C pop esi

8482020 pop ebx

2848202E mov esp, ebp

288482038 pop ebp

28482031 retn

Once we found NTDLL, we just needed to fetch addresses of the appropriate functions. We
did this by browsing the exports table of the DLL:

10/11

88483413 call get _ntdll
8483418 mov dword_4B6718, eax
28483410 mov dword 4B6714, edx

+’+f

e =

Ba4a3423

88423423 loc_483423:

288483423 push edx

88483424 push eax

282483425 mov ecx, offset aNtunmapviewofs ; "NtUnmapViewOfSection”
88483424 call get_exported func

The following functions are being fetched:

e NttUnmapViewOfSection
* NtGetContextThread

¢ NtAllocateVirtualMemory
o NtReadVirtualMemory

o NtWriteVirtualMemory

o NtSetContextThread

As we know, those functions are typical for RunPE technique. First, the

NtUnmapViewOfSection is used to unmap the original PE file. Then, memory in the remote
process is allocated, and the new PE is written. At the end, the context of the process is
changed to start the execution from the injected module.

The addresses of the functions are saved and later called (similarly to this code) to
manipulate the remote process.

Conclusion

So far, authors of coin miners don’t show a lot of creativity. They achieve their goals by
heavily relying on open-source components. The described case also shows this tendency —
they made use of a ready made implementation.

The Heaven’s Gate technique has been around for several years. Some malware use it for

the purpose of being_stealthy. But in case of this coin miner, authors probably aimed rather to

maximize performance by using a payload version that best fit the target architecture.

COMMENTS

11/11

https://github.com/rwfpl/rewolf-wow64ext/blob/fd28b57fe926f3e57540850c37cdbcc766173dba/src/wow64ext.cpp#L75
https://camal.coseinc.com/publish/Phenom%20-%20Bypassing%20Antivirus.pdf
https://blog.malwarebytes.com/threat-analysis/2018/01/a-coin-miner-with-a-heavens-gate//#disqus_thread

