
1/7

bytecode77

bytecode77/r77-rootkit
github.com/bytecode77/r77-rootkit

r77 Rootkit

Ring 3 rootkit

r77 is a ring 3 rootkit that hides everything:

Files, directories
Processes & CPU usage
Registry keys & values
Services
TCP & UDP connections
Junctions, named pipes, scheduled tasks

Hiding by prefix

Everything that starts with "$77" is hidden.

Configuration System

https://github.com/bytecode77/r77-rootkit
https://camo.githubusercontent.com/0e75bf69b64d3f4146caae18431dc4931d9f98c1e25461f100cd7ab2a9312cbc/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f686964696e672e706e67

2/7

The dynamic configuration system allows to hide processes by PID and by
name, file system items by full path, TCP & UDP connections of specific ports,
etc.

The configuration is located in HKEY_LOCAL_MACHINE\SOFTWARE\$77config and
is writable by any process without elevated privileges. The DACL of this key is
set to grant full access to any user.

In addition, the $77config key is hidden by the rootkit.

Installer

The deployment of r77 requires only one file: Install.exe. Execution persists
r77 on the system and injects all running processes.

Uninstall.exe removes r77 from the system completely, and gracefully.

Install.shellcode is the shellcode equivalent of the installer. This way, the
installation can be integrated without dropping Install.exe. The shellcode can
simply be loaded into memory, casted to a function pointer, and executed:

https://camo.githubusercontent.com/a0f9557f5aa383b6329172f06c8b61c267ee940daf5d945d582feb79b9078cc4/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f636f6e6669672e706e67

3/7

Fileless persistence

The rootkit resides in the system memory and does not write any files to the
disk. This is achieved in multiple stages.

Stage 1: The installer creates two scheduled tasks for the 32-bit and the 64-bit
r77 service. The scheduled tasks start powershell.exe with following
command line:

The command is inline and does not require a .ps1 script. Here, the .NET
Framework capabilities of PowerShell are utilized in order to load a C#
executable from the registry and execute it in memory. For this,
Assembly.Load().EntryPoint.Invoke() is used.

int main()
{

// 1. Load Install.shellcode from resources or from a BYTE[]
// Ideally, encrypt the file and decrypt it here to avoid

scantime detection.
LPBYTE shellCode = ...

// 2. Make the shellcode RWX.
DWORD oldProtect;
VirtualProtect(shellCode, shellCodeSize, PAGE_EXECUTE_READWRITE,

&oldProtect);

// 3. Cast the buffer to a function pointer and execute it.
((void(*)())shellCode)();

// This is the fileless equivalent to executing Install.exe.

return 0;
}

[Reflection.Assembly]::Load([Microsoft.Win32.Registry]::LocalMachine.Open
Subkey('SOFTWARE').GetValue('$77stager')).EntryPoint.Invoke($Null,$Null)

4/7

Stage 2: The executed C# binary is the stager. It will create the r77 service
processes using process hollowing. The r77 service is a native executable
compiled in both 32-bit and 64-bit separately. The parent process is spoofed
and set to winlogon.exe for additional obscurity. In addition, the two processes
are hidden by ID and are not visible in the task manager.

https://camo.githubusercontent.com/4f4d947d6aa71b8f9e0342a4271a7b00858b33b5540788245a284f4604af9fe5/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f7363686564756c65642d7461736b2e706e67
https://camo.githubusercontent.com/6c7ea5397371d37995a15e16c9088b24299d7bbaf01859495d54880f249669f4/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f7374616765722e706e67
https://camo.githubusercontent.com/e0a520527589e7a1bacbf915b9ebb24d9a6ea75824edc7d2139c6c4877ecf843/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f736572766963652e706e67

5/7

No executables or DLL's are ever stored on the disk. The stager is stored in the
registry and loads the r77 service executable from its resources.

The PowerShell and .NET dependencies are present in a fresh installation of
Windows 7 and Windows 10. Please review the documentation for a complete
description of the fileless initialization.

Child process hooking

When a process creates a child process, the new process is injected before it
can run any of its own instructions. The function NtResumeThread is always
called when a new process is created. Therefore, it's a suitable target to hook.
Because a 32-bit process can spawn a 64-bit child process and vice versa, the
r77 service provides a named pipe to handle child process injection requests.

In addition, there is a periodic check every 100ms for new processes that might
have been missed by child process hooking. This is necessary because some
processes are protected and cannot be injected, such as services.exe.

In-memory injection

The rootkit DLL (r77-x86.dll and r77-x64.dll) can be injected into a process
from memory and doesn't need to be stored on the disk. Reflective DLL
injection is used to achieve this. The DLL provides an exported function that
when called, loads all sections of the DLL, handles dependency loading and
relocations, and finally calls DllMain.

Hooking

Detours is used to hook several functions from ntdll.dll. These low-level
syscall wrappers are called by any WinAPI or framework implementation.

NtQuerySystemInformation
NtResumeThread
NtQueryDirectoryFile
NtQueryDirectoryFileEx
NtEnumerateKey
NtEnumerateValueKey
EnumServiceGroupW
EnumServicesStatusExW
NtDeviceIoControlFile

AV/EDR evasion

https://docs.bytecode77.com/r77-rootkit/Technical%20Documentation.pdf

6/7

Several AV and EDR evasion techniques are in use:

AMSI bypass: The PowerShell inline script disables AMSI by patching
amsi.dll!AmsiScanBuffer to always return AMSI_RESULT_CLEAN.
Polymorphism is used to evade signature detection of the AMSI bypass.
DLL unhooking: Since EDR solutions monitor API calls by hooking
ntdll.dll, these hooks need to be removed by loading a fresh copy of
ntdll.dll from disk and restoring the original section. Otherwise,
process hollowing would be detected.

Test environment

The Test Console is a useful tool to inject r77 into individual processes and to
test drive the configuration system.

Technical Documentation

Please read the technical documentation to get a comprehensive and full
overview of r77 and its internals, and how to deploy and integrate it.

Downloads

https://camo.githubusercontent.com/7a4772663c2db1d0d67868aeb333b84504cd32d163dfb5b8d10a780493ff9079/68747470733a2f2f62797465636f646537372e636f6d2f696d616765732f70616765732f7237372d726f6f746b69742f74657374636f6e736f6c652e706e67
https://docs.bytecode77.com/r77-rootkit/Technical%20Documentation.pdf

7/7

 r77 Rootkit 1.4.2.zip (ZIP Password: bytecode77)
 Technical Documentation

Project Page

 bytecode77.com/r77-rootkit

https://downloads.bytecode77.com/r77Rootkit%201.4.2.zip
https://docs.bytecode77.com/r77-rootkit/Technical%20Documentation.pdf
https://bytecode77.com/r77-rootkit

