
1/12

December 13, 2017

Tyupkin ATM Malware: Take The Money Now Or Never!
lastline.com/labsblog/tyupkin-atm-malware/

Posted by Alexander Sevtsov ON DEC 13, 2017
A Sandbox is a dynamic file analysis system that allows a researcher to analyze the behavior
of potentially malicious code in a virtualized environment without damaging a real host
system. In some cases, a sandbox has to analyze an attack without seeing the full chain (for
example when it analyzes a dropped file without the corresponding dropper component) or
must work with limited information about the target environment (for example when an attack
targets a particular operating system or runtime). In the worst-case scenario, these missing
pieces can completely hinder the sandbox’s ability to successfully run an application.

Lastline Sandbox

In today’s blog post, we are going to dive deep into one such example and show how the
Lastline sandbox can still classify malware despite an incomplete environment, and even
how a security researcher or incident responder can still be able to elicit behavior from a

https://www.lastline.com/labsblog/tyupkin-atm-malware/
https://www.lastline.com/author/alexander/

2/12

malware sample. This can be done via the so-called application bundles. These bundles
allow the user to extend, customize, and tailor the analysis environment to the needs of the
particular attack and allow us to analyze and dissect an application requiring non-existent
Windows DLLs, file path or registry values.

ATM Malware

For today’s case study, we use a Tyupkin malware sample, a .Net application for bank
automated teller machines (ATM) running on the Microsoft Windows operating system.
Tyupkin’s aim is to steal cash by sending a specific command to the cash dispenser of the
compromised ATM. During the analysis, our sandbox will trick the malware into believing that
our analysis environment is an ATM itself. We will achieve this by submitting our sample
bundled with a few specific DLLs that provide programmer’s interfaces to a Windows-based
ATM, Extensions for Financial Services (XFS).

Delivery Vectors

Interestingly, this malware family seems to be delivered to the ATM manually. In other words,
to install the malware, the attacker requires physical access to an ATM via an exposed USB
port or other input/output bus. Note that this is not usually necessary as some attackers have
been known to install ATM malware as part of an internal software update processes.

Anti-Analysis

As with many malware families, ATM malware actively tries to hinder incident response and
evade dynamic analysis systems by using well-known, off-the-shelf code protectors and
packers, such as .NET Reactor, .Net Confuser, VMProtect, and Themida. This is a common
self-defense mechanism. For example, one of the previously seen ATM infectors packed with
the Themida packer makes use of several anti-debug and anti-sandbox tricks (as shown
below in the analysis overview of the sample SHA1:
3022e60790e17303def03761c8fa7e7393a0ad26): IsDebuggerPresent,
CheckRemoteDebuggerPresent, RDTSC timing evasions, and Windows class names to
name a few.

https://en.wikipedia.org/wiki/Automated_teller_machine
https://en.wikipedia.org/wiki/CEN/XFS
https://www.bankinfosecurity.com/atm-hackers-double-down-on-remote-malware-attacks-a-10338
https://securelist.com/atm-infector/74772/

3/12

Figure 1. Lastline analysis overview of an ATM infector packed with Themida

Some other families, such as ATMii, are known to perform the remote code injection hiding
the malicious code in a specific ATM process.

Figure 2. Lastline analysis overview of an ATMii malware, remote code injection

Tyupkin Malware

The piece of ATM malware that is the subject of this article is known as Tyupkin (SHA1:
0c3e6c1d4873416dec94c16e97163746d580603d). The entry point has the following code:

https://securelist.com/atmii-a-small-but-effective-atm-robber/82707/

4/12

Figure 3. The entry point

The first sandbox evasion we see is an execution delay of 10 minutes. Considering that
many automated malware analysis systems to allocate only 4-5 minutes to analyze
application behaviors, it is not a surprise to see such a simple yet potentially effective
evasion attempt.

Let’s now step into the Form1 class, and further, into the InitializeComponent method. The
purpose of this method is to register a specific event handler Form1_Shown.

Figure 4. Registering an event handler

Below a fragment of “Form1_Shown” code:

5/12

Figure 5. Form1_Shown function

It first retrieves a path to the system directory through the SHGetFolderPath function and
verifies whether it already infected the underlying system. Then it hides the main window by
calling ShowWindow API with SW_HIDE parameter, and adds itself to the autorun to make
sure it will run after reboot:

HKLM\SOFTWARE\MICROSOFT\WINDOWS\CURRENTVERSION\RUN: AptraDebug

Next, it checks whether the connection to the XFS Manager was successfully established
and if not, it deletes itself by using the following command:

del /F /S /Q C:\WINDOWS\system32\ulssm.exe

If the connection is successful, the program runs two threads: the first checks the current
system time which then allows the second thread to execute only on Sunday and Monday
nights, and only at specific time intervals. This is done by calling a combination of _time64
and _localtime64 functions, and then parsing the time_t structure. We can see a snippet of
such code in the fragment below:

https://msdn.microsoft.com/en-us/library/windows/desktop/bb762181(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms633548(v=vs.85).aspx
https://securelist.com/tyupkin-manipulating-atm-machines-with-malware/66988/
https://msdn.microsoft.com/en-us/library/1f4c8f33.aspx
https://msdn.microsoft.com/en-us/library/1f4c8f33.aspx
http://www.cplusplus.com/reference/ctime/time/

6/12

Figure 6. Checking time interval, Tyupkin ATM malware

The second thread contains the main functionality of the malware. Tyupkin supports several
operations, or activation codes, known only by the criminals, which prevents unauthorized
access (or black-box analysis approach). Given a proper activation code (entered using the
ATM PIN pad) the malware can delete itself or hide/show its main window. It can also
programmatically disable the network interfaces through the NcFreeNetconProperties API
(netshell.dll) every time the cash is dispensed (probably to foil any attempt to communicate
with the infected machine):

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366190(v=vs.85).aspx

7/12

Figure 7. Disabling LAN (beautified decompiled code)

The malware is also able to extend the timeout interval (probably for those sleepyheads
criminals who don’t want to withdraw money just during the first hours of the day, as
mandated by the checks performed by the first thread), and, most importantly, to withdraw
money, which is after all its main purpose. This is achieved by calling WFSExecute API when
the dwCommand parameter is equal to WFS_CMD_CDM_DISPENSE (0x12E). To get the
current balance of the cash units, the malware calls WFSGetInfo API with dwCategory
parameter set to WFS_INF_CDM_CASH_UNIT_INFO (0x303). If successful, the following
text will appear on the ATM’s screen: “Take the money now!” prompting the user to enter a
cassette number and press enter:

8/12

Figure 8. Dispensing cash, Tyupkin ATM malware

Below is the complete workflow of the Tyupkin ATM malware:

9/12

Figure 9. Tyupkin ATM malware workflow

Automatic Analysis for Detection

As we can see in the analysis above, this Tyupkin malware family requires a very specific
environment to exhibit its behavior. Even if the malware successfully loads (which is not a
given) entire functionalities are still not triggered if a specific library is not installed.

As we discussed in earlier blog posts, the Lastline analysis engine is able to dynamically
adjust the environment to meet the attackers’ goals, to alter the system information at
runtime, or detect malicious behaviors even in program sections that are not fully executed.

Another approach to detect this type of targeted attack is by using the environment sensitivity
of the program against the attacker itself. The main idea is to flag a sample as suspicious
whenever the analyzed code is deemed too dependent on a specific environment, for
example when some ATM components are required for execution.

https://www.lastline.com/labsblog/lifting-the-seams-of-the-shifu-patchwork-malware/
https://www.lastline.com/labsblog/does-dyre-malware-play-nice-in-your-sandbox/
https://www.lastline.com/labsblog/awakening-dormant-functionality-in-malware-programs/

10/12

Manual Analysis via Lastline Application Bundles

Detecting such malware is important, but sometimes a malware analyst needs to go further
and see more details of the behavior by manually adjusting the analysis environment to meet
the attacker requirements. This can include invoking the executable with a specific command
line, altering the registry or file-system, or loading code in the context of a particular process.

The Lastline analysis sandbox allows doing exactly this via a concept we call Lastline
application bundles. These bundles, called llappbundles, allow the analyst to specify exactly
how the environment is to be “prepared” and how the analysis will be performed by the
sandbox (both Windows or Mac OS sandboxes are supported).

For example, sometimes an executable requires additional command line launch parameters
—must be run from a particular folder or with a specific file name—or it should run a specific
export function (in case of DLL), or run a file imports APIs from a DLL that is not present in
the guest OS. All these issues are addressed by llappbundles. Below we can see a
screenshot of a successful (i.e., complete with behaviors) execution of the Typkin malware
after loading an application bundle with both sample and required libraries.

Figure 10. Tyupkin analysis overview, Lastline Application Bundle

In order to create an application bundle we used the create_appbundle function:

import logging

import llappbundle.helper

tyupkin_appbundle = llappbundle.helper.create_appbundle(

 files={

 r"ulssm.exe": open("myfiles/tyupkin.exe_", "rb"),

https://analysis.www.lastline.com/analyst-api-docs/html/analysis_client_application_bundles.html#api-client-application-bundles
https://analysis.www.lastline.com/analyst-api-docs/html/analysis_client_application_bundles.html#api-client-application-bundles

11/12

 r"msxfs.dll": open("myfiles/msxfs.dll", "rb"),

 r"xfs_supp.dll": open("myfiles/xfs_supp.dll", "rb"),

 r"xfs_conf.dll": open("myfiles/xfs_conf.dll", "rb")

 },

 run_directory="${TEMP}",

 main_subject=r"ulssm.exe",

 logger=logging

)

with open('myfiles/tyupkin.app','wb') as output_stream:

 output_stream.write(tyupkin_appbundle.read())

Another approach is to create an archive with all the DLLs and the main executable file—the
Lastline analysis engine is smart enough to generate an application bundle from it.

Conclusion

In this article, we showed how a security researcher or incident response organization can
analyze applications, such as ATM malware, that require non-default Windows libraries. By
submitting programs as application bundles (llappbundles), it is possible to perform dynamic
customization of the guest analysis environment. This easily allows incident responders to
investigate evasion and persistence mechanisms as well as analyze packers and protectors
that are normally used to hinder analysis. Further, it is possible to improve detection of
samples targeting specific environments, a behavior commonly found in advanced persistent
threats.

About
Latest Posts

Alexander Sevtsov

Alexander Sevtsov is a Malware Reverse Engineer at Lastline. Prior to joining Lastline, he
worked for Kaspersky Lab, Avira and Huawei, focusing on different methods of automatic
malware detection. His research interests are modern evasion techniques and deep
document analysis.

https://www.lastline.com/author/alexander/
https://www.lastline.com/author/alexander/

12/12

Latest posts by Alexander Sevtsov (see all)

Evasive Monero Miners: Deserting the Sandbox for Profit - June 20, 2018
I Hash You: A Simple But Effective Trick to Evade Dynamic Analysis - April 10, 2018
Olympic Destroyer: A new Candidate in South Korea - February 21, 2018

Tags:

ATM, ATM Malware, ATMii, Lastline Sandbox, sandboxes, Themida packer, Tyupkin, Tyupkin
malware

https://www.lastline.com/author/alexander/
https://www.lastline.com/author/alexander/
https://www.lastline.com/labsblog/evasive-monero-miners/
https://www.lastline.com/labsblog/evasive-malware-tricks/
https://www.lastline.com/labsblog/olympic-destroyer-south-korea/
https://www.lastline.com/tag/atm/
https://www.lastline.com/tag/atm-malware/
https://www.lastline.com/tag/atmii/
https://www.lastline.com/tag/lastline-sandbox/
https://www.lastline.com/tag/sandboxes/
https://www.lastline.com/tag/themida-packer/
https://www.lastline.com/tag/tyupkin/
https://www.lastline.com/tag/tyupkin-malware/

