
1/20

New Targeted Attack in the Middle East by APT34, a
Suspected Iranian Threat Group, Using CVE-2017-11882
Exploit

fireeye.com/blog/threat-research/2017/12/targeted-attack-in-middle-east-by-apt34.html

Breadcrumb

Threat Research

Manish Sardiwal, Vincent Cannon, Nalani Fraser, Yogesh Londhe, Nick Richard, Jacqueline
O’Leary

Dec 07, 2017

9 mins read

Advanced Persistent Threats (APTs)

https://www.fireeye.com/blog/threat-research/2017/12/targeted-attack-in-middle-east-by-apt34.html

2/20

Threat Research

Less than a week after Microsoft issued a patch for CVE-2017-11882 on Nov. 14, 2017,
FireEye observed an attacker using an exploit for the Microsoft Office vulnerability to target a
government organization in the Middle East. We assess this activity was carried out by a
suspected Iranian cyber espionage threat group, whom we refer to as APT34, using a
custom PowerShell backdoor to achieve its objectives.

We believe APT34 is involved in a long-term cyber espionage operation largely focused on
reconnaissance efforts to benefit Iranian nation-state interests and has been operational
since at least 2014. This threat group has conducted broad targeting across a variety of
industries, including financial, government, energy, chemical, and telecommunications, and
has largely focused its operations within the Middle East. We assess that APT34 works on
behalf of the Iranian government based on infrastructure details that contain references to
Iran, use of Iranian infrastructure, and targeting that aligns with nation-state interests.

APT34 uses a mix of public and non-public tools, often conducting spear phishing operations
using compromised accounts, sometimes coupled with social engineering tactics. In May
2016, we published a blog detailing a spear phishing campaign targeting banks in the Middle
East region that used macro-enabled attachments to distribute POWBAT malware. We now
attribute that campaign to APT34. In July 2017, we observed APT34 targeting a Middle East
organization using a PowerShell-based backdoor that we call POWRUNER and a
downloader with domain generation algorithm functionality that we call BONDUPDATER,
based on strings within the malware. The backdoor was delivered via a malicious .rtf file that
exploited CVE-2017-0199.

In this latest campaign, APT34 leveraged the recent Microsoft Office vulnerability CVE-2017-
11882 to deploy POWRUNER and BONDUPDATER.

The full report on APT34 is available to our MySIGHT customer community. APT34 loosely
aligns with public reporting related to the group "OilRig". As individual organizations may
track adversaries using varied data sets, it is possible that our classifications of activity may
not wholly align.

CVE-2017-11882: Microsoft Office Stack Memory Corruption Vulnerability

CVE-2017-11882 affects several versions of Microsoft Office and, when exploited, allows a
remote user to run arbitrary code in the context of the current user as a result of improperly
handling objects in memory. The vulnerability was patched by Microsoft on Nov. 14, 2017. A
full proof of concept (POC) was publicly released a week later by the reporter of the
vulnerability.

The vulnerability exists in the old Equation Editor (EQNEDT32.EXE), a component of
Microsoft Office that is used to insert and evaluate mathematical formulas. The Equation
Editor is embedded in Office documents using object linking and embedding (OLE)

https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2017-11882
https://www.mandiant.com/resources/cve-2017-0199-hta-handler
https://www.fireeye.com/mandiant/threat-intelligence/threat-intelligence-subscriptions.html%23dismiss-lightbox
https://unit42.paloaltonetworks.com/unit42-oilrig-malware-campaign-updates-toolset-and-expands-targets/

3/20

technology. It is created as a separate process instead of child process of Office applications.
If a crafted formula is passed to the Equation Editor, it does not check the data length
properly while copying the data, which results in stack memory corruption. As the
EQNEDT32.exe is compiled using an older compiler and does not support address space
layout randomization (ASLR), a technique that guards against the exploitation of memory
corruption vulnerabilities, the attacker can easily alter the flow of program execution.

Analysis

APT34 sent a malicious .rtf file (MD5: a0e6933f4e0497269620f44a083b2ed4) as an
attachment in a malicious spear phishing email sent to the victim organization. The malicious
file exploits CVE-2017-11882, which corrupts the memory on the stack and then proceeds to
push the malicious data to the stack. The malware then overwrites the function address with
the address of an existing instruction from EQNEDT32.EXE. The overwritten instruction
(displayed in Figure 1) is used to call the “WinExec” function from kernel32.dll, as depicted in
the instruction at 00430c12, which calls the “WinExec” function.

4/20

Disassembly of overwritten function address

Figure 1: Disassembly of overwritten function address
After exploitation, the ‘WinExec’ function is successfully called to create a child process,
“mshta.exe”, in the context of current logged on user. The process “mshta.exe” downloads a
malicious script from hxxp://mumbai-m[.]site/b.txt and executes it, as seen in Figure 2.

5/20

Attacker data copied to corrupt stack buffer

Figure 2: Attacker data copied to corrupt stack buffer

Execution Workflow

The malicious script goes through a series of steps to successfully execute and ultimately
establish a connection to the command and control (C2) server. The full sequence of events
starting with the exploit document is illustrated in Figure 3.

6/20

CVE-2017-11882 and POWRUNER attack sequence

Figure 3: CVE-2017-11882 and POWRUNER attack sequence
1. The malicious .rtf file exploits CVE-2017-11882.
2. The malware overwrites the function address with an existing instruction from

EQNEDT32.EXE.
3. The malware creates a child process, “mshta.exe,” which downloads a file from:

hxxp://mumbai-m[.]site/b.txt.
4. b.txt contains a PowerShell command to download a dropper from: hxxp://dns-

update[.]club/v.txt. The PowerShell command also renames the downloaded file from
v.txt to v.vbs and executes the script.

5. The v.vbs script drops four components (hUpdateCheckers.base,
dUpdateCheckers.base, cUpdateCheckers.bat, and GoogleUpdateschecker.vbs) to the
directory: C:\ProgramData\Windows\Microsoft\java\

7/20

6. v.vbs uses CertUtil.exe, a legitimate Microsoft command-line program installed as part
of Certificate Services, to decode the base64-encoded files hUpdateCheckers.base
and dUpdateCheckers.base, and drop hUpdateCheckers.ps1 and
dUpdateCheckers.ps1 to the staging directory.

7. cUpdateCheckers.bat is launched and creates a scheduled task for
GoogleUpdateschecker.vbs persistence.

8. GoogleUpdateschecker.vbs is executed after sleeping for five seconds.
9. cUpdateCheckers.bat and *.base are deleted from the staging directory.

Figure 4 contains an excerpt of the v.vbs script pertaining to the Execution Workflow section.

Execution Workflow Section of v.vbs

Figure 4: Execution Workflow Section of v.vbs
After successful execution of the steps mentioned in the Execution Workflow section, the
Task Scheduler will launch GoogleUpdateschecker.vbs every minute, which in turn executes
the dUpdateCheckers.ps1 and hUpdateCheckers.ps1 scripts. These PowerShell scripts are

8/20

final stage payloads – they include a downloader with domain generation algorithm (DGA)
functionality and the backdoor component, which connect to the C2 server to receive
commands and perform additional malicious activities.

hUpdateCheckers.ps1 (POWRUNER)

The backdoor component, POWRUNER, is a PowerShell script that sends and receives
commands to and from the C2 server. POWRUNER is executed every minute by the Task
Scheduler. Figure 5 contains an excerpt of the POWRUNER backdoor.

POWRUNER PowerShell script hUpdateCheckers.ps1

Figure 5: POWRUNER PowerShell script hUpdateCheckers.ps1
POWRUNER begins by sending a random GET request to the C2 server and waits for a
response. The server will respond with either “not_now” or a random 11-digit number. If the
response is a random number, POWRUNER will send another random GET request to the
server and store the response in a string. POWRUNER will then check the last digit of the

9/20

stored random number response, interpret the value as a command, and perform an action
based on that command. The command values and the associated actions are described in
Table 1.

Command Description Action

0 Server response string contains
batch commands

Execute batch commands and send
results back to server

1 Server response string is a file
path

Check for file path and upload (PUT) the
file to server

2 Server response string is a file
path

Check for file path and download (GET)
the file

Table 1: POWRUNER commands

After successfully executing the command, POWRUNER sends the results back to the C2
server and stops execution.

The C2 server can also send a PowerShell command to capture and store a screenshot of a
victim’s system. POWRUNER will send the captured screenshot image file to the C2 server if
the “fileupload” command is issued. Figure 6 shows the PowerShell “Get-Screenshot”
function sent by the C2 server.

10/20

PowerShell Screenshot Functionality

Figure 6: PowerShell Screenshot Functionality

dUpdateCheckers.ps1 (BONDUPDATER)

One of the recent advancements by APT34 is the use of DGA to generate subdomains. The
BONDUPDATER script, which was named based on the hard-coded string “B007”, uses a
custom DGA algorithm to generate subdomains for communication with the C2 server.

DGA Implementation

Figure 7 provides a breakdown of how an example domain
(456341921300006B0C8B2CE9C9B007.mumbai-m[.]site) is generated using
BONDUPDATER’s custom DGA.

11/20

Breakdown of subdomain created by BONDUPDATER

Figure 7: Breakdown of subdomain created by BONDUPDATER
1. This is a randomly generated number created using the following expression: $rnd = -

join (Get-Random -InputObject (10..99) -Count (%{ Get-Random -InputObject (1..6)}));
2. This value is either 0 or 1. It is initially set to 0. If the first resolved domain IP address

starts with 24.125.X.X, then it is set to 1.
3. Initially set to 000, then incremented by 3 after every DNS request
4. First 12 characters of system UUID.
5. “B007” hardcoded string.
6. Hardcoded domain “mumbai-m[.]site”

BONDUPDATER will attempt to resolve the resulting DGA domain and will take the following
actions based on the IP address resolution:

12/20

1. Create a temporary file in %temp% location
The file created will have the last two octets of the resolved IP addresses as its
filename.

2. BONDUPDATER will evaluate the last character of the file name and perform the
corresponding action found in Table 2.

Character Description

0 File contains batch commands, it executes the batch commands

1 Rename the temporary file as .ps1 extension

2 Rename the temporary file as .vbs extension

Table 2: BONDUPDATER Actions

Figure 8 is a screenshot of BONDUPDATER’s DGA implementation.

13/20

Domain Generation Algorithm

Figure 8: Domain Generation Algorithm
Some examples of the generated subdomains observed at time of execution include:

143610035BAF04425847B007.mumbai-m[.]site

835710065BAF04425847B007.mumbai-m[.]site

376110095BAF04425847B007.mumbai-m[.]site

Network Communication

Figure 9 shows example network communications between a POWRUNER backdoor client
and server.

14/20

Example Network Communication

Figure 9: Example Network Communication
In the example, the POWRUNER client sends a random GET request to the C2 server and
the C2 server sends the random number (99999999990) as a response. As the response is
a random number that ends with ‘0’, POWRUNER sends another random GET request to
receive an additional command string. The C2 server sends back Base64 encoded
response.

If the server had sent the string “not_now” as response, as shown in Figure 10, POWRUNER
would have ceased any further requests and terminated its execution.

15/20

Example "not now" server response

Figure 10: Example "not now" server response

Batch Commands

POWRUNER may also receive batch commands from the C2 server to collect host
information from the system. This may include information about the currently logged in user,
the hostname, network configuration data, active connections, process information, local and
domain administrator accounts, an enumeration of user directories, and other data. An
example batch command is provided in Figure 11.

16/20

Figure 11: Batch commands sent by POWRUNER C2 server

Figure 11: Batch commands sent by POWRUNER C2 server

Additional Use of POWRUNER / BONDUPDATER

APT34 has used POWRUNER and BONDUPDATER to target Middle East organizations as
early as July 2017. In July 2017, a FireEye Web MPS appliance detected and blocked a
request to retrieve and install an APT34 POWRUNER / BONDUPDATER downloader file.
During the same month, FireEye observed APT34 target a separate Middle East
organization using a malicious .rtf file (MD5: 63D66D99E46FB93676A4F475A65566D8)that
exploited CVE-2017-0199. This file issued a GET request to download a malicious file from:

hxxp://94.23.172.164/dupdatechecker.doc.

17/20

As shown in Figure 12, the script within the dupatechecker.doc file attempts to download
another file named dupatechecker.exe from the same server. The file also contains a
comment by the malware author that appears to be an apparent taunt to security
researchers.

Contents of dupdatechecker.doc script

Figure 12: Contents of dupdatechecker.doc script
The dupatechecker.exe file (MD5: C9F16F0BE8C77F0170B9B6CE876ED7FB) drops both
BONDUPDATER and POWRUNER. These files connect to proxychecker[.]pro for C2.

Outlook and Implications

Recent activity by APT34 demonstrates that they are capable group with potential access to
their own development resources. During the past few months, APT34 has been able to
quickly incorporate exploits for at least two publicly vulnerabilities (CVE-2017-0199 and CVE-
2017-11882)to target organizations in the Middle East. We assess that APT34’s efforts to

18/20

continuously update their malware, including the incorporation of DGA for C2, demonstrate
the group’s commitment to pursing strategies to deter detection. We expect APT34 will
continue to evolve their malware and tactics as they continue to pursue access to entities in
the Middle East region.

IOCs

Filename / Domain / IP
Address

MD5 Hash or Description

CVE-2017-11882 exploit
document

A0E6933F4E0497269620F44A083B2ED4

b.txt 9267D057C065EA7448ACA1511C6F29C7

v.txt/v.vbs B2D13A336A3EB7BD27612BE7D4E334DF

dUpdateCheckers.base 4A7290A279E6F2329EDD0615178A11FF

hUpdateCheckers.base 841CE6475F271F86D0B5188E4F8BC6DB

cUpdateCheckers.bat 52CA9A7424B3CC34099AD218623A0979

dUpdateCheckers.ps1 BBDE33F5709CB1452AB941C08ACC775E

hUpdateCheckers.ps1 247B2A9FCBA6E9EC29ED818948939702

GoogleUpdateschecker.vbs C87B0B711F60132235D7440ADD0360B0

hxxp://mumbai-m[.]site POWRUNER C2

hxxp://dns-update[.]club Malware Staging Server

CVE-2017-0199 exploit
document

63D66D99E46FB93676A4F475A65566D8

94.23.172.164:80 Malware Staging Server

19/20

dupdatechecker.doc D85818E82A6E64CA185EDFDDBA2D1B76

dupdatechecker.exe C9F16F0BE8C77F0170B9B6CE876ED7FB

proxycheker[.]pro C2

46.105.221.247 Has resolved mumbai-m[.]site & hpserver[.]online

148.251.55.110 Has resolved mumbai-m[.]site and dns-update[.]club

185.15.247.147 Has resolved dns-update[.]club

145.239.33.100 Has resolved dns-update[.]club

82.102.14.219 Has resolved ns2.dns-update[.]club & hpserver[.]online &
anyportals[.]com

v7-hpserver.online.hta E6AC6F18256C4DDE5BF06A9191562F82

dUpdateCheckers.base 3C63BFF9EC0A340E0727E5683466F435

hUpdateCheckers.base EEB0FF0D8841C2EBE643FE328B6D9EF5

cUpdateCheckers.bat FB464C365B94B03826E67EABE4BF9165

dUpdateCheckers.ps1 635ED85BFCAAB7208A8B5C730D3D0A8C

hUpdateCheckers.ps1 13B338C47C52DE3ED0B68E1CB7876AD2

googleupdateschecker.vbs DBFEA6154D4F9D7209C1875B2D5D70D5

hpserver[.]online C2

v7-anyportals.hta EAF3448808481FB1FDBB675BC5EA24DE

dUpdateCheckers.base 42449DD79EA7D2B5B6482B6F0D493498

20/20

hUpdateCheckers.base A3FCB4D23C3153DD42AC124B112F1BAE

dUpdateCheckers.ps1 EE1C482C41738AAA5964730DCBAB5DFF

hUpdateCheckers.ps1 E516C3A3247AF2F2323291A670086A8F

anyportals[.]com C2

