
1/7

Newly Observed Ursnif Variant Employs Malicious TLS
Callback Technique to Achieve Process Injection

fireeye.com/blog/threat-research/2017/11/ursnif-variant-malicious-tls-callback-technique.html

Threat Research Blog

November 28, 2017 | by Abhay Vaish, Sandor Nemes
Malware

 Malware Analysis

Introduction

TLS (Thread Local Storage) callbacks are provided by the Windows operating system to support
additional initialization and termination for per-thread data structures.

As previously reported, malicious TLS callbacks, as an anti-analysis trick, have been observed for
quite some time and can allow for PE files to include malicious TLS callback functions to be
executed prior to the AddressOfEntryPoint field (the normal start of intended execution) in the PE
header. In essence, unsuspecting analysts and automated security tools can miss the actual entry
point to malcode if they do not account for it in the beginning of their analysis and insert a
breakpoint on the regular offset pointed to by AddressOfEntryPoint.

We recently came across a Ursnif/Gozi-ISFB sample that manipulated TLS callbacks while
injecting to child process. Though many of the malware binaries (or their packers) use some
variation of GetThreadContext/SetThreadContext or CreateRemoteThread Windows API functions

https://www.fireeye.com/blog/threat-research/2017/11/ursnif-variant-malicious-tls-callback-technique.html
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/abhay-vaish
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-authors/sandor-nemes
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/malware
https://www.fireeye.com/blog/threat-research.html/category/etc/tags/fireeye-blog-tags/malware-analysis
https://www.fireeye.com/blog/threat-research/2013/02/the-number-of-the-beast.html

2/7

to change the entry point of the remote process during injection, this sample (and the related
cluster) is using a relatively lesser-known stealth technique. This little deviation from the standard
textbook approach may cause some generic unpackers or tools to break following the execution
flow, if they do not account for the technique.

Distribution

Since early 2017, we have regularly observed the abuse of compromised Sharepoint accounts to
host malicious payloads, with distribution of URIs via spam emails. Some of the major campaigns
we’ve observed involve distributing Dridex within the UK and Ursnif/Gozi-ISFB in Australia. The
recently observed Ursnif variant discussed in this post was discovered via a spam email. A sample
lure can been seen in Figure 1.

3/7

Figure 1: Malicious email lure distributing Ursnif

After clicking on the “REVIEW DOCUMENT” button, the malware downloads a ZIP file named
YourMYOBSupply_Order.zip from the following location:

4/7

https://eacg1-
my.sharepoint.com/personal/steve_robson_eaconsultinggroup_com/_layouts/15/download.aspx?
docid=<redacted>&authkey=<redacted>

The ZIP file contains a malicious JavaScript file that, when executed, will download and execute
the Ursnif/Gozi-ISFB payload.

The activities of the distribution are difficult to identify within an organization’s normal network
activity because the command and control (C2) server of this payload communicates over HTTPS
and the compromised Sharepoint accounts being used also communicate over HTTPS.

Variant Analysis

On execution, the observed sample (MD5: 13794d1d8e87c69119237256ef068043) tries to create a
child process named svchost.exe (using the svchost.exe file from the System32 folder) using the
CreateProcessW API function in suspended mode.

Next, for process hollowing of svchost.exe, the malware creates a section object and maps the
section using ZwMapViewOfSection. It uses the memset function to fill the mapped section with
zeroes, and then leverages memcpy to copy the unpacked DLL to that region. The malware then
resolves three lower level API functions by walking the ntdll.dll module.

The malware then constructs its entry shellcode into a newly mapped region in memory.

In an effort to manipulate and identify the mapped sections of the child process, it reads out the
PEB structure of the process using a call to ZwReadVirtualMemory.

The malware will then change protection permissions of the PE header of the child process to
enable write access to that page. It then uses a call to ZwWriteVirtualMemory to write 18 bytes of
buffer at offset 0x40 from the start of svchost.exe process executable in the target child process.
The malware then cleverly changes the region protection back to “read only” to avoid suspicion.

Again, it repeats the procedure of changing protections for the PE image of svchost.exe to write 8
bytes at an offset of 0x198 bytes from the start of the process executable.

The Stealthy Tweak

This buffer, when correctly placed at the offset, will represent the TLS directory offset for the
process because offset 0x198 is the location of the TLS directory in PE executable, and the next
DWORD represents the size of the directory (seen in Figure 2). Notice how the malware writes the
offset 0x40 for directory and the size 0x18 bytes in an effort to point to the buffer it had already
crafted at offset 0x40 with size 0x18 bytes.

Figure 2: TLS directory location and size

5/7

The TLS directory structure, when used to parse out that buffer of 0x18 bytes, points to an offset
containing a list of pointers representing AddressOfCallBacks (see Figure 3).

Figure 3: TLS directory structure with pointers

If we take a look at offset 0xe058, it points to the list of AddressOfCallBacks (Figure 4), and if we
go to the offset 0xe058 in memory we are pointed to the only callback address at offset 0xe068 -
which is in fact the actual entry point code (Figure 5).

Figure 4: Offset 0xe058

6/7

Figure 5: Offset 0xe068 in memory

Finally, the malware unmaps the view using ZwUnmapViewOfSection and calls ResumeThread to
begin malicious execution of its injected process (from the injected TLS callback address instead of
the regular AddressOfEntryPoint listed in the PE header). Hence, the execution will first land at the
injected TLS callback (see Figure 6).

Figure 6: Actual entry point

Impact

The leaked source code of Ursnif/Gozi-ISFB used the standard DllMain call entry point to initialize
the injected DLL image and execute its entry (see Figure 7).

Figure 7: DllMain call used in leaked Ursnif source code

https://github.com/gbrindisi/malware/blob/master/windows/gozi-isfb/AcDll/stubs.c

7/7

This newer variant shows that actors are not only modifying the malware to evade signatures, they
are also equipping them with stealthier techniques. Unaware debugging environments or detection
frameworks can potentially miss the actual hidden TLS callback entry point, allowing the malware
to perform its malicious activities under the hood.

Indicators of Compromise

Filename :YourMYOBSupply_Order.zip
 MD5 : f6ee68d03f3958785fce45a1b4f590b4

 SHA256 : 772bc1ae314dcea525789bc7dc5b41f2d4358b755ec221d783ca79b5555f22ce

Filename : YourMYOBSupply_Order.js
 MD5 : c9f18579a269b8c28684b827079be52b

 SHA256 : 9f7413a57595ffe33ca320df26231d30a521596ef47fb3e3ed54af1a95609132

Filename : download[1].aspx
 MD5 : 13794d1d8e87c69119237256ef068043

 SHA256 : e498b56833da8c0170ffba4b8bcd04f85b99f9c892e20712d6c8e3ff711fa66c

Previous Post
Next Post

