
1/11

Karan Sood November 10, 2017

CCleaner Stage 2: In-Depth Analysis of the Payload
crowdstrike.com/blog/in-depth-analysis-of-the-ccleaner-backdoor-stage-2-dropper-and-its-payload/

Overview

Recently, CrowdStrike® analyzed the backdoor embedded in the legitimate PC cleaning utility CCleaner version
5.33, as reported in the blog post Protecting the Software Supply Chain: Deep Insights into the CCleaner Backdoor.
This was an example of using an organization’s supply chain infrastructure as an infection vector, a trend that has
been on the rise in 2017 as discussed in another recent post, Software Supply Chain Attacks on the Rise,
Undermining Customer Trust. In addition, CrowdStrike Falcon® Intelligence™ reported on the backdoor previously
and discussed the possibility of the infrastructure being tied to a Chinese nexus.

Additionally, CrowdStrike Falcon Intelligence also discussed the technical details of the Stage 1 and Stage 2
backdoors with analysis showing that the original backdoor was the first stage in a multi-stage infection chain, meant
to download a dropper (Stage 2) that was only deployed to specific targets. Stage 2 drops either a 32-bit or 64-bit
binary, depending on the system architecture and is responsible for decrypting the actual payload embedded in a
registry key. This payload attains the C2 address via a variety of steps, and downloads an unknown binary which is
Stage 3.

This post provides an in-depth analysis of the Stage 2 dropper; the subsequent payload and the steps that are taken
to calculate the C2 IP address in order to download the next stage binary.

Technical Analysis

Stage 2 Dropper

The following information describes the Stage 2 dropper that pertains to the CCleaner embedded malware:

Size: 175616
 SHA256: DC9B5E8AA6EC86DB8AF0A7AA897CA61DB3E5F3D2E0942E319074DB1AACCFDC83

 Compiled: Tue, Sep 12 2017, 8:44:58 — 32 Bit DLL

https://www.crowdstrike.com/blog/in-depth-analysis-of-the-ccleaner-backdoor-stage-2-dropper-and-its-payload/
https://www.crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/
https://www.crowdstrike.com/blog/software-supply-chain-attacks-rise-undermining-customer-trust/

2/11

Once executed, the dropper calls IsWow64Process to determine if it’s being run in a 64-bit environment. Depending
on the result, it will drop a 32-bit or 64-bit binary on the system. The binary is embedded within the malware itself,
and it is zlib compressed. The dropper will zlib inflate itself and drop onto the victim computer. The dropper also
performs system checks by accessing the USER_SHARED_DATA of its own process and querying the
NtMajorVersion value to determine if the system is running Windows XP. The output determines the location of the
dropped binary.

If XP x86:
location is C:\Windows\System32\spool\prtprocs\\w32x86\\localspl.dll

If XP x64:
location is C:\Windows\System32\spool\x64\localspl.dll

If Windows 7 or higher:
location is C:\Windows\System32\TSMSISrv.dll

Dropped Binary Information

32-bit

Full path on victim machine (Windows 7 or higher): C:\Windows\System32\TSMSISrv.dll
 Full path on victim machine (Windows XP): C:\Windows\system32\spool\prtprocs\w32x86\localspl.dll

 Size: 173568
 SHA256: 07FB252D2E853A9B1B32F30EDE411F2EFBB9F01E4A7782DB5EACF3F55CF34902

 Compiled: Wed, Apr 22 2015, 18:20:39 — 32 Bit DLL
 Version: 2, 0, 4, 23

 File Description: VirtCDRDrv Module
 Internal Name: VirtCDRDrv

 Original Filename: VirtCDRDrv.dll
 Product Name: VirtCDRDrv Module

64-bit

Full path on victim machine (Windows 7 or higher): C:\Windows\System32\TSMSISrv.dll
 Full path on victim machine (Windows XP): C:\Windows\system32\spool\prtprocs\x64\localspl.dll

 Size: 81408
 SHA256: 128ACA58BE325174F0220BD7CA6030E4E206B4378796E82DA460055733BB6F4F

 Compiled: Tue, Apr 19 2011, 0:09:20 — 64 Bit DLL
 Version: 2.2.0.65

 File Description: Symantec Extended File Attributes
 Internal Name: SymEFA

 Original Filename: EFACIi64.dll
 Product Name: EFA

It is important to note that both TSMSiSrv.dll and localspl.dll are actually the names of legitimate Microsoft Windows
libraries. TSMSiSrv.dll’s official description is “Windows Installer Coordinator for Remote Desktop Session Host
Server” and it is loaded by the service “SessionEnv” that is the Remote Desktop Configuration service. According to
MSDN, localspl.dll is a “Local Print Provider” and handles all print jobs directed to printers that are managed from the
local server. This file is loaded by the service “Spooler” that is used for printing services.

After dropping the file, the dropper modifies its date/time stamp so that it matches that of
C:\Windows\System32\msvcrt.dll.

Next, the dropper adds the following registry keys. (Note: This is specific to a 32-bit environment. Certain value such
as file size will change if the malware is running in a 64-bit environment.)

3/11

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WbemPerf\001 → 2b 31 00 00. This is a hardcoded
value. This is the size in bytes of the next registry key, which contains an obfuscated PE.
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WbemPerf\002 → The dropper inserts a data blob
in this key. The following explains the structure of the blob:

Position Byte Size Content

0 4 Result of GetTickCount() * rand()

4 4 Result of GetTickCount() * rand()

8 0x3123 Data blob

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WbemPerf\003 → 21 00 00 00. Hardcoded value.
Size in bytes of the next registry key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WbemPerf\004 → Contains the following structure

Position Byte Size Content

0 4 Result of 0x5908EC83 ^ 0xF3289317 = 0xAA207F94

4 4 Result of 0x40518AB1 ^ 0xF3289317 = 0xB37919A6

8 4 Result of GetTickCount() * rand()

12 4 Result of GetTickCount() * rand()

16 4 Result of GetTickCount() * rand()

20 1 0x90

Leveraging Legitimate Services

The dropper leverages an existing Microsoft Windows service to load the malware. Once the registries have been
added, the dropper calls a function to modify and restart an existing service. If executing in Windows 7 or higher, it
calls OpenServiceA on the existing service, “SessionEnv” — a service for Remote Desktop Configuration — and
changes its configuration by calling ChangeServiceConfigA with the following parameters:

hService = Service Handle
ServiceType = SERVICE_KERNEL_DRIVER|SERVICE_FILE_SYSTEM_DRIVER|SERVICE_ADAPTER|

 SERVICE_RECOGNIZER_DRIVER|SERVICE_WIN32_OWN_PROCESS|SERVICE_WIN32_SHARE_PROCESS|
SERVICE_INTERACTIVE_PROCESS|FFFFFEC0
StartType = SERVICE_AUTO_START
ErrorControl = SERVICE_NO_CHANGE
BinaryPathName = NULL
LoadOrderGroup = NULL
pTagId = NULL
pDependencies = NULL
ServiceStartName = NULL
Password = NULL
DisplayName = NULL

This ensures that the service will auto-start upon system reboot (i.e., a persistence mechanism). The dropper then
restarts the service, which invokes the legitimate windows library “SessEnv.dll” located in C:\Windows\system32. It is
important to note that SessEnv.dll is loaded in the process svchost.exe. Analysis shows that it attempts to load the
legitimate library %SystemRoot%\system32\TSMSISrv.dll by calling LoadLibrary on it to call the functions
StartComponent, StopComponent, OnSessionChange, and Refresh as shown in the image below:

4/11

However, at this point in the execution, TSMSiSrv.dll is the name of the malicious binary created by the dropper;
therefore, restarting the SessionEnv service loads the malware instead. Similarly, if the Windows version is XP, the
malware takes the same steps on the service “Spooler.” Upon restart, the service invokes
C:\Windows\system32\spoolsv.exe, which then attempts to load the Windows library localspl.dll that is now the
actual malware.

File Modifications

As mentioned earlier, Stage 2 drops either a 32-bit or 64-bit binary on the victim system. Similar to the Stage 1
dropper, which was a modified version of the legitimate utility CCleaner, the 32-bit and 64-bit binaries are modified
versions of VirtCDRDrv.dll (a module developed by Corel, Inc.) and EFACLi64.dll (a module developed by
Symantec), respectively. However, it should be noted that unlike the trojanized version of CCleaner, these files are
NOT signed.

5/11

VirtCDRDrv.dll 32-bit

Analysis shows that the __security_init_cookie function of the file has been modified. Normally this function is used
as mitigation against buffer overflows; however, in this case, a few extra instructions have been added to the end of
the function to initialize a global variable. The image below displays the difference between the clean VirtCDRDrv.dll
(labeled primary on the left), and the trojanized one on the right.

The primary difference is the set of instructions at the end of the __security_init_cookie function. Specifically, these
instructions insert a memory address in a global pointer; the memory address is the image base address + 0x1C22E,
inserted in the global variable located at image base address + 0x2ACA4 as seen below.

6/11

Once the __security_init_cookie function is done, the __DLLMainCRTStartup function is called, which then
makes the call to the function located at the memory address that was inserted into the global variable. This function
is responsible for the core functionality of the dropped file. It should be noted that the malicious function is called
prior to the entry point of the binary being reached.

EFACIi64.dll 64-bit

The 32-bit binary and the 64-bit dropped file have been modified in the same manner. As seen in the image below,
the only difference in the __security_init_cookie function between the legitimate utility (on the left) and the
trojanized version is a jmp instruction at the end of the function.

This jmp instruction leads to the following instructions:

7/11

This inserts the memory address located at image base address + 0x12891 in the global variable located at image
base address +0x13CC0. Similar to the 32-bit binary, the malicious function at image base address + 0x12891 is
called before the entry point is reached and is responsible for the core functionality of the malware.

Dropped Binary

Once loaded by the service, the binary reads the registries created earlier by the dropper. It allocates a block of
memory and reads the data blob from HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WbemPerf\002. In
addition, it also reads the first 2 DWORDS from HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\WbemPerf\002, XORs them with the value 0x0xF3289317 and prepends them to the data blob.
Together, this structure forms a shellcode appended by obfuscated data.

Shellcode

The shellcode utilizes the following scheme, reproduced in Python, to deobfuscate the embedded data:

indata = [0xb4, 0x28, 0x00, 0x00, 0xd8, 0x41, 0x00, 0x00, 0x5f, 0xe1, 0x60, 0x8b, 0x7d, 0x2a] #snippet of
obfuscated data

 outdata = []
 key = 0x5d4fc941

for i in range(0, len(indata)):
 keymod = ((key * 0x343FD) & 0xffffffff) + 0x269EC3

 key = keymod
 nkey = (keymod >> 0x10) & 0xff

 outdata.append(indata[i+8] ^ nkey)

 It should be noted that the above is a modified version of the Windows function rand(). The decoded data is a set of
instructions to unpack yet another shellcode and a DLL in memory. The resultant DLL is the main payload of Stage 2
and, similar to Stage 1, is missing the IMAGE_DOS_HEADER as a possible means to circumvent AV solutions that
search for the MZ header in memory. The shellcode that is decoded alongside the DLL is responsible for resolving
the needed APIs and calling the OEP (Original Entry Point) of the DLL in memory.

0000000: 0000 0000 0000 0000 0000 0000 0000 0000
 0000010: 0000 0000 0000 0000 0000 0000 0000 0000
 0000020: 0000 0000 0000 0000 0000 0000 0000 0000
 0000030: 0000 0000 0000 0000 0000 0000 d000 0000
 0000040: 0000 0000 0000 0000 0000 0000 0000 0000
 0000050: 0000 0000 0000 0000 0000 0000 0000 0000
 0000060: 0000 0000 0000 0000 0000 0000 0000 0000
 0000070: 0000 0000 0000 0000 0000 0000 0000 0000
 0000080: 0000 0000 0000 0000 0000 0000 0000 0000
 0000090: 0000 0000 0000 0000 0000 0000 0000 0000
 00000a0: 0000 0000 0000 0000 0000 0000 0000 0000
 00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
 00000c0: 0000 0000 0000 0000 0000 0000 0000 0000
 00000d0: 5045 0000 4c01 0400 f09b b759 0000 0000 PE..L......Y....
 00000e0: 0000 0000 e000 0e21 0b01 0600 0026 0000!.....&..
 00000f0: 0016 0000 0000 0000 0010 0000 0010 0000
 0000100: 0040 0000 0000 0010 0010 0000 0002 0000 .@..............
 0000110: 0400 0000 0000 0000 0400 0000 0000 0000
 0000120: 0070 0000 0004 0000 0000 0000 0200 0000 .p..............
 0000130: 0000 1000 0010 0000 0000 1000 0010 0000
 0000140: 0000 0000 1000 0000 0000 0000 0000 0000
 0000150: 5c41 0000 b400 0000 0000 0000 0000 0000 \A..............
 0000160: 0000 0000 0000 0000 0000 0000 0000 0000

8/11

0000170: 0060 0000 2002 0000 0000 0000 0000 0000 .`..
0000180: 0000 0000 0000 0000 0000 0000 0000 0000
0000190: 0000 0000 0000 0000 0000 0000 0000 0000
00001a0: 0000 0000 0000 0000 0040 0000 5c01 0000@..\...
00001b0: 0000 0000 0000 0000 0000 0000 0000 0000
00001c0: 0000 0000 0000 0000 2e74 6578 7400 0000text…
00001d0: 9025 0000 0010 0000 0026 0000 0004 0000 .%.......&......
00001e0: 0000 0000 0000 0000 0000 0000 2000 0060`
00001f0: 2e72 6461 7461 0000 0608 0000 0040 0000 .rdata.......@..
0000200: 000a 0000 002a 0000 0000 0000 0000 0000*..........
0000210: 0000 0000 4000 0040 2e64 6174 6100 0000@..@.data…
0000220: 4406 0000 0050 0000 0006 0000 0034 0000 D....P.......4..
0000230: 0000 0000 0000 0000 0000 0000 4000 00c0@...
0000240: 2e72 656c 6f63 0000 c202 0000 0060 0000 .reloc.......`..
0000250: 0004 0000 003a 0000 0000 0000 0000 0000:..........

Payload

Upon being loaded in memory, the payload creates a thread that performs the core functionality of Stage 2. It creates
an event named Global\KsecDDE and only commences execution if the event creation is successful. Analysis shows
that there are multiple encoded URLs embedded within the payload, and they are deobfuscated using the scheme
reproduced in Python below:

indata = [0xec, 0x87, 0x10, 0x23, 0xf5, 0x6d, 0xf7, 0x9a, 0x35, 0x1e, 0x82, 0xd6, 0xbc, 0x5f,
0x94] #indata = [0xe3, 0x96, 0x10, 0x7d, 0xe7,0x33, 0xb7, 0xd7, 0x3e, 0x12, 0xd8, 0xd0, 0xac,
0x49, 0xba, 0x13, 0xd0, 0x40, 0xc5, 0xd2, 0x68, 0xf6, 0x37, 0x3a, 0x1d, 0xbb, 0xd6, 0xad, 0x97,
0xcf, 0x88, 0xdc, 0xa3, 0x3a, 0x4d, 0x2e, 0xdb, 0x8d, 0xe3, 0xf8, 0xf4, 0x20, 0x38, 0x7c, 0xc3,
0xe5, 0x69, 0xfb, 0x40, 0x40, 0xb5, 0x5e, 0x7a, 0xa5, 0x40, 0x7d, 0x4a, 0x6e, 0x85, 0x76, 0x9a,
0xf0]

#indata = [0xe3, 0x96, 0x10, 0x7d, 0xe7, 0x33, 0xb7, 0xd7, 0x3c, 0x15, 0x82, 0xcb, 0xbc, 0x4a,
0xe6, 0x13, 0xd7, 0x3, 0x9d, 0xce, 0x7f, 0xf3, 0x35, 0x2b, 0x10, 0xf7, 0xd4, 0xbe, 0x9e, 0xcf,
0x8c, 0x9d, 0xf0, 0x3c, 0x4d, 0x6b, 0x92, 0x9b, 0xe1, 0xfa, 0xa8, 0x1b, 0x22, 0x7a, 0x9a, 0xe7,
0x72, 0xE5, 0x51, 0x43, 0xfd, 0x0c, 0x2c, 0x94, 0x72]

keyinit = 0xd35125
 outdata = []

for i in range(0, len(indata)-1):
 keymod = (0x17879ef * keyinit) & 0xffffffff

 keybyte = keymod & 0xff
 keyinit = keymod >> 8

 outdata.append(indata[i] ^ keybyte)
 print ''.join(map(chr, outdata))

 Following are the decoded URLs:

get.adoble[.]net
https://en.search.wordpress[.]com/?src=organic&q=keepost
https://github[.]com/search?q=joinlur&type=Use�s&utf8=%E2%9C%93

Before connecting to any of the above, the payload first attempts to connect to https://www.microsoft.com. If that
fails, the payload then attempts to connect to http://update.microsoft.com. This is to perform a connectivity test to
ensure that the victim computer is connected to the internet. The payload also ensures that the received data
contains the string “Microsoft” or “Internet Explorer”; apart from a connectivity test, this could also be seen as an anti-

https://www.microsoft.com/
http://update.microsoft.com/

9/11

sandbox technique. If the test passes, a global variable Connectivity_Flag is set to 1, after which the malware
attempts to connect to either the WordPress or the Github URL. At the time of analysis, the Github URL was not
available.

The following is the data returned by the WordPress URL:

If the connection is a success, the malware parses the retrieved data for the string “ptoken=”. As the above image
shows, the ptoken value is “000000006B48622B0000000000000000&”. The malware converts the string value to a
long integer value in base 16 by calling strtoul. The result is the DWORD 0x6B48622B, which is then XORd with the
value 0x31415926 (value of Pi) to get the value 0x5A093B0D, which translates to the IP address 13.59.9.90.

If the payload fails to connect to both the Github and WordPress URLs, it will attempt to connect to get.adoble[.]com
to calculate an IP address. It gets the hostent structure by calling gethostbyname on the domain, which then gives it
a NULL terminated list of IP addresses associated with the domain. The first 2 IP addresses will then be used to
calculate the IP address using the algorithm reproduced in Python below:

import struct
import socket a1 = 0x659C2A88 # Addresses are returned in network byte order
a2 = 0x6B442ABF # These are just for example purposes def mod_record(rr):
 rr1 = (((rr & 0xff000000) / 0x1000000) ^ (rr & 0xff)) * 0x1000000
 rr2 = (((rr & 0xff0000) / 0x10000) ^ ((rr & 0xff00) / 0x100)) * 0x10000
 rr3 = rr & 0xff00
 rr4 = rr & 0xff
 return (rr1 | rr2 | rr3 | rr4) newa1 = mod_record(a1)
newa2 = mod_record(a2)
newIP = (newa2 & 0xffff0000) | (newa1 >> 0x10) # newIP = 0xD46EEDB6
print socket.inet_ntoa(struct.pack("<L", newIP)) # Output is 182.237.110.212

Next, the malware calculates a checksum of the victim computer name using the following algorithm:

import struct compname = "WIN-CHB5K9B5QOM" #example of computer name
checksum = 0
hss = compname.encode('hex')
indata = []
i = 0
def swap(d):
 return struct.unpack("<I", struct.pack(">I", d))[0]
while 1:
 idata = hss[i:i+8]
 if len(idata) < 8:

10/11

 numz = 8 - len(idata)
 strz = '0' * numz
 idata = idata + strz
 indata.append(idata)
 i += 8
 if i >= len(hss):
 break
for i in indata:
 i_ = int(i, 16)
 i_ = swap(i_)
 i_ = (i_ * 0x5E1F1AE) & 0xffffffff
 checksum = (checksum + i_) & 0xffffffff print hex(checksum)

This checksum value is then added to the volume serial number of the victim computer. The LOWORD of the
resultant DWORD is then added to the value 0x2DC6C0 to get a unique value. Next, the malware creates a socket
and sets up the following packet to send to the newly calculated IP via a DNS query:

Type Value

Transaction ID LOWORD of the unique value calculated earlier using the checksum and volume serial number.

Flags 0x100. Denotes that the message is a query.

Questions 0x1. Number of queries.

Query ds.download.windowsupdate.com

Type 0x1. Type A (Host Address)

Class 0x0001. IN (Internet)

Following is the actual UDP stream seen during analysis:

0000000: d47a 0100 0001 0000 0000 0000 0264 7308 .z...........ds.
0000010: 646f 776e 6c6f 6164 0d77 696e 646f 7773 download.windows
0000020: 7570 6461 7465 0363 6f6d 0000 0100 0100 update.com.....

At the time of analysis, the IP address was not available; however, analysis shows that the malware performs the
following checks on the received response from the IP to ensure its authenticity.

Transaction ID is 0xD47A (same as the query)
Total Answer RRs field is 4. Number of entries in the resource record list.
The 38th word is the value 0x06A4
The 48th word is the value 0x0A8C

Stage 3

The malware takes values from the response stream at various positions, and calculates the Stage 3 C2 in the
following manner:

First octet → 59th byte ^ 62nd byte
Second octet → 76th byte ^ 78th byte
Third octet → 93rd byte ^ 94th byte
Fourth octet → 110th byte

11/11

Once the 3rd stage C2 has been calculated, the malware calls out to it expecting to receive an obfuscated blob. The
first DWORD of the blob is the CRC32 hash of the decoded blob. The blob is decoded using the same scheme that
is used to decode the URLs, and the CRC32 hash of the decoded data is compared with the first DWORD of the
received data to ensure its integrity. Analysis shows that the data is supposed to be yet another DLL, which is then
loaded in memory and executed.

Recommendations

CrowdStrike will notify you of any additional activity through the Falcon Intelligence™ detections. CrowdStrike
recommends blocking the IP and URLs mentioned in this blog post and the previous one to prevent any
communication to the server. In addition, CrowdStrike recommends only using the latest version of the Avast
CCleaner software to ensure that the infection does not occur.

Learn more about the CrowdStrike Falcon Intelligence offerings, and read the white paper, “Threat Intelligence,
Cybersecurity’s Best Kept Secret.”

https://www.crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/
https://www.crowdstrike.com/products/falcon-intelligence/
https://www.crowdstrike.com/resources/white-papers/threat-intelligence-cybersecuritys-best-kept-secret/

