The big difference with Bad Rabbit

October 27, 2017

Bad Rabbit is the new bunny on the ransomware scene. While the security community has
concentrated mainly on the similarities between Bad Rabbit and EternalPetya, there’s one
notable difference which has not yet gotten too much attention. The difference is that Bad
Rabbit’s disk encryption works.

EternalPetya re-used the custom disk encryption method from the original Petya. Although it
didn’t implement the actual ECDH key delivery mechanism, it installed the Petya boot loader,
and effectively just rendered the machine useless.

Petya’s disk encryption had one specific weakness: it only encrypted some parts of the key
file system structures, not the whole disk. This design obviously lead to speculations about
whether it is possible to recover the disk using a known clear-text attack, and in fact
researchers have made significant progress in investigating this recovery technique.

At least on the surface, things look quite different with Bad Rabbit. Instead of using a custom
encryption mechanism, it follows the current trend in the ransomware community of
leveraging known legitimate encryption tools.

Bad Rabbit uses DiskCryptor, a full disk partition encryption software for locking the user
disk. The ransomware ships with an unmodified DiskCryptor driver (borrowed from ReactOS)
and implements relevant parts of the DiskCryptor user-mode code for communicating with

1/5

https://labsblog.f-secure.com/2017/10/27/the-big-difference-with-bad-rabbit/
https://www.crowdstrike.com/blog/decrypting-notpetya-tools-for-recovering-your-mft-after-an-attack/
https://diskcryptor.net/wiki/Main_Page

the driver. The ReactOS driver is a signed, valid driver, so it gets loaded by the Windows
cleanly with the elevated privileges required by Bad Rabbit’s fake Flash installer dropper.

Key generation

Bad Rabbit uses Windows’ crypto API to generate random key data for the disk encryption.
This key data is converted to a human-readable encryption key, which is a 32-bytes long
ASCII encoded string, presenting around 165 bits of entropy for the stream cipher AES used
by DiskCryptor.

The following screenshot represents the random disk encryption key as it is being generated
by the malware:

® @ @ win7x64 Virtual Machine

=® > No -

* QllyDbg - dispci.exe - [CPU - main thread, module dispci]
[€] File View Debug Plugins Optmns Window Help

B[] »[N] ui+] ¥ E[M|T[w/n|c[/[k[B|R[. 5]
v L[] s -al

—
Arg5 = DARAAAAR
Argd = AABRAPAR ER% 0BGDORBL

Argd = BOPAEROAS

EBH BB28F584 UNICODE “schtasks ~Delete F ~IN rhaegal"

i Arg?
1 & capezzon e firgl = BA220868
o EgcinngFFF i “1“931 -80F?2020 ESI B@28F45C ASCII "vjhutnNeOZEe2Lu686t6 jUZRoIu1FBaB"
- B

G s EDI paizedon

JE SHORT dispci.@BF953DF EIP dispci.BBFI5IFR

- 12
. BB8D EBFEFFFF HOU ECK DllORD PTR SS:[EBP-1181 ES BA2B 32hit AB{FFFFFFFF»
o 68 B4018@!

PUSH EC CS BA23 32hit B{FFFFFFFF}

I Fi1s ocsernae CALL DYORD PTR DS: [<KHERNEL3Z.Uirtualloq kernel32.Uirtuallock G) S Wi
> 57

FFFF!
- BBED ESFEFFFF HOU EDl DllORD PTIR 8S:[EBP-1181 3 gg gggg gggﬁ ;E;ggg;%é;ffo
TEST E

. 85FF i,
16064 89916008 JE dispei HOFISAE? stEre
53 PUSH EB L
. 56 (NO,NB., E. BE. NS . PE.GE, LE>
: $DBS FRFEFFFF|LBA ESI.DUORD PTR S§:[EBP-1081
. E8 ASEEFFFF |CALL dispei-@AFY12A8
. 68 SAPAARPA |FUSH 8@ WideBufSize = 88 C128.)
- 8D77 Ba LEA ESI,DWORD PTR DS:[EDI+41
PUSH ESI WideCharBuf
. 68 94p10080 (PUSH 104 StringSize = 184 ¢268.)
: 9095 FOFLFFFF |LEA EDX DUORD FTR §5: [EDP-L881 . o
- tringToMap
iy PUSH B Options = B SI? empty EEP0®ED I
. 68 E9FDBOBA |PUSH BFDEY CodePage = FDEY -
: P15 P436rABp|CALL DWORD FTR DS:[<GKERNELIZ-MultiByte BRI EERE EEeepnognn

LEA _EDX.DWORD PTR DS: [EAX+21

BA311D8H

F9 B6 S5F|45 @6 49 A@ i BA28F584 |UNICODE “schtasks ~Delete ~F /TN
MEI a1 B8 @@ bo BAPRABAA
1A 6P 0P |A0 60 @A A0 | . opo g 808120000
an BB aa | a2 BB BB a8 H EEBBEIE
68 p@a BB BB 8@ 68 a EEBBEBE
6@ 6@ 0P BA 0P 08 Al BAPRABAA
B0 6@ B8 BA 08 98 @i 76626A76

3 08

g EBBBEBBI
0028F484 EIBIBB
@E2oLAg 3

| | Paused

= CHERCRENE 3T SELLL

Running dispci.exe under user-mode debugger

Along with the random key, Bad Rabbit packages some other information like the victim
computer name and domain, then forms the so-called installation key that will be presented
after the reboot. In Petya, this code was relatively short code that was protected by the public
EC key. In Bad Rabbit, it is a much longer blob of data that is protected by the RSA public
key shipped with the malware installer.

2/5

https://en.wikipedia.org/wiki/Password_strength

After packaging the installation key, the random key data is just discarded. The installation
key is written to the disk so that the Bad Rabbit boot loader can present it on the boot
screen:

© S win7x64 Virtual Machine

o® »NIB - &

Dops?! Your files have been encrypted.

If you see this text, your files are wo longer accessible.

You might have been looking for a way to recover your files.

Don’t waste your time. No one will be able to recover them without our
decryption service.

We guarantee that you can recover all your files safely. All you
need to do is submit the payment and get the decryption password.

Uisit our web service at caforssztxgqzfZnm.onion
Your personal installation key#l:

ZGocp+tUabTEsZ2xqU34U5+HIIndkDZ + jxBFApMCatsgDupmumZELZkzV1 jclizPEX
Ynz4NOWIDk 14Q [pDtutun(TeVOiCOKAid@IBpYOPSTTzZ2f 82 WJ IWrOB1LAJUNK
Uag9k0gZgkvkIouBulWSkt +0ko3BodoUy SHxwrwlUAGtAKZ2BU+JLg YCHwdwG?9
mEZ5ugLAKvKZGUUAATEWyY DTy 6 jdXv0Z50mdyHgXOX? Tt 1yhLK?Bzcq@Jg /qYrPSB
TRGz5XHkly3ob+gXraTthIC+kdc-5ywH1ASN1E1AeyOb3hRf oUyaTRw67ckd ~Hyb
JRFHepXHF8tbINt3adYUf ZQueMa? iM1BNA==

If you have already got the password, please enter it below.
Password#tl: vjbutnNeDZEeZLwbB616 jUZR03wlFOad
Run DECRYPT app at your desktop after system boot

Bad Rabbit’s boot loader

The user is expected to grab the installation key from the boot screen, paste it to the
attacker’s TOR site, which then will use its own private RSA key to extract the 32-bytes
password (typed in the screenshot above).

After the boot screen

Because the disk encryption software used is pretty much similar to any other disk
encryption used by businesses around the globe, like TrueCrypt or Microsoft BitLocker, the
disk is in fact *still* encrypted, although it has been mounted by the DiskCryptor driver
transparently.

So if the user now reboots the machine, the same password prompt will be presented as
long as the disk decryption routine is initiated. The DECRYPT tool referenced by the boot
loader is actually just a shortcut to the dispci.exe tool dropped by the malware. This tool
borrows code from legit DiskCryptor sources for implementing the relevant parts of the code
for communicating with the disk encryption driver.

3/5

https://en.wikipedia.org/wiki/BitLocker

Even though all this is quite apparent by just looking at the code, we wanted to demonstrate
the encryption scheme by catching the password inline, at the time it was generated by Bad
Rabbit. When this password is used for unlocking the machine, it is possible to install the real
DiskCryptor GUI tool and initiate the disk decryption process.

Win7x64 Virtual Machine
mo - %

1| dbg - Notepad
File Edit Format View Help

encoded random data:

76 6A 62 76 74 6E 4E 65 4F 5A 45 65 32 4C 77 36 38
6D 78 6D 00

-

BvENNeOZEe2LweB6T6]VZR03w | FOA0NEFN Y1)}

+ used to what 7?7

xm

This buffer is encrypted:

0071FA50
0071FAB0D
0071FA70
0071FABD

67 29 FA D5 09 04 00 Q0 8B FF FF FF 76 §
74 6E 4E 65 4F 5A 45 65 32 4C 77 36 38 3
6A 56 5A 52 6F 33 77 BC 46 30 61 30 00 §
00 52 00 4B 00 47 00 52 00 4F 00 55 00 §

DiskCryptor 11846118

File Volumes Tools Help

E=EEE

Homepage

| Disk Drives

| size |

Label |

Type

Status

Mount

=1 QEMU HARDDISK
= Yolumel
= C

C 39.9GB

=1 QEMU QEMU DVD-ROM
: 654 MEB

36 74 36 6A 56 5A S

100ME System Reserved

CDROM

[C:] - \Device\HarddiskVolume2

Current Password

Password: |VJhvaaDZEaszsSﬁtﬁNZRnSw\Fuan

Status: |Correct
| ghowF
[Use Keyfiles
Mount Options

Mot Path: [
[Sek Mounk Point

0071FA90
0071FAAD

00 50 00 41 00 41 00 56 00 4F 00 2D 00

00 00 DO 00 00 00 0O 00 00 00 00 00 00 00 00 00 .

NTFS
NTFS

CDFs

mounted

0071FABO

00 00 00 00 00 00 0O 00 QO 00 00 OO 00 00 00 00 .

Encrypt
Decrypt

Mount All
Unmount Al

0071FACO
0071FADO
0071FAED
0071FAFO
0071FB00

00 00 00 00 00 00 0O Q0 00 00 00 00 00 00 00 00 ...
00 00 00 00 QO 00 Q0 Q0 00 00 00 00 00 Q0 Q0 00 ...
00 00 00 00 Q0 00 00 QO 00 00 00 00 00 00 00 00 ...
00 00 00 00 Q0 00 0O Q0 00 00 00 00 00 00 00 00 ...
00 00 00 00 Q0 00 Q0 00 00 00 00 00 00 00 00 00

7 \Wolume{30f53ef5-208b-1127 043=-BO6e516e695 3}
\Device'HarddiskVolume2

Symbolic Link
Device

Cipher AFS
Encryption mode XTS
Pkes5.2 prf HMAC-SHA-512

Info

Using DiskCryptor to verify encrypted volume

303PM | |

- oy [ms
= IR ey | |

DiskCryptor identifies the disk presented by the virtual machine (QEMU HARDDISK in the
above screenshot) as an AES-encrypted volume, and accepts the random password.

It works now

We have speculated before that the flawed disk encryption in EternalPetya was due to
problems in the malware development process. Or it may be that they just didn’t care.
People will pay anyways, right?

Whatever was the reason, they have now fixed this issue (if they are the same group of
malware developers, which seems to be the consensus in the research community).

At least the developers of Bad Rabbit have noted the recent developments in research on

Petya’s disk encryption weaknesses and decided to use something different.

Recovery considerations

4/5

As we have demonstrated in this blog post, Bad Rabbit seems to use a sound principle in its
disk encryption, a full disk encryption scheme familiar to all businesses.

We don’t yet have the full details of this scheme, so there might be bugs in the
implementation. But at least its design enables a strong mechanism for locking the machine
until the correct password is really typed to the boot screen.

Disclaimer

For screenshots used in this blog post, we DID NOT go to the attacker TOR site and pay for
the recovery key.

The procedures presented in this text DO NOT mean there’s an easy way to unlock the disk
protected by the Bad Rabbit. We just present them as proof of the encryption scheme.
Catching the password inline to the encryption process is not practical in a general sense,
because it requires software that is aware of the exact password generation mechanism
prior to the infection. It is used here just for a relatively easily reproducible proof-of-
concept.

Categories

Threats & Research

5/5

https://blog.f-secure.com/category/threats-research/

