
1/15

October 16, 2017

Leviathan: Espionage actor spearphishes maritime and defense targets
proofpoint.com/us/threat-insight/post/leviathan-espionage-actor-spearphishes-maritime-and-defense-targets

https://www.proofpoint.com/us/threat-insight/post/leviathan-espionage-actor-spearphishes-maritime-and-defense-targets


2/15

Blog
Threat Insight
Leviathan: Espionage actor spearphishes maritime and defense targets

https://www.proofpoint.com/us
https://www.proofpoint.com/us/blog
https://www.proofpoint.com/us/blog/threat-insight


3/15

October 16, 2017 Axel F, Pierre T

Overview

Proofpoint researchers are tracking an espionage actor targeting organizations and high-value targets in defense
and government. Active since at least 2014, this actor has long-standing interest in maritime industries, naval
defense contractors, and associated research institutions in the United States and Western Europe.

Key takeaways from this research include:

Industry targeting: The actor targets defense contractors, universities (particularly those with military research
ties), legal organizations [3] and government agencies [3]. The actor has particular interest in naval industries
including shipbuilding and related research
Geographical targeting: Targeting includes United States, Western Europe, and South China Sea
Tools: Custom JavaScript malware known as “Orz” and “NanHaiShu”, Cobalt Strike, the SeDll JavaScript
loader, and MockDll dll loader
Delivery: Emailed attachments and URLs, often employing a fraudulent lookalike domain and stolen branding
Exploitation: Microsoft Excel and Word documents with macros (sometimes password-protected), very recent
vulnerabilities such as CVE-2017-0199 and CVE-2017-8759, and malicious Microsoft Publisher files
Installation: JavaScript, JavaScript Scriptlets in XML, HTA, PowerShell, WMI, regsvr32, Squiblydoo
Lateral Movement: The actor sometimes utilizes access at one compromised organization to attack the next.
For example, compromised email accounts at one organization were used to send the next wave of malicious
attachments to potential victims in the same industry. Similarly the actor attempts to compromise servers within
victim organizations and use them for command and control (C&C) for their malware.

This blog traces key activities connected to this actor and examines a number of their tools and techniques.
Campaigns and details are presented in reverse chronological order to highlight the group’s most recent activities.

Delivery and Exploitation

September 2017

On September 15 and 19, 2017, Proofpoint detected and blocked spearphishing emails from this group targeting a
US shipbuilding company and a US university research center with military ties. Example emails used the subject
“Apply for internship position” and contained an attachment “resume.rtf”. Another attachment,
“ARLUAS_FieldLog_2017-08-21.doc” contained a “Torpedo recovery experiment” lure. The attachments exploited
CVE-2017-8759 which was discovered and documented only five days prior to the campaign [1].

https://www.proofpoint.com/us/threat-reference/malware
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0199
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-8759
https://www.proofpoint.com/us/threat-reference/spear-phishing


4/15

Figure 1: Example attachment resume.rtf from September 2017 campaign

August 2017

Between August 2 and 4, the actor sent targeted spearphishing emails containing malicious URLs linking to
documents to multiple defense contractors. Some of this activity was documented and observed by a fellow
researcher [2]. Many of the documents, C&C domains, and payload domains abused the brand of a major provider of
ships, submarines, and other vessels with military applications. Some of the documents exploited CVE-2017-0199 to
deliver the payload.

Figure 2: One of the documents involved in the campaign used Microsoft licensing lures purporting to be from a well-
known shipbuilder (sha256: 6f6ee01e9dc2d8c4c260ef4131fe88dc152e53ee8afd3e66e92d4e1bf5fd2e92).

Other documents were Microsoft Publisher files that relied on social engineering. The potential victims were lured
into starting an embedded PowerPoint presentation, moving the mouse to trigger execution of an embedded
JavaScript [5], and then pressing “Enable” in a warning dialog to cause the payload download. The Publisher files
were poorly crafted, relied on multiple user interactions, and contained multiple grammatical and typographic errors.



5/15

Figure 3: Publisher document delivered via a link in email is in Italian, and is a simple reuse of a student’swork.

February 2015

From February to October of 2015, our colleagues at F-Secure and McAfee reported on campaigns [3][4] by this
actor targeting South China Sea interests. During this time, the group utilized Microsoft Excel and Word documents
with macros to target the Philippines Department of Justice, APEC organizers, and an international law firm.
Targeting of these companies is different from that which we typically observe for this actor; however it still centers
around marine and naval issues as related to South China sea politics.

Figure 4: Example attachment “DOJ Staff bonus  January 13, 2015.xls”. Similar to this document attachment, most of
the attachments in this campaign did not contain meaningful content

November 2014

The period between November 2014 and January 2015 marked one of the earlier instances in which Proofpoint
observed persistent exploitation attempts by this actor. The actor generally emailed Microsoft Excel documents with
malicious macros to US universities with military interests, most frequently related to the Navy. The actor also
occasionally used macro-laden Microsoft Word documents to target other US research and development
organizations with military and intelligence ties during this period.

Emails were often very simple with a greeting and an attachment. On other occasions, it appears that the attackers
used highly topical lures based on current events or legitimate documents stolen from previous victims. Lure topics
included symposia, the Navy, IT, and relevant research.



6/15

Figure 5: Example Excel attachment “2014 Accomplishments Input Template.xls”

Installation

The actor continues to:

Innovate and modify the code that accomplishes the installation, while the backdoor code remains more static
Use scripting languages such as JavaScript, JavaScript Scriptlets, VBScript, and XML
Use simple obfuscation such as base64, gzip compression, and insertion of garbage characters
Split functionality of the backdoor & code that establishes persistence for the backdoor into separate files and
scripts

Example 1: Resume.rtf

The “resume.rtf” file from the September 19, 2017 attack retrieves the malicious SOAP WSDL definition named
“readme.txt “ using an anonymous FTP logon to the attacker’s server.

Figure 6: SOAP WSDL definition (“readme.txt “)

This definition in turn downloads a VBScript favicon.ico file, which then creates and runs two JavaScript files in the
%TMP% directory:



7/15

Figure 7: Code snipped showing VBScript dropping 2 JavaScript files

The job of the smaller of the two JavaScripts is to establish a system autostart mechanism. It accomplishes this by
deobfuscating another script, link.js, into %TMP%. Link.js in turn creates a shortcut  file "Java(TM) Platform SE Auto
Updater.lnk" in the "Startup" special folder pointing to the main backdoor JavaScript.

Figure 8: Code for establishing persistence after reboot (autostart mechanism)

The job of the larger of the two JavaScripts is to download and execute the Cobalt Strike payload. It accomplishes
this by writing more code to rWug5n0PHUFjDFyb8k.js in the temporary directory, which then runs a PowerShell
command (obfuscated using garbage characters, base64 encoding, and Gzip compression). The PowerShell is a
default Cobalt Strike downloader.

Figure 9: PowerShell code downloading Cobalt Strike

Example 2: Malicious Microsoft Publisher document

The malicious script executed by the Microsoft Publisher file downloads and runs yet another JavaScript file, 0.js,
hosted on the attacker-controlled server:



8/15

Figure 10: Malicious script executed by the Microsoft Publisher file (sha256:
305f331bfb1e97028f8c92cbcb1dff2741dcddacc76843e65f9b1ec5a66f52bc)

Similar to the previous example (resume.rtf), the 0.js handles the system autostart mechanism via a shortcut file
"office 365.lnk" in the "Startup" special folder. However, the shortcut abuses the “Squiblydoo” technique [6].
Moreover, the backdoor is not run directly but via an intermediary SeDll (see below).

0.js also downloads two additional files from the C&C server (green.ddd and green.tmp) The first of these files,
green.ddd, is an executable file internally named “SEDll_Win32.dll”. This is a known backdoor used by this actor
since 2014 for the same purpose: decrypting and executing the final JavaScript backdoor “Orz”.

Tools

NanHaiShu

We have observed variants of this JavaScript backdoor used in various campaigns, including those publically
reported. The actor continues to improve and refine the malware by, for example, wrapping it inside an HTA wrapper.
Several good descriptions are available  in analyses from fellow researchers [3][4]. Basic functionality includes:

Information gathering (computer name, user name, serial number, proxy server)
Downloading from URL
Executing other JavaScript
Registry, system, process, directory, file operations
SafeIE (change IE settings to reduce warnings about about malware activity)



9/15

Figure 11: Screenshot from 2015 version of the malware dropped by “DOJ Staff bonus January 13, 2015.xls”

Orz

We observed this backdoor in an August 2017 campaign dropped by the Microsoft Publisher files, as well as much
earlier in 2014. We named it due to a variable name “orz”, which is changed to “core” in the more recent version. The
actor consistently tweaks and improves this backdoor as well. The backdoor is a fairly involved script malware. Its
functionality includes:

Information gathering (IE version, OS version, OS 64-bit/32-bit, etc)
Overwriting registry settings to reduce malware visibility on system
Download file
Upload file
Execute a command with cscript
Execute JavaScript
Execute shell command
Execute a dll (via an embedded ‘MockDll')
Get proxy info
Get process list
Terminate process
Get drive info
GET request to a URL
POST request to a URL



10/15

Figure 12: Snippet of the Orz backdoor code delivered by the the Microsoft Publisher document. The URL domain is
a fraudulent lookalike domain.

There is an extensive configuration section at the top of the script. The "jmpUrlList" provides the initial C&C servers,
which are used to determine the secondary C&C server as well as additional commands to execute. It is worth noting
that the secondary C&C may be the same as the first. We have observed attacker-controlled web servers,
compromised victim web servers, and Technet and Pastebin web pages used for the initial C&C.

The initial C&C response is parsed with a regex. The backdoor first looks for the secondary encoded C&C server
using the "jmpRegex" regex. Next, the backdoor looks for additional code to execute using the "codeRegex" regex.
For additional code, we observed simple code blocks that provide a different upload/download functionality.

Figure 13: The encoded response "vcmQx3ELgTyTyOVSvsm7wrBKwraFw8VFwCuL" in the image above decodes to
"hxxp://www.vitaminmain[.]info" which is the secondary C&C server for an older backdoor variant (Decoder provided
in Appendix).



11/15

MockDll

Some versions of the Orz backdoor have 32- and 64-bit embedded DLLs, stored internally as base64 strings. Their
purpose is to simply run another binary. These are used as loaders for future executable payloads, using the well-
known process hollowing technique. To use the MockDll, the backdoor creates a configuration .ini file like that shown
in Figure 14:

Figure 14: MockDll configuration file

mock: defaults to 'regsvr32'

real: the dll, which is the ultimate goal to execute

args: arguments to the dll that will be executed, if any

outf: file in which to write results of the MockDll run

time: timeout defaults to 5

After the configuration file is created, the MockDll is executed with regsvr32. MockDll reads the mentioned .ini config
file to determine what to execute. It can log its execution results into a file specified by the “outf” parameter, as
shown in Figure 15:

Figure 15: Contents of the log file created by MockDll

SeDll

This DLL is used for decrypting and executing another JavaScript backdoor such as Orz. The DLL is registered by
the installer using regsvr32. The DllRegisterServer export is then called, which performs checks on the commandline
parameter. If the string “DR” is passed as an argument, or if the DLL is running in the active session with a username
that is not “system”, the final JavaScript backdoor is decoded using a custom base64 alphabet. This backdoor has to
be present in the same directory as the dll, with a “.tmp” file extension. The backdoor script is then executed using
the IActiveScript and IActiveScriptParse32 COM interfaces.



12/15

Figure 16: Decoding and executing of the JavaScript backdoor

If those conditions are not met, it runs the following command line “"regsvr32 /s \"%s\" DR __CIM__"” to register the
DLL, where %s is the path to the DLL. It tries to do this with the current user privileges, but if the privileges cannot be
adjusted it defaults to the available execution environment.

Cobalt Strike

This is a penetration testing tool. The attackers often abuse the free trial version.

Conclusion

This actor, whose espionage activities primarily focus on targets in the US and Western Europe with military ties, has
been active since at least 2014. The tools, techniques, and targets consistently connect their work, particular given
their attention to naval and maritime defense interests and use of custom backdoors. While defense contractors and
academic research centers with military ties should always be cognizant of the potential for cyberattacks,
organizations fitting their targeting profiles should be especially wary of legitimate-looking but unsolicited emails from
outside entities. Appropriate layered defenses at the firewall, email gateway, and endpoint can all help prevent the
kinds of lateral movement we have observed with this actor, as well as the compromise and abuse of systems via
which this group expands its attack surface to other organizations.

References

[1] https://www.fireeye.com/blog/threat-research/2017/09/zero-day-used-to-distribute-finspy.html

[2] https://twitter.com/James_inthe_box/status/893525493059788800

[3] https://labsblog.f-secure.com/2016/08/04/nanhaishu-rating-the-south-china-sea/

[4] https://community.spiceworks.com/topic/1028936-stealthy-cyberespionage-campaign-attacks-with-social-
engineering

[5] http://blog.trendmicro.com/trendlabs-security-intelligence/mouseover-otlard-gootkit/

[6] https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-
os-tools-to-live-off-the-land/

Indicators of Compromise (IOCs)

IOC IOC
Type

Description

https://www.fireeye.com/blog/threat-research/2017/09/zero-day-used-to-distribute-finspy.html
https://twitter.com/James_inthe_box/status/893525493059788800
https://labsblog.f-secure.com/2016/08/04/nanhaishu-rating-the-south-china-sea/
https://community.spiceworks.com/topic/1028936-stealthy-cyberespionage-campaign-attacks-with-social-engineering
http://blog.trendmicro.com/trendlabs-security-intelligence/mouseover-otlard-gootkit/
https://www.carbonblack.com/2016/04/28/threat-advisory-squiblydoo-continues-trend-of-attackers-using-native-os-tools-to-live-off-the-land/


13/15

cdf6e2e928a89cbb857e688055a25e37a8d8b8b90530bd52c8548fb544f66f1f SHA256 Resume.rtf exploiting
CVE-2017-8759 (Sep 19,
2017)

c7fa6f27ec4f4142ae591f2dd7c63d046431945f03c87dbed88d79f55180a46d SHA256 ARLUAS_FieldLog_2017-
08-21.doc exploiting
CVE-2017-8759 (Sep 19,
2017)

ftp://185.106.120[.]206/pub/readme.txt URL Resume.rtf downloading
scripts (Sep 19, 2017)

hxxp://185.106.120[.]206/favicon.ico URL Resume.rtf downloading
scripts (Sep 19, 2017)

39c952c7e14b6be5a9cb1be3f05eafa22e1115806e927f4e2dc85d609bc0eb36 SHA256 Favicon.ico (Sep 19,
2017)

5860ddc428ffa900258207e9c385f843a3472f2fbf252d2f6357d458646cf362 SHA256 Cobalt Strike (Sep 19,
2017)

ced7ca9625543d3d3d09f70223cc19f0d99e21792854452df5ba84b3a59d17b8 SHA256 20170720_final_pm_app-
2.doc (August
2017)Document hash
(August 2017)

305f331bfb1e97028f8c92cbcb1dff2741dcddacc76843e65f9b1ec5a66f52bc SHA256 Publisher hash (August
2017)

bfc5c6817ff2cc4f3cd40f649e10cc9ae1e52139f35fdddbd32cb4d221368922 SHA256 MockDll 32-bit (August
2017)

80b931ab1798d7d8a8d63411861cee07e31bb9a68f595f579e11d3817cfc4aca SHA256 MockDll 32-bit (August
2017)

146aa9a0ec013aa5bdba9ea9d29f59d48d43bc17c6a20b74bb8c521dbb5bc6f4 SHA256 green.ddd SeDll (August
2017)

4029b43c7febd05e8bf013c1022244aaa238341ca44bbce2250667614c1a4932 SHA256 2014 Accomplishments
Input Template.xls
(December 2014)

hxxp://www.vitaminmain[.]info URL Orz secondary C2
(December 2014)

ET and ETPRO Suricata/Snort Coverage

2024192 | ET EXPLOIT Possible CVE-2017-0199 HTA Inbound

2024196 | ET WEB_CLIENT HTA File containing Wscript.Shell Call - Potential CVE-2017-0199

2022520 | ET POLICY Possible HTA Application Download



14/15

2024197 | ET CURRENT_EVENTS SUSPICIOUS MSXMLHTTP DL of HTA (Observed in CVE-2017-0199)

2024449 | ET CURRENT_EVENTS SUSPICIOUS Possible CVE-2017-0199 IE7/NoCookie/Referer HTA dl

2814013 | ETPRO TROJAN Meterpreter or Other Reverse Shell SSL Cert

2023629 |  ET INFO Suspicious Empty SSL Certificate - Observed in Cobalt Strike

2810628 | ETPRO TROJAN JavaScript Backdoor CnC Beacon M2 (b64 3)

2828317 | ETPRO TROJAN Orz JavaScript Backdoor Communicating with CnC

2828316 | ETPRO TROJAN Orz JavaScript Backdoor Sending Password to CnC

Appendix: Orz Traffic Decoder

var _keyStr = "oMZF/W42VkcCbqOiPSajhnKtQws8NRAxr16XJpu=0mgE3THGLlvz9+5BDYd7feyUI";

function decode (input) {

                        var output = "";

                        var chr1, chr2, chr3;

                        var enc1, enc2, enc3, enc4;

                        var i = 0;

                        input = input.replace(/[^A-Za-z0-9\+\/\=]/g, "");

                        while (i < input.length) {

                                    enc1 = this._keyStr.indexOf(input.charAt(i++));

                                    enc2 = this._keyStr.indexOf(input.charAt(i++));

                                    enc3 = this._keyStr.indexOf(input.charAt(i++));

                                    enc4 = this._keyStr.indexOf(input.charAt(i++));

                                    chr1 = (enc1 << 2) | (enc2 >> 4);

                                    chr2 = ((enc2 & 15) << 4) | (enc3 >> 2);

                                    chr3 = ((enc3 & 3) << 6) | enc4;

                                    output = output + String.fromCharCode(chr1);

                                    if (enc3 != 64) {

                                                output = output + String.fromCharCode(chr2);

                                    }

                                    if (enc4 != 64) {

                                                output = output + String.fromCharCode(chr3);

                                    }

                        }



15/15

                        output = this._utf8_decode(output);

                        return output;

            }

function _utf8_decode (utftext) {

                        var string = "";

                        var i = 0;

                        var c = c1 = c2 = 0;

                        while ( i < utftext.length ) {

                                    c = utftext.charCodeAt(i);

                                    if (c < 128) {

                                                string += String.fromCharCode(c);

                                                i++;

                                    } else if((c > 191) && (c < 224)) {

                                                c2 = utftext.charCodeAt(i+1);

                                                string += String.fromCharCode(((c & 31) << 6) | (c2 & 63));

                                                i += 2;

                                    } else {

                                                c2 = utftext.charCodeAt(i+1);

                                                c3 = utftext.charCodeAt(i+2);

                                                string += String.fromCharCode(((c & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));

                                                i += 3;

                                    }

                        }

                        return string;

            }

var decodeme =
"s2S9NF0GCBRBRvY9s2pzN5nHsBk+N2oT8KWvsKYpNBpzR4nTNvYGNuNdOFoDbZeTQtkm8unzAtq9wK+zCLII"

var res = decode(decodeme);

document.write(res);

Subscribe to the Proofpoint Blog


