
1/10

Spoofed SEC Emails Distribute Evolved DNSMessenger
blog.talosintelligence.com/2017/10/dnsmessenger-sec-campaign.html

Executive Summary

https://blog.talosintelligence.com/2017/10/dnsmessenger-sec-campaign.html
https://2.bp.blogspot.com/-v5hP5QTDQxc/Wd5SOUdvcmI/AAAAAAAABZk/7Sv3k1iPyHQ1X02LBxPwsVxGfH-X35TYgCPcBGAYYCw/s1600/DNS_MessengerMalware2.jpg

2/10

Cisco Talos previously published research into a targeted attack that leveraged an interesting
infection process using DNS TXT records to create a bidirectional command and control (C2)
channel. Using this channel, the attackers were able to directly interact with the Windows
Command Processor using the contents of DNS TXT record queries and the associated
responses generated on the attacker-controlled DNS server.

We have since observed additional attacks leveraging this type of malware attempting to
infect several target organizations. These attacks began with a targeted spear phishing email
to initiate the malware infections and also leveraged compromised U.S. state government
servers to host malicious code used in later stages of the malware infection chain. The spear
phishing emails were spoofed to make them appear as if they were sent by the Securities
and Exchange Commission (SEC) in an attempt to add a level of legitimacy and convince
users to open them. The organizations targeted in this latest malware campaign were similar
to those targeted during previous DNSMessenger campaigns. These attacks were highly
targeted in nature, the use of obfuscation as well as the presence of a complex multi-stage
infection process indicates that this is a sophisticated and highly motivated threat actor that
is continuing to operate.

Technical Details

The emails associated with this malware campaign were spoofed to make them appear as if
they had originated from the Securities and Exchange Commission (SEC) Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) system. For those not familiar with this system,
EDGAR is an automated filing platform that organizations can use to submit filings which are
legally required to be performed by publicly traded companies. This was likely done to
increase the perceived legitimacy of the emails and increase the chances that the recipient
would open the email and associated attachments.

Figure 1: Example Malicious Email

The emails themselves contained a malicious attachment that when opened would initiate a
sophisticated multi-stage infection process leading to infection with DNSMessenger malware.
The malicious attachments were Microsoft Word documents. Rather than leveraging macros
or OLE objects, which are some of the most common ways that Microsoft Word documents
are leveraged to execute code, these attachments leveraged Dynamic Data Exchange

https://blog.talosintelligence.com/2017/03/dnsmessenger.html
https://2.bp.blogspot.com/-sC3keQCmpio/Wd4_T0urIGI/AAAAAAAAAZ0/WkVFAtNiVbMA56m1lERGkpD9ZtMCwS3GwCLcBGAs/s1600/image4.png

3/10

(DDE) to perform code execution. A description of this technique has been published here.
This technique has recently been publicized following a Microsoft decision that this
functionality is a feature by design and will not be removed. We are now seeing it actively
being used by attackers in the wild, as demonstrated in this attack.

Similar to the emails described above, the malicious attachments were made to appear as if
they had originated from the SEC and include logos and branding as well as information that
would be expected from any documents received from the SEC. When opened, victims
would be greeted with a message informing them that the document contains links to
external files, and asking them to allow/deny the content to be retrieved and displayed.

Figure 2: DDE Message Prompt

Figure 3: Example Malicious Document

In the case of this attack, if the user allows the external content to be retrieved, the malicious

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://2.bp.blogspot.com/-I8SXrvUn1dA/Wd4_dIp41yI/AAAAAAAAAZ4/syx4SpWJ0i8sBzdO80HddHlar_gOTfsBwCLcBGAs/s1600/image2.png
https://4.bp.blogspot.com/-aejet__HABA/Wd4_jmek8oI/AAAAAAAAAZ8/kny1Re5F1VgMM6IrGdfUAPsDzzsTmBVRQCLcBGAs/s1600/image7.png

4/10

document will reach out to attacker hosted content to retrieve code that will be executed to
initiate the malware infection. Interestingly, the DDEAUTO field used by this malicious
document retrieved code that the attacker had initially hosted on a Louisiana state
government website, which was seemingly compromised and used for this purpose. The
DDEAUTO command that is executed is below:

Figure 4: DDE Code Retrieval Command

The aforementioned command results in the code hosted at the referenced URL to be
downloaded and executed directly using Powershell. The contents of the code that is
retrieved from the server is Powershell code and includes a code blob that is both Base64
encoded and gzipped. The code is retrieved, deobfuscated, then passed to the Invoke-
Expression (IEX) cmdlet and executed by Powershell.

Figure 5: Stage 1 Code

The deobfuscated code is responsible for staging and kicking off subsequent stages of the
infection process. It is also responsible for achieving persistence on systems. The code
features a number of ways that persistence may be achieved depending on the operating
environment of the malware. It determines the version of Powershell on the infected system
as well as the access privileges of the user to determine how to proceed with achieving this
persistence.

First, a blob of code called $ServiceCode, which is also both base64 encoded and
compressed using gzip, is written to the Windows registry using the following Powershell
command:

Figure 6: Registry Creation

A second block of code present in the Powershell is called $stagerCode and is responsible
for extracting and decoding the code that was previously stored in the registry, then
executing this code, first checking for the presence of the mutex '1823821749'. If this mutex
does not exist, execution continues.

Figure 7: Mutex Check and Execution

The malware then attempts to write the contents of $stagerCode along with the appropriate
PowerShell command to execute it to the following registry locations, creating a new registry
key called "IE"

https://1.bp.blogspot.com/-3hzODR7AUWQ/Wd4_qHMAJ0I/AAAAAAAAAaA/9jHAdz2gn7Eu10JfYVH2FSJ9vu8R4-sSgCLcBGAs/s1600/image9.png
https://2.bp.blogspot.com/-J6KIDlZSNWI/Wd4_w8PNxDI/AAAAAAAAAaE/SpVRs-Fay1IRc5hLjlrf3v9cg59m3sHyACLcBGAs/s1600/image3.png
https://1.bp.blogspot.com/-6lAEXvGsGxU/Wd4_2wT8R7I/AAAAAAAAAaI/PnaHNhVemvMOZdU1S2eX5mK-ya9d-Y6-wCLcBGAs/s1600/image11.png
https://3.bp.blogspot.com/-PfGg1Aqwdj0/Wd4_97lnA0I/AAAAAAAAAaQ/4tg0SwjbTn86uAEcV1ReyUy3f5yQUBBrwCLcBGAs/s1600/image1.png

5/10

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
HKLM:\Software\Microsoft\Windows\CurrentVersion\RunOnce
HKLM:\Software\Microsoft\Windows\CurrentVersion\RunServices
HKCU:\Software\Microsoft\Windows\CurrentVersion
HKEY_USERS\.Default\Software\Microsoft\Windows\CurrentVersion\Run
HKLM:\Software\Microsoft\Windows NT\CurrentVersion\Winlogon
HKLM:\System\CurrentControlSet\Services\VxD
HKCR:\vbsfile\shell\open\command

Figure 8: Registry Activity

The malware also creates a new scheduled task called "IE" that is responsible for executing
$stagerCode each time the system boots, using a random startup delay period.

Figure 9: Scheduled Task Creation

The malware then queries the system to determine the characteristics of the environment in
which it is operating to determine how to proceed. It specifically checks the version of

https://3.bp.blogspot.com/-7vz1M1nzSQg/Wd5AKknU06I/AAAAAAAAAaU/Wz_EX4i-osEdHZuB9JkIrImiZikEUCSaQCLcBGAs/s1600/image8.png
https://1.bp.blogspot.com/-QbWPfhsExr0/Wd5ARILC28I/AAAAAAAAAaY/RDrDBt4lytQwlxWU0dFYDy3hFzlZqFWAQCLcBGAs/s1600/image5.png

6/10

Powershell that is installed on the system. If the system is running a Powershell version later
than Powershell 2.0, the malware will write the contents of $ServiceCode to an Alternate
Data Stream (ADS) of the the following file location:

%PROGRAMDATA%\Windows:kernel32.dll

The malware then checks to determine the privilege level of the user that was infected. If the
user has administrative privileges on the infected system, it will set up a WMI event
consumer and filter as an additional WMI-based persistence mechanism. The filter name is
"kernel32_filter" and the consumer name is "kernel32_consumer". The Powershell code used
for the performance of these tasks is below:

Figure 10: ADS and WMI Persistence

Once all of these tasks have completed, the malware then enters the next stage of the
infection process by executing $stagerCode directly using the IEX Powershell cmdlet.

This next stage of the malware infection was heavily obfuscated with both variables and
function names obscured. Most of the strings within this code were also base64 encoded.
The code associated with this stage starts by defining an array containing a list of domains
that will be used for subsequent Command and Control (C2) communications. A list of the
domains in this array is included in the Indicators of Compromise section of this blog.

The malware also obtains the serial number of the system from the BIOS. It calculates the
MD5 hash of the serial number and returns the first ten bytes.

Example S/N: VMware-56 4d 64 66 d0 7d f4 26-2c ad a5 8b f8 51 26 f8
Resulting Value: EFA29DD310

https://4.bp.blogspot.com/-M7I_j3ZrBK8/Wd5AapiGmcI/AAAAAAAAAac/MqXdTWr74r0dGDXs_Pfa9KgPy46LWJEtgCLcBGAs/s1600/image6.png

7/10

The malware then sets a counter value to zero. The aforementioned hash value, the
hardcoded string "stage", the value of the counter, and a randomly selected domain from the
array are then combined to create the initial hostname that will be used by the malware to
start making DNS requests.

Example Hostname: EFA29DD310.stage.0.ns0.pw

At this point the malware enters a loop which will continue until it receives an A record lookup
result of 0.0.0.0 or any lookup fails entirely. The A record result represents a checksum
value, which will be explained below. The IPv4 value returned by the DNS server in response
to the A record request is then converted to an integer, then a binary number.

Example IP: 107.50.99.116
Integer Value: 1798464372
Binary: 1101011001100100110001101110100

The same generated hostname is then used by the malware to make a TXT record request.
The result of the TXT record query is then used to calculate an MD5 hash and the first eight
bytes of the MD5 hash are then run through a checksum algorithm that returns an integer
value which is converted into a binary number.

Example TXT Query Result:

H4sIAIia3VkC/909a1fbSJafyTn5DxXhbkvYEpg8pgcjpnnkwXQgLNCTnnG8HdkqQGBLjiRDCPE5+x/2H+4v2X

MD5: 432B4077F72EE96CA70B57F10B68F35E
Selected Bytes: 432B4077
Checksum: 1126908023
Binary: 1000011001010110100000001110111

Once the malware has both the binary values from the A record response and the above
checksum calculation, they are compared. If the A record response and the TXT record
response match, the result of the TXT record query response is appended to the end of a
final resulting string, a new domain is then randomly selected from the array and the counter
value previously mentioned, and included in the hostname used for queries, is incremented
by one. If they don't match, the queries continue in kind until they do.

This process continues until the result of the A record lookup is 0.0.0.0, which indicates a
completion of the code collection via DNS, at which time the resulting string is returned for
further processing. This result string is then decoded using Base64 and decompressed using

8/10

gzip. It is then passed to the Powershell IEX cmdlet to execute the code that was retrieved
using DNS.

During analysis of this specific attack, we were unable to obtain this next stage of Powershell
code from the C2 servers. Given the targeted nature of this attack it is likely that the attacker
is restricting these communications in an attempt to evade analysis by information security
companies and researchers. It's been reported that the stage 4 payload is documented here.

Conclusion

This attack shows the level of sophistication that is associated with threats facing
organizations today. Attackers often employ multiple layers of obfuscation in an attempt to
make analysis more difficult, evade detection and prevention capabilities, and continue to
operate under the radar by limiting their attacks to only the organizations that they are
targeting. It is also important for organizations to be aware of some of the more interesting
techniques that malware is using to execute malicious code on systems and gain persistence
on systems once they are infected. In this particular case, the malware featured the
capability to leverage WMI, ADS, scheduled tasks, as well as registry keys to obtain
persistence. The use of DNS as a conveyance for later stage code and C2 communications
is also becoming more and more commonplace. Talos continues to monitor the threat
landscape for unique and targeted attacks such as this one so that customers remain
protected as attackers change the techniques they use to perform their malicious activities.

Coverage

Additional ways our customers can detect and block this threat are listed below.

Advanced Malware Protection (AMP) is ideally suited to prevent the execution of the
malware used by these threat actors.

https://wraithhacker.com/2017/10/11/more-info-on-evolved-dnsmessenger/
https://3.bp.blogspot.com/-Z7N_NdAXg5w/Wd5A326hmcI/AAAAAAAAAag/Hei3WfxVMeU6-7g_SRAoSjyoAn8q1wHIwCLcBGAs/s1600/image10.png
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection

9/10

CWS or WSA web scanning prevents access to malicious websites and detects malware
used in these attacks.

Email Security can block malicious emails sent by threat actors as part of their campaign.

Network Security appliances such asNGFW,NGIPS, andMeraki MX can detect malicious
activity associated with this threat.

AMP Threat Grid helps identify malicious binaries and build protection into all Cisco Security
products.

Umbrella, our secure internet gateway (SIG), blocks users from connecting to malicious
domains, IPs, and URLs, whether users are on or off the corporate network.

Open Source Snort Subscriber Rule Set customers can stay up to date by downloading the
latest rule pack available for purchase on Snort.org.

Indicators of Compromise (IOCs)

The following Indicators of Compromise (IOCs) are associated with the attack described in
this blog post.

Malicious Word Documents:

1a1294fce91af3f7e7691f8307d07aebd4636402e4e6a244faac5ac9b36f8428
 bf38288956449bb120bae525b6632f0294d25593da8938bbe79849d6defed5cb

Stage 2 PowerShell

8c5209671c9d4f0928f1ae253c40ce7515d220186bb4a97cbaf6c25bd3be53cf
 ec3aee4e579e0d1db922252f9a15f1208c4f9ac03bd996af4884725a96a3fdf6

Domains:

trt[.]doe[.]louisiana[.]gov
 ns0[.]pw

 ns0[.]site
 ns0[.]space

 ns0[.]website
 ns1[.]press

 ns1[.]website
 ns2[.]press

 ns3[.]site
 ns3[.]space

https://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://www.cisco.com/c/en/us/products/security/web-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/email-security-appliance/index.html
https://www.cisco.com/c/en/us/products/security/firewalls/index.html
https://www.cisco.com/c/en/us/products/security/intrusion-prevention-system-ips/index.html
https://meraki.cisco.com/products/appliances
https://www.cisco.com/c/en/us/solutions/enterprise-networks/amp-threat-grid/index.html
https://umbrella.cisco.com/
https://www.snort.org/products

10/10

ns4[.]site
ns4[.]space
ns5[.]biz
ns5[.]online
ns5[.]pw

IP Addresses:

206[.]218[.]181[.]46

