ATMii: a small but effective ATM robber

SL securelist.com/atmii-a-small-but-effective-atm-robber/82707/

Authors

Konstantin Zykov

While some criminals blow up ATMs to steal cash, others use less destructive methods, such
as infecting the ATM with malware and then stealing the money. We have written about this
phenomenon extensively in the past and today we can add another family of malware to the
list — Backdoor.Win32.ATMii.

ATMii was first brought to our attention in April 2017, when a partner from the financial
industry shared some samples with us. The malware turned out to be fairly straightforward,
consisting of only two modules: an injector module (exe.exe,
3fddbf20b41e335b6b1615536b8e1292) and the module to be injected (dll.dll,
dc42ed8e1de55185c9240f33863a6aa4). To use this malware, criminals need direct access
to the target ATM, either over the network or physically (e.g. over USB). ATMii, if it is
successful, allows criminals to dispense all the cash from the ATM.

1/7

https://securelist.com/atmii-a-small-but-effective-atm-robber/82707/
https://securelist.com/author/konstantinzykov/
https://www.schneier.com/blog/archives/2006/03/blowing_up_atm.html
http://www.mirror.co.uk/news/uk-news/atm-gang-who-stole-120000-9494804
https://usa.kaspersky.com/about/press-releases/2016_atm-is-a-new-skimmer-crooks-bring-atms-on-their-side
https://www.kaspersky.com/blog/atm-attack-3/15161/
https://securelist.com/malware-and-non-malware-ways-for-atm-jackpotting-extended-cut/74533/

exe.exe — an injector and control module

The injector is an unprotected command line application, written in Visual C with a
compilation timestamp: Fri Nov 01 14:33:23 2013 UTC. Since this compilation timestamp is
from 4 years ago — and we do not think this threat could have gone unnoticed for 4 years —
we believe it is a fake timestamp. What's also interesting is the OS that is supported by the
malware: One more recent than Windows XP. We can see this in the image below, where the
first argument for the OpenProcess() function is Ox1FFFFu.

OpenProcess(8x1FFFFFu, 8,
)

[. B, 532u);
= GetModuleHandleW(L"kernel3z dl1");
C ., "LoadLibraryW"};

OpenProcess call with the PROCESS _ALL ACCESS constant

It is the PROCESS ALL ACCESS constant, but this constant value differs in older Windows
versions such as Windows XP (see the picture below). This is interesting because most
ATMs still run on Windows XP, which is thus not supported by the malware.

@™ @ Pplease choose an enum

Type name Declaration Type library

jﬁ; PROCESS_ALL_ACCESS D01FOFFF M5 SDK (Windows XF)
jﬁg PROCESS_ALL_ACCESS DO1FOFFF MS SDK (Windows 2000)
ﬁg PROCESS_ALL_ACCESS DO1FOFFF M5 SDK (Windows NT)
ﬁg PROCESS_ALL_ACCESS D01FFFFF MS SDK (Windows Vista)
jﬁg PROCESS_ALL_ACCESS QO01FFFFF M5 SDK (Windows 7)

$ | PROCESS_ALL_ACCESS

Ok Cancel Search Help

A list of PROCESS ALL ACCESS values per Windows version

The injector, which targets the atmapp.exe (proprietary ATM software) process, is fairly
poorly written, since it depends on several parameters. If none are given, the application
catches an exception. The parameters are pretty self-explanatory:

param short description

2/7

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/10/07170719/171009-atmii-malware-1.png
https://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/eeb93be6-872c-4028-b0ae-cd873e089825/openprocess-error-in-windows-xp?forum=vclanguage
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/10/07170716/171009-atmii-malware-2.png

/load Tries to inject dll.dll into atmapp.exe process

/emd Creates/Updates C:\ATM\c.ini file to pass commands and params to infected
library

/unload Tries to unload injected library from atmapp.exe process, while restoring its
state.

/load param

<exe.exe> /load

The application searches for a process with the name atmapp.exe and injects code into it
that loads the “dIl.dIlI” library (which has to be in the same folder as the exe.exe file). After it
has been loaded it calls the DLLmain function.

/lunload param

<exe.exe> /unload

As the name already suggests, it is the opposite of the /load parameter; it unloads the
injected module and restores the process to its original state.

/cmd param

<exe.exe> /cmd [cmd] [params]

The application creates/updates C:\ATM\c.ini which is used by the injected DLL to read
commands. The file is updated each time the .exe is run with the /cmd param.

[main]
cmd=1info

Contents of c.ini after execution of “exe.exe /cmd info”

The executable understands the following set of commands:

command description

scan Scans for the CASH_UNIT XFS service

disp Stands for “dispense”. The injected module should dispense “amount’ cash of
“currency” (amount and currency are used as parameters)

info Gets info about ATM cash cassettes, all the returned data goes to the log file.

3/7

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/10/07170715/171009-atmii-malware-3.png

die Injected module removes C:\ATM\c.ini file

dil.dll injecting module

After injection and execution of the DIIMain function, the dll.dll library loads msxfs.dll and
replaces the WFSGetinfo function with a special wrap function, named mWFSGetinfo.

At the time of the first call to the fake WFSGetInfo function, C:\ATM\c.ini is ignored and the
library tries to find the ATM’s CASH_UNIT service id and stores the result, basically in the
same way as the scan command does. If the CASH_UNIT service is not found, dll.dll won’t
function. However, if successful, all further calls go to the mWFSGetinfo function, which
performs the additional logic (reading, parsing and executing the commands from the
C:A\ATM\c.ini file).

[main]
cmd=disp

currency=RUB
amount=6000

Contents of C:\ATM\c.ini after execution of “exe.exe /cmd disp RUB 6000

Below is an output of the strings program uncovering some interesting log messages and the
function names to be imported. The proprietary MSXFS.DLL library and its functions used in
the ATMii malware are marked with red boxes.

47

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/10/07170713/171009-atmii-malware-4.png

S strings dll.dll
!IThis program cannot be run in DOS mode.
Richagqg

text

“.rdata

@.data

.reloc

JIt3It

WFsGetInfo

SetHooks

(%d):%s() OK: Module found
CloseHandle

(%d):%s() WFSGetInfo found

(%d):%s() Failed to get closehandle
(%d):%s() WFsopen not found :-(
(%d):%s() Failed to load “msxfs.dll’
RemoveHooks

(%d):%s() Unhooking

(%d):%s() Unhooked

D11Main

(%d):%s() Initialize library, and search valid service
(%d):%s() Hooking

(%d):%s() Unloading library
(%d):%s() Unload functions stuff
WFSFreeResult

WFSUnlock

WFSLock

WFSExecute

MSXFs.dll

PathFileExistslW

StrToInth

SHLWAPI.d11

GetCurrentProcess

VirtualFreeEx

VirtualProtectEx

VirtualAllocEx

WriteProcessMemory

“scan” command

Because of the architecture of XES, which is divided into services, the injected library first
needs to find the dispense service. This command must be successfully called, because the
disp and info commands depend on the service id retrieved by scan. Scan is automatically
called after the dll has been injected into atmapp.exe.

After collecting the WFS_INF_CDM_STATUS data, additional data gets added to the
tlogs.log. An example can be found below:

(387):cmd_scan() Searching valid service
(358):FindValidService() Checking device index=0

5/7

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2017/10/07170709/171009-atmii-malware-5.png
https://en.wikipedia.org/wiki/CEN/XFS

70):CheckServiceForValid()
72):CheckServiceForValid() Waiting for lock
76):CheckServiceForValid() Device was locked
86):CheckServiceForValid() WFSGetInfo Success 0

o~ o~ o~ o~

(182):CheckServiceForValid() Done-> szDevice: WFS_CDM_DEVONLINE, szDispenser:

WFS_CDM_DISPOK, szIintermediateStacker: WFS_CDM_ISEMPTY, szSafeDoor:
WFS_CDM_DOORCLOSED

(195):CheckServiceForValid() Unlocking device

(390):cmd_scan() Service found O

Part of a tlogs.log possible log after successfully executed “scan” command

“info” command

Before the criminals can dispense cash, they first need to know the exact contents of the
different cassettes. For this, they use the info command which provides exhaustive
information on all cassettes and their contents. The list of used XFS API functions is the
same as with the scan command, but this time WFSGetinfo is called with the
WFS_INF_CDM_CASH_UNIT_INFO (303) constant passed as a param.

Below is an example of the data in log file returned by the info command.

(502):ExecuteCmd() Executing cmd
(506):ExecuteCmd() CMD = info
(402):cmd_info() ! hFoundGlobalService = 0
(

(

213):GetDevicelnformation()
220):GetDevicelnformation() Device locked 0

(337):GetDevicelnformation() Module: C:\program files\dtatmw\bin\atmapp\atmapp.exe
Cash Unit # 1, name=SOMENAME

Type: 3

Status: HIGH

Currency ID: 0x52-0x55-0x42

Note Value: 5000

Notes Count: 3000

Notes Initial Count: 3000

Notes Minimum Count: 10

Notes Maximum Count: 0

Exampleb Part of a tlogs.log possible log after successfully executed “info” command

“disp” command

6/7

The dispense command is followed by two additional params in the command file: currency
and amount. Currency must contain one of the three-letter currency codes of notes kept in
the CASH_UNIT _INFO structure (currency codes are described in ISO_4217 e.g. RUB,
EUR). The amount code holds the amount of cash to dispense and this value must be a
multiple of ten.

“die” command

Does nothing except deleting C:\ATM\c.ini command file.

Conclusion

ATMii is yet another example of how criminals can use legitimate proprietary libraries and a
small piece of code to dispense money from an ATM. Some appropriate countermeasures
against such attacks are default-deny policies and device control. The first measure prevents
criminals from running their own code on the ATM'’s internal PC, while the second measure
will prevent them from connecting new devices, such as USB sticks.

WORK AT A FINANCIAL
ORGANIZATION?

Learn to protect it from cyberthreats

Discover more >

o ATM

Backdoor

Financial malware
Malware Technologies

Authors

Konstantin Zykov

ATMii: a small but effective ATM robber

Your email address will not be published. Required fields are marked *

7/7

https://en.wikipedia.org/wiki/ISO_4217
https://finance.kaspersky.com/?utm_source=smm_sl&utm_medium=ww_sl_o_171027
https://securelist.com/tag/atm/
https://securelist.com/tag/backdoor/
https://securelist.com/tag/financial-malware/
https://securelist.com/tag/malware-technologies/
https://securelist.com/author/konstantinzykov/

