CCleaner Backdoor: Analysis & Recommendations

. crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/

Karan Sood October 4, 2017

CCleaner Free

&

Wirdgnt
E Intemet Euxplorer L] A
» Temperary bternet Fles (] MWM '_[0-53"5 %’H-'l]'
= iy ¥
+ Cookies
» Receriy Tyoed LRLS Details of files to be debeted (Note: No fles have been deleted yet)
o Ircten st fles
¥ Lt Downioad Location B Insernet Expicrer - Temprary Interrett Fies LM 1
Rastocnemple be: Form Malory B Inferret Explorer - Hatory 5753 5 fles
Cyved Pacswird B trsenet Exglrer - Cockirs EE X0 fes
L L Ry Wirdiows Explorer - Recent DocLenents e G
= ::“'{:ml £% System - Temporsry Pl L4308 100
' Ottt Brglores ML £ Sywtem - Windiows Log Fies 20,2378 e
= Thabrad Cacha & Googhe Chrome - Internet Cache 106, 52600 BO7 s
- Taskbar LevpLats & Google Crvome - Insernet Hatary BB W
Bietwark Padgwerds & Google Chrome - Cookies HSKE 27 Hes
12 System & Google Crrome - Domnkad Histary 1] 15
+ Emply Recyde Bn & Google Shrome - Session N tEfes
 Tesperary Fles [Appleamors - Adube Reader D 16WE I ez
=) Ccboand & webiies - Windows Defender W e Y
+ Memory Dumps
L S =
o Wil Lo Fles ot

The term “supply chain attacks” means different things to different people. To the general
business community, it refers to attacks targeting vulnerable third-parties in a larger
organization’s supply chain. A well-known retail chain’s massive breach in 2013 is a classic
example: Adversaries used a poorly protected HVAC vendor as their gateway to hack into
the giant retailer’s enterprise network. However, threat researchers have another definition:
To them, supply chain attacks can also denote the growing phenomenon in which malicious
code is injected into new releases and updates of legitimate software packages, effectively
turning an organization’s own software supply infrastructure into a potent and hard-to-
prevent attack vector. The recent backdoor that was discovered embedded in the legitimate,
signed version of CCleaner 5.33, is just such an attack.

To help inform the user community and empower them to better defend against software
supply chain attacks, the CrowdStrike® Security Response Team (SRT) conducted a
thorough analysis of the CCleaner backdoor. A popular PC optimization tool, the 5.33 version
of CCleaner has had widespread distribution across multiple industries, but the embedded
code appeared to actually be targeted at specific groups in the technology sector. (More
information on targeted industries is available for CrowdStrike customers in our Falcon
Intelligence™ portal.) CrowdStrike’s threat intelligence team had also previously reported on
the malware’s C2 (command and control) infrastructure in a recent alert for CrowdStrike
customers identifying possible links to Aurora Panda. The report also outlines the potential
for additional adversary tactics, techniques and procedures (TTPs).

1/12

https://www.crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

Technical Analysis

CCleaner

CCleaner is a PC cleaning utility developed by Piriform, which was recently acquired by
antivirus (AV) provider Avast in June 2017. The affected version of the utility contains a
modified __scrt_common_main_seh function that routes the execution flow to a custom

function meant to decode and load the malware. This takes place even before the entry point

(EP) of the utility is reached.The new execution flow leads to a function that decodes a blob
of data, as reproduced in Python below:

def decode(indata):
key = 0x2547383

i=0
dec = []
for 1 in range(0, len(indata)):

key = ((key * 0x47a6547) & OXFFFFFFFF) & OXFF
dec.append(blob[i] A~ key)

key = key >> 0x8
return dec

The result of the decoding subroutine is shellcode and the payload (which is missing the
IMAGE_DOS_HEADER field). The missing IMAGE_DOS_HEADER is likely to subvert AV
solutions that search for MZ (0x4d5a) headers in memory.

Next, the program creates a memory heap with the flag
HEAP_CREATE_ENABLE_EXECUTE to allow for execution, and copies the shellcode on
the heap, and executes it.

ShellCode

The shellcode is responsible for loading the payload in memory. It attains the PEB (Process
Environment Block) of the malware process to load kernel32.dll and find the location of the
function GetProcAddress. This function is used to retrieve the addresses of functions such
as VirtualAlloc, memcpy, and LoadLibrary. It allocates PAGE_EXECUTE_READWRITE
memory to which it copies the previously decoded payload (minus the

IMAGE_DOS_ HEADER) as shown below.

0000000: OOOO O0COO GOEO OOOO OO0 OO OO BOBO
0000010: 0000 OOOO OOEO OOOO 00O OO OBOO OO
0000020: OOOO OCOO OCOEO OOOO OO0 OO OGO BOBO

2/12

0000030: 0000 OOO0 OO0 OO0 00O 0000 dOEO B0
0000040: 0000 OOOO OOOO OOEO OOEO 0O 00O OO
0000050: 0000 00O 00O 00O 00O 00O 00O OO
0000060: 0000 OO0 OO0 OOOO OO 00O 00O OO
0000070: OO0 OOOO OOOO OOEO OO 00O OO OO
0000080: 0000 OOOO 00O OOEO OO 00O 00O OO
0000090: 0000 00O 00O 00O 00O 00O 00O OO
00000ad: 0000 OO 00O OO 00O 00O 00O OO
00000bO: 0000 OOOO0 OO0 OO0 00O 0000 0000 000
00000CcO: 0000 0OOO 00O OO OO 00O 00O OO
00000d0: 5045 0000 4c01 0200 c23a 8059 0000 0000 PE..L....:.Y....
00000e0: OOOO O0OOO eOOO Oe2l1 ObO1 0600 0020 OGO looooc 3¢
00000f0O: 0002 OOOO0 OOOO0 OO0 0011 00O 0010 000
0000100: 06030 00O 00O 0010 0010 OGO 0002 OO .0..............
0000110: 0400 0000 OOOO OOEO 0400 OGO OOGO OO
0000120: 0040 O0OO0 0004 OOCO EOOO O0OOO 0200 OO .@..............
0000130: 0000 1000 0010 00O 00O 10600 0010 OO
0000140: 0000 OOOO 1000 OOEO OOEO OGO OO OO
0000150: 4c28 0000 dcOO OOOO OOOO 00O 0000 OO0 L(.........vv...
0000160: OO0 OOOO OOOO OOEO OOEO OGO OO OO
0000170: 0030 00O cOOO OOEO OOEO 00O 00O OO .0..............
0000180: OOOO OOOO OOOO OOEO OOEO OO OO OO
0000190: 0000 OOOO 00O OOEO 0O 00O 00O B0
00001a0: OOOO0 OOOO OOOCO OOEO 0010 0O 0001 GO0
00001b0O: 0COO0 OOOO OO0 OOOO OO 00O 00O 00O
00001cO: 0000 OOOO OO0 00O 2e74 6578 7400 OGO text..

00001d0: 04le 0000 0010 OOOO 0020 00O 0004 0000
00001e0: OOOO OOOO OOOO OOEO OOEO OOLEO 2000 GO0 i

00001f0: 2e72 656c 6763 0000 1la@l 00O 0030 0000 .reloc....... 8o c

0000200: 0002 0000 0024 OOOO OOOO OOLGO OO 66O Booocooooooc
0000210: 0000 0000 4000 0042 OOOO O0OGO 00O 0GGO@..B........

Once the payload is copied to the newly allocated memory, the shellcode resolves the
needed API’s, and calls the OEP (original entry point) of the payload in memory.

Payload

Environment Checks

Once it’s loaded, the payload creates a thread that performs the core functionality of the
malware. It performs a few checks at the onset of the environment and the user privileges.
The malware employs the function msvert.time to record the current time of the malware. It
then uses IcmpCreateFile and IcmpSendEcho to send an IPv4 ICMP echo to an invalid IP
address, with a timeout of 601 seconds. This is meant to delay the execution of the malware
by 601 seconds; this delay is then measured by calling msvcrt.time again, and ensuring that
more than 600 seconds have elapsed between the first and second calls to the function. It

3/12

should be noted that if the call to lcmpCreateFile fails, the malware will just sleep for 600
seconds.These steps are measures against debugging and/or sandboxing. It also invokes
IsUserAnAdmin to ensure that the current user is member of the administrator’s group. If
either of these checks fails, the malware exits immediately.

It uses a decoding scheme as the one described above to decode strings during runtime in
memory. It is important to note that these dynamically decoded strings are zeroed out in
memory before each function using them exits. The strings dynamically decoded throughout
the execution of the malware are listed in the Appendix section of this blog.

The malware also checks the privilege levels of its own process; if the process does not have
administrative privileges, it uses AdjustTokenPrivileges to enable the SeDebugPrivilege
value for the process. This enables the process to either debug or adjust memory for a
process owned by another account.

Registry Checks

The malware checks for the following registry key:
HKLM\SOFTWARE\Piriform\Agomo\TCID. The key value is supposed to hold a system
time value; if the value is greater than the current time, the malware will terminate. It also
checks the value of HKLM\SOFTWARE\Piriform\Agomo\MUID. If the key does not exist,
the malware will set its value using a pseudo-random number derived in the following
manner:

// Pseudocode to calculate MUID val
DWORD MUID;

unsigned int seed, randl, rand2;
seed = GetTickCount();

srand(seed);

randl = rand();

rand2 rand() * randi;

MUID = GetTickCount() A rand2;

Gathering Victim Information

Once the checks are completed, the malware gathers the following information about the
victim machine:

e OS major version

OS minor version

OS architecture
Computer name
Computer DNS domain

4/12

» |Pv4 addresses associated with the machine. This information is gathered by calling
GetAdaptersinfo, and then enumerating through each adapter to search for the
IP_ADAPTER _INFO — IpAddressList — IpAddress field.

¢ Installed applications. The malware accesses the registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall, and enumerates
through each key, and compares the Publisher value with “Microsoft Corporation.” If
there is a match, it moves on to the next value. If not, it will attain the DisplayName
value using SHGetValueA, and insert it into memory. Each name is prepended with an
“S” in memory.

o Full name of the executable image of each running process. The malware calls
WTSEnumerateProcessA to get a pointer to an array of WTS_PROCESS_INFO
structures, which are then used to get the ProcessName field for each process. Each
process name is prepended with a “P” in memory.

This information is stored in a data structure in memory in the following manner:

DataStruct struc ; (sizeof=8x42A0, mappedto_51)
HUID Ual v

0S5 HajorVersion ?

0S_HMinorUersion

0S_x64F1ag

BOOL_Zero

ComputerName 64 dup(?)

ComputerNameDnsDomain db 64 dup{?)

IPAddresses db 24 dup(?)

fApplicationList ApplicationList Installed ? ; Each application name appened with an '
Process ExecutableImageMame RunningProcesses ? ; Each process name appended with a 'P’
DataStruct ends

The MUID_Val is used as a unique identifier for the victim machine.
Next, the structure is encoded in memory in two steps:

o Step 1: Aforementioned scheme
o Step 2: Modified version of base64

The image below displays the data structure as it goes through each encoding step.

blia 0508
1 déct 6Bce £
7 7547 obbl &
27ae 0190 £

€144 8358 ef

aile 135f 5484 efe?
sde
1405 95a
0 ocla 023
3cal

6 7677 6673 3154 4d53 €d7Z 2a84 6B46
3167 2a43 T666 2a61 3256 4d51 TO61 L
TEE4 €54a 5a32 636c 5747 7338 IBAE
678 7a73 4b38 6442 5476 3136 6158 666
466 6253 TETE 3245 TT68 Tl6c T96L
306b 3362 6153 8 7462 sf0k3basuox+
6471 6a33 7445 4 4530 Kidgi3tIH
3052 €44e 6dS54 S 7 7344 2WORANMTXATeqAsD
64 4354 6272 4534 4930 El
6671 286 4463 Ta6e £ 343
4bE3 €853 6445 6576 5855 QX
8 3732 2130 €639 3739 4330
673 3930 4459 6756 £ 6472 Vi
a 4534 4£59 T06a 2abe ELT)
460 4853 634 5374 5566 aNen
646 3338 7068
5! 254 7567 4752 7
7add 3343 6edy 5552
6b78 5347 4251 766
4b47 2269 6138 6153 7
S94F 478 3 EETT
5 6872 4aTd 6755
4a62 4147 6bdb 5265
7149 626d T636 3366 5674
Zada 4033 544b 541
537 2 6cdf 765
2 5348 5630 6670 S66e 4864 4a63
6166 7969 SBEf 6cGb 3BAS 5164 6165 F
8 6c79 3557 3243 5142 4832 4175 d56a
3931 3441 706b 7442 2179 Taiz
6358 6863 5579 494d
6 T24b 6676 6dI6 3546
T66d 354e 4449 4265
5330 554a 3335 7331
2a3l €52a 4958 794d
0000230: 5544 5361 4750 6637 5773

3¢ efic dflb
1662 4f8a b
7546 adéd addl 3a73 d
£1 0dda f04c 31bc 5b39 B2cd as20 .
©2b% 516b 20b5 25e6 dcSh dede S£30 .
di7e cdse B4£4 bT27 61f3 4665 eda
R 0 3 90c) o288 6olc obll Telf o684 cO6b
indows'\Syst o 5 Sede 175a TbBE 1940 4bb3 097 ZeBf .
2\svchost.exe - aSce d9ad dfdé Sdba cZed ScTe 6ded €704 ..
0000120: cl9e 6aSf Jeza c03c fGca 6f0e G588 5289 ..
1 G0de £594 9909 BbEa
bdBc 21%a 5lc0 0193 .
a 79¢cl 4als 939a 62e9 aas0
eeb] cdbé Occd acal 5d2a c5b
7eS fadd £03d STse 21£5 ObOb
4BbS 1642 BE3a a23a d23a
469e 378 42dd 57
445¢ beaf 2bas
Sled dfb 2fcd 6d2f bilc
£45d 3d53 Scd0
£b16 cded EBod 1
5a42 b435 5728 fa54 1
0243 7d66 albi ffae 2B
sta0 e50 B9l eibd %6fe i3
0000 Scbl 20£5 9438 Odcl 305a e83d
000022 a6 dd4d cOfB df42 846e dsd9 7
0000230: debd dic? 80ad 24e0 2ded 2bEY sacZ

43 7228

0o o 000
5043 3aSc 5769 Ge6d = 537
656d 3332 5c73 7663 6B6L 2e
00 0000 000
00 0000 00 00 400
00 Do0o 00 000!
00 0000 00 000!
00 0000 o 000
00 0000 0O 000
00 0000 0O o 000
00 D000 a00
00 0000 00 900
00 0000 00 00

0 000

o oo

000
0 0000
0 4669
6573
30 Sc6l
0000

CCCCoC0OOOCOOOWY O C > S c >

0000130: 4382
0000146 9773 £
0000150: d253
0000160: €708
0000170: Balf
00D01B0: deba
0000190t
: fesl

besd
73
babe
asla
2912

a7

e
6577
(3]
7877

s64c

5/12

The custom base64 encoding scheme uses a modified Base64 index table. Rather than the
regular table that has the following values:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijkimnopqrstuvwxyz0123456789+/; its
table has the following values:
abcdefghijkimnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!*.

C2 Communication

Once the victim machine information has been encoded, the malware queries the registry
key HKLM\SOFTWARE\Piriform\Agomo\NID. Upon the initial run, the registry key does not
exist; however, the malware eventually inserts an IP address computed via a DGA (Domain
Generating Algorithm) later in the execution flow. It is interesting to note that even if the
registry key exists, the malware extracts the IP address from the registry value, but does not
do anything with it. After the registry check, it decodes the hard-coded IP address
216.126.225[.]148, and attempts to send the encoded data struct to it via an HTTP POST
request on port 443. It uses InternetSetOptionA to set the following option flags on the
HTTP handle:

o SECURITY_FLAG_IGNORE_CERT_DATE_INVALID — Ignores bad or expired SSL
certificates from the server

e SECURITY_FLAG_IGNORE_CERT_CN_INVALID — Ignores incorrect SSL certificate
common names

o SECURITY_FLAG_IGNORE_WRONG_USAGE — Ignores incorrect usage problems

e SECURITY_FLAG_IGNORE_UNKNOWN_CA — Ignores unknown certificate authority
problems

o SECURITY_FLAG_IGNORE_REVOCATION — Ignores certificate revocation problems

The malware also calls HttpAddRequestHeadersA to append the domain
speccy.piriform[.Jcom to the POST request. This is performed to appear inconspicuous and
make it harder to detect. It is also likely an attempt to confuse the analyst performing
dynamic analysis of the malware. Once the information is sent to the C2, the malware
expects to receive a stage 2, which it reads into a locally allocated memory block. Analysis
shows that once stage 2 is received, it is decoded using the same custom Base64 and the
decoding algorithm. Once decoded, the functions GetProcAddress and LoadLibraryA are
pushed to the stack, and the EP of stage 2 is called. At the time of analysis, stage 2 was not
available.

DGA

If the malware cannot connect to the C2, it employs a Domain Generating Algorithm, or
DGA, to generate a domain. The DGA is dependent on the current year and month;
therefore, it generates a new domain on a monthly basis. Below is the code, reproduced in
C, displaying the DGA utilized by the malware.

6/12

#include "stdafx.h"

#include <Windows.h>

#include <stdio.h>

void main()

{

SYSTEMTIME st;

DWORD r1, r2, r3, seed;

char buf[100];

const char *format = "ab%x%x.com";
GetLocalTime(&st);

seed = st.wYear * 10000 + st.wMonth;
srand(seed);

rl = rand();
r2 = rand();
r3 = rand() * r2;

sprintf_s(buf, format, r3, ri1);
}

The list of domains calculated for all months in the years 2017 and 2018 are listed in the
Appendix.

Once the DGA domain for the current month and year has been calculated, the malware
calculates an IP address using that domain in the following steps:

o Get a hostent structure by calling gethostbyname on the generated domain
o Getthe h_addr_list, which is a NULL terminated list of IP addresses associated with
the domain

These A records (127.100.183[.]225 and 10.158.168[.]171) for the domain
ab1145b758c30[.]Jcom, as highlighted in the PCAP screenshot below will be used to
calculate a new C2 IP address. If there are more than two A records, the malware will only
utilize the first two on the list.

712

File Edit View Go Capture Analyze Statistics Telephon! Tools lntrna Help
oo Al BENXE WP DTL QAAQAE | @0 S % B

Filter: frame[54:B]==Ud:ﬁl:62:31:31:34:35:&2:3?:35:38:63:33:30:03:63:6f:6d:00:tE| Expression.. Clear Apply Save

Protocol Length Info
DNS 77 Standard query Ox764b A abl145bB758c20, com
DNS 109 standard query response 0x764b |a ab1145b758c30.com A 127.100.183.225 A 10.158.168.1?1]

Questions: 1
Answer RRs: 2
Authority RRs: O
Additional RRs: O
= Queries
= ab1145b758c30.com: type A, class IN
Name: abl145b758c30.com
[Name Length: 17]
[Label Count: 2]
Type: A (Host Address) (1)
Class: IN (0Ox0001)
= Answers
@ abl145b758c30. com:| type A, class IN, addr 127.100.183.225
abl145b758c30.com:| type A, class IN, addr 10.158.168.171

0020 5d 83 00 25 ef bd 00 4b 2e 93 76 4b 81 80 00 01 J..5.. K .LvK. ...
0030 00 02 00 00 00 OO0 Od 61 62 31 31 34 35 62 37 35 a b1145b75
0040 38 63 33 20 03 63 6Ff 6d 00 00 01 00 01 cO Oc 0O 8c30.com
0050 01 00 01 00 00 00 05 00 04 7f 64 b7 el cO Oc 00 Geccocc

006C 01 00 O1 OO0 OO OD 05 00 04 Da 9e aB ab,

4 famy|

m

1

»

Q @| This is a response to the DNS query in this fr... | Packets: 28 . Displayed: 2 (7.1%) . Dropp... | Profile: Default

The Python code below reproduces the algorithm to calculate the new C2 IP address from
the A records of the newly generated domain.

import struct
import socket
al OXE1B7647F # Addresses are returned in network byte order
a2 OXABAB9EOA def mod_record(rr):
rrl = (((rr & OxffEOOOEO) / Ox1000000) A (rr & Oxff)) * Ox1000000

rr2 = (((rr & OxffeOOO) / O0x10000) A ((rr & OxffOO) / Ox100)) * Ox10000
rr3 = rr & Oxffoo
rrd = rr & OXff

return (rrl1 | rr2 | rr3 | rr4)
newal = mod_record(al)
newa2 = mod_record(a2) newIP = (newa2 & Oxffffeoe0) | (newal >> O0x10) #
newIP = OxA1369ED3 print socket.inet_ntoa(struct.pack("<L", newIP)) #
Output is 211.158.54.161

The new C2 IP address derived from the records of the domain ab1145b758c¢30[.]Jcom is
211.158.54[.]161. The malware will attempt to connect to this C2 as shown below. If the

connection is successful, it will subsequently send the encoded data structure and await
stage 2.

8/12

coAm s BN Ae2dTL QQan #®m% B
Filter: | tcp.stream eq 0 |Z| Expression... Clear Apply Save |

Destination Protocol Info
51682 — 443 [SYN] Seg=0

TCP Retransmission] 51682 — 443 [s

Win=8192 Len=0 MS55=1460 WS=256 SACK_PERM=1

Seq=0 Win=8192 Len=0 M55=1460

Frame 16: 66 bytes on wire (528 bits), 66 bytes captured (528 bits) on interface 0 ~
Ethernet II, src: vmware_4f:89:9d (00:0c:29:4f:89:9d), Dst: vmware_ec:3a:7c (00:50:56:ec:3a:7c)
= Internet Protocol version 4, Src: 192.168.93.131, Dst: 211.158.54.161
0100 = Version: 4
. 0101 = Header Length: 20 bytes (5)
@ Differentiated services Field: Ox00 (DSCP: CSO, ECN: NOT-ECT)
Total Length: 52

[l]

0000 00 50 56 ec 3a 7c 00 Oc 29 4f 89 9d 08 00 45 00 PVLil. dO.LL L E
0010 00 34 Of 47 40 00 80 06 00 00 cO a8 5d 83 d3 %e AVGER. L L 1...
0020 36 al c9 e2 01 bb 63 23 44 d&6 00 00 00 00 BO 02 G..... C# Dovunnns
0030 20 00 28 92 00 00 02 04 O3 b4 01 03 03 08 01 01 .
0040 04 02 ..

@ @’ File: "C\Users\apollo\AppDatatLocal\Temp... | Packets: 26 . Displayed: 2 (7.7%) - Dropped: 0 (0.0... | Profile: Default

Initial (Buggy) Registry Modifications

Once the C2 communication subroutine has ended, the malware makes two registry
modifications:

Encodes the newly calculated C2 IP address and attempts to save it in
HKLM\SOFTWARE\Piriform\Agomo\NID. The encoding scheme is the same as the
one mentioned before. Analysis shows that before the registry key string is built, a
function is called to change the endianness of 0x44494E (DIN) to 0x4E4944 (NID).
However, due to a bug in the code the function incorrectly changes it to 0x004E4944
(prepended with a NULL value). Subsequently, function SHSetValueA is called with the
following parameters:

o hKey = HKEY_LOCAL_MACHINE

o Subkey = “SOFTWARE\Piriform\Agomo”

o Value =%
ValueType = REG_DWORD
o Data=...
DataLength = 0x4

[¢]

o

The parameter Value should be “NID”; however, since the string is incorrectly prepended
with a NULL value, the function doesn’t read the string at all. The C2 IP address is instead
saved in HKLM\SOFTWARE\Piriform\Agomo\Default as shown below.

9/12

File Edit View Favorites Help

- 1. Google = 1 Mame Type Data
ke i’“" PIFD“'C'E'S REG_DWORD 0xb5cf9636 (3050280582)
-) Intel S8 MUID REG_DWORD (01 afadfe (28290558)

- | JavaSoft
| L aveser 24 TCID REG_DWORD (x59cd8aTl (1506642545)
. JreMetrics

. Microsoft
. Microseft Corporation

VW W W

J mirkes.de
. MozillaPluging

T T e

i | Notepad++

>~ 0l NuGet

»-). ODBC

4 | Piriform

: - Agomo

: i], CCleaner

5 |, Paolicies

b - PreEmptive Sclutions
b Python

. RegisteredApplications

m

. Sonic

. SyncIntegrationClients
, ThinPrint

. VMware, Inc.

i 1) WinPcap

o || WOWBE432Nade

i T g

- . Zynamics
.. 1L SYSTEM ~ | |} D :
Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Pirform'Agomo

Takes the current time value as determined by the earlier call to msvcrt.time and adds
172,800 seconds (2 days) to the value. Saves the new value in
HKLM\SOFTWARE\Piriform\Agomo\TCID.

Recommendations

Falcon Endpoint will notify you of any additional activity through our Falcon Intelligence
detections. The intent behind the malicious packages was to collect an initial set of
reconnaissance data; we urge you to block the known IP address and domains at your
network perimeter to prevent any communication to the collection server. In addition, we
recommend you update to the latest version of the Avast CCleaner software to ensure the
embedded malicious code is removed.

For additional information on CrowdStrike’s threat intelligence offerings, visit the Falcon
Intelligence product page.

Appendix

Hashes

Information regarding the CCleaner binaries that were affected:

10/12

https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

Size: 9791816

SHA256: 1A4A5123D7B2C534CB3E3168F7032CFOEBF38B9A2A97226DOFDB7933CF6030FF
Compiled: Tue, Dec 29 2015, 21:34:49 UTC - 32 Bit EXE

Version: 5.33.00.6162

Signature Valid

Subject: Piriform Ltd

Issuer: Symantec Class 3 SHA256 Code Signing CA

Size: 7680216

SHA256: 6F7840C77F99049D788155C1351E1560B62B8AD18ADOE9ADDA8218BI9F432F0A9
Compiled: Thu, Aug 3 2017, 9:25:13 UTC - 32 Bit EXE

Version: 5, 33, 00, 6162

Signature Valid

Subject: Piriform Ltd

Issuer: Symantec Class 3 SHA256 Code Signing CA

Size: 7781592

SHA256: 36B36EE9515E0A60629D2C722BOO6B33E543DCE1C8C2611053E0651A0BFDB2E9
Compiled: Thu, Aug 3 2017, 9:37:49 UTC - 32 Bit EXE

Version: 5, 33, 00, 6162

Signature Valid

Subject: Piriform Ltd

Issuer: Symantec Class 3 SHA256 Code Signing CA

The following is the information about the decoded payload in memory:

Size: 16384

SHA256: FA8A55A05CA9E6587C941354628A0E818DCBF42ED3D98C40689F28564FOBFA19
Compiled: Tue, Aug 1 2017, 8:24:34 UTC — 32 Bit DLL

Network Artifacts

The following is the infrastructure associated with the CCleaner backdoor:

Infrastructure Connection Type Description

216.126.225[.]148 Port 443/ TCP C2

DGA Domains

Month, Year Domain Month, Year Domain

January, 2017 abde911dcc16[.Jcom January, 2018 ab3c2b0d28bab[.Jcom

February, 2017 ab6d54340c1a[.Jcom Feburary, 2018 ab99c24c0ba9[.Jcom

11/12

March, 2017 aba9a949bc1d[.Jcom March, 2018 ab2e1b782bad[.]Jcom

April, 2017 ab2da3d400c20[.]Jcom April, 2018 ab253af862bb0[.Jcom
May, 2017 ab3520430c23[.Jcom May, 2018 ab2d02b02bb3[.Jcom
June, 2017 ab1c403220c27[.Jcom June, 2018 ab1b0eaa24bb6[.]Jcom
July, 2017 ab1abad1dOc2a[.Jcom July, 2018 abf09fc5abbal.Jcom

August, 2017 ab8cee60c2d[.]Jcom August, 2018 abce85a51bbd[.Jcom

September, 2017 ab1145b758c30[.Jcom September, 2018 abccc097dbcO[.Jcom

October, 2017 ab890e964c34[.Jcom October, 2018 ab33b8aab9bc4[.Jcom

November, 2017 ab3d685a0c37[.Jcom November, 2018 ab693f4c0bc7[.Jcom

December, 2017 ab70a139cc3al.Jcom December, 2018 ab23660730bca[.Jcom

Dynamically Decoded Strings

The following are the strings that are dynamically decoded during the malware’s execution. It
should be noted that each string is promptly zeroed out in memory after use.

SOFTWARE\Piriform\Agomo
kernel32.dll

IsWow64Process
SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall
Publisher

Microsoft Corporation
DisplayName
QueryFullProcessImageFileNameA
SeDebugPrivilege

%U . %U . %U . %U

ab%x%x .com

speccy.piriform.com

12/12

