
1/12

Karan Sood October 4, 2017

CCleaner Backdoor: Analysis & Recommendations
crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/

The term “supply chain attacks” means different things to different people. To the general
business community, it refers to attacks targeting vulnerable third-parties in a larger
organization’s supply chain. A well-known retail chain’s massive breach in 2013 is a classic
example: Adversaries used a poorly protected HVAC vendor as their gateway to hack into
the giant retailer’s enterprise network. However, threat researchers have another definition:
To them, supply chain attacks can also denote the growing phenomenon in which malicious
code is injected into new releases and updates of legitimate software packages, effectively
turning an organization’s own software supply infrastructure into a potent and hard-to-
prevent attack vector. The recent backdoor that was discovered embedded in the legitimate,
signed version of CCleaner 5.33, is just such an attack.

To help inform the user community and empower them to better defend against software
supply chain attacks, the CrowdStrike® Security Response Team (SRT) conducted a
thorough analysis of the CCleaner backdoor. A popular PC optimization tool, the 5.33 version
of CCleaner has had widespread distribution across multiple industries, but the embedded
code appeared to actually be targeted at specific groups in the technology sector. (More
information on targeted industries is available for CrowdStrike customers in our Falcon
Intelligence™ portal.) CrowdStrike’s threat intelligence team had also previously reported on
the malware’s C2 (command and control) infrastructure in a recent alert for CrowdStrike
customers identifying possible links to Aurora Panda. The report also outlines the potential
for additional adversary tactics, techniques and procedures (TTPs).

https://www.crowdstrike.com/blog/protecting-software-supply-chain-deep-insights-ccleaner-backdoor/
https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

2/12

Technical Analysis

CCleaner

CCleaner is a PC cleaning utility developed by Piriform, which was recently acquired by
antivirus (AV) provider Avast in June 2017. The affected version of the utility contains a
modified __scrt_common_main_seh function that routes the execution flow to a custom
function meant to decode and load the malware. This takes place even before the entry point
(EP) of the utility is reached.The new execution flow leads to a function that decodes a blob
of data, as reproduced in Python below:

def decode(indata):
 key = 0x2547383

 i = 0

 dec = []

 for i in range(0, len(indata)):

 key = ((key * 0x47a6547) & 0xFFFFFFFF) & 0xFF
 dec.append(blob[i] ^ key)

 key = key >> 0x8

 return dec

The result of the decoding subroutine is shellcode and the payload (which is missing the
IMAGE_DOS_HEADER field). The missing IMAGE_DOS_HEADER is likely to subvert AV
solutions that search for MZ (0x4d5a) headers in memory.

Next, the program creates a memory heap with the flag
HEAP_CREATE_ENABLE_EXECUTE to allow for execution, and copies the shellcode on
the heap, and executes it.

ShellCode

The shellcode is responsible for loading the payload in memory. It attains the PEB (Process
Environment Block) of the malware process to load kernel32.dll and find the location of the
function GetProcAddress. This function is used to retrieve the addresses of functions such
as VirtualAlloc, memcpy, and LoadLibrary. It allocates PAGE_EXECUTE_READWRITE
memory to which it copies the previously decoded payload (minus the
IMAGE_DOS_HEADER) as shown below.

0000000: 0000 0000 0000 0000 0000 0000 0000 0000
 0000010: 0000 0000 0000 0000 0000 0000 0000 0000
 0000020: 0000 0000 0000 0000 0000 0000 0000 0000

3/12

0000030: 0000 0000 0000 0000 0000 0000 d000 0000
0000040: 0000 0000 0000 0000 0000 0000 0000 0000
0000050: 0000 0000 0000 0000 0000 0000 0000 0000
0000060: 0000 0000 0000 0000 0000 0000 0000 0000
0000070: 0000 0000 0000 0000 0000 0000 0000 0000
0000080: 0000 0000 0000 0000 0000 0000 0000 0000
0000090: 0000 0000 0000 0000 0000 0000 0000 0000
00000a0: 0000 0000 0000 0000 0000 0000 0000 0000
00000b0: 0000 0000 0000 0000 0000 0000 0000 0000
00000c0: 0000 0000 0000 0000 0000 0000 0000 0000
00000d0: 5045 0000 4c01 0200 c23a 8059 0000 0000 PE..L....:.Y....
00000e0: 0000 0000 e000 0e21 0b01 0600 0020 0000!..... ..
00000f0: 0002 0000 0000 0000 0011 0000 0010 0000
0000100: 0030 0000 0000 0010 0010 0000 0002 0000 .0..............
0000110: 0400 0000 0000 0000 0400 0000 0000 0000
0000120: 0040 0000 0004 0000 0000 0000 0200 0000 .@..............
0000130: 0000 1000 0010 0000 0000 1000 0010 0000
0000140: 0000 0000 1000 0000 0000 0000 0000 0000
0000150: 4c28 0000 dc00 0000 0000 0000 0000 0000 L(..............
0000160: 0000 0000 0000 0000 0000 0000 0000 0000
0000170: 0030 0000 c000 0000 0000 0000 0000 0000 .0..............
0000180: 0000 0000 0000 0000 0000 0000 0000 0000
0000190: 0000 0000 0000 0000 0000 0000 0000 0000
00001a0: 0000 0000 0000 0000 0010 0000 0001 0000
00001b0: 0000 0000 0000 0000 0000 0000 0000 0000
00001c0: 0000 0000 0000 0000 2e74 6578 7400 0000text…
00001d0: 041e 0000 0010 0000 0020 0000 0004 0000
00001e0: 0000 0000 0000 0000 0000 0000 2000 00e0 …
00001f0: 2e72 656c 6f63 0000 1a01 0000 0030 0000 .reloc.......0..
0000200: 0002 0000 0024 0000 0000 0000 0000 0000$..........
0000210: 0000 0000 4000 0042 0000 0000 0000 0000@..B........

Once the payload is copied to the newly allocated memory, the shellcode resolves the
needed API’s, and calls the OEP (original entry point) of the payload in memory.

Payload

Environment Checks

Once it’s loaded, the payload creates a thread that performs the core functionality of the
malware. It performs a few checks at the onset of the environment and the user privileges.
The malware employs the function msvcrt.time to record the current time of the malware. It
then uses IcmpCreateFile and IcmpSendEcho to send an IPv4 ICMP echo to an invalid IP
address, with a timeout of 601 seconds. This is meant to delay the execution of the malware
by 601 seconds; this delay is then measured by calling msvcrt.time again, and ensuring that
more than 600 seconds have elapsed between the first and second calls to the function. It

4/12

should be noted that if the call to IcmpCreateFile fails, the malware will just sleep for 600
seconds.These steps are measures against debugging and/or sandboxing. It also invokes
IsUserAnAdmin to ensure that the current user is member of the administrator’s group. If
either of these checks fails, the malware exits immediately.

It uses a decoding scheme as the one described above to decode strings during runtime in
memory. It is important to note that these dynamically decoded strings are zeroed out in
memory before each function using them exits. The strings dynamically decoded throughout
the execution of the malware are listed in the Appendix section of this blog.

The malware also checks the privilege levels of its own process; if the process does not have
administrative privileges, it uses AdjustTokenPrivileges to enable the SeDebugPrivilege
value for the process. This enables the process to either debug or adjust memory for a
process owned by another account.

Registry Checks

The malware checks for the following registry key:
HKLM\SOFTWARE\Piriform\Agomo\TCID. The key value is supposed to hold a system
time value; if the value is greater than the current time, the malware will terminate. It also
checks the value of HKLM\SOFTWARE\Piriform\Agomo\MUID. If the key does not exist,
the malware will set its value using a pseudo-random number derived in the following
manner:

// Pseudocode to calculate MUID val
 DWORD MUID;

 unsigned int seed, rand1, rand2;
 seed = GetTickCount();

 srand(seed);
 rand1 = rand();

 rand2 = rand() * rand1;
 MUID = GetTickCount() ^ rand2;

Gathering Victim Information

Once the checks are completed, the malware gathers the following information about the
victim machine:

OS major version
OS minor version
OS architecture
Computer name
Computer DNS domain

5/12

IPv4 addresses associated with the machine. This information is gathered by calling
GetAdaptersInfo, and then enumerating through each adapter to search for the
IP_ADAPTER_INFO → IpAddressList → IpAddress field.
Installed applications. The malware accesses the registry key
HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall, and enumerates
through each key, and compares the Publisher value with “Microsoft Corporation.” If
there is a match, it moves on to the next value. If not, it will attain the DisplayName
value using SHGetValueA, and insert it into memory. Each name is prepended with an
“S” in memory.
Full name of the executable image of each running process. The malware calls
WTSEnumerateProcessA to get a pointer to an array of WTS_PROCESS_INFO
structures, which are then used to get the ProcessName field for each process. Each
process name is prepended with a “P” in memory.

This information is stored in a data structure in memory in the following manner:

The MUID_Val is used as a unique identifier for the victim machine.

Next, the structure is encoded in memory in two steps:

Step 1: Aforementioned scheme
Step 2: Modified version of base64

The image below displays the data structure as it goes through each encoding step.

6/12

The custom base64 encoding scheme uses a modified Base64 index table. Rather than the
regular table that has the following values:
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/; its
table has the following values:
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!*.

C2 Communication

Once the victim machine information has been encoded, the malware queries the registry
key HKLM\SOFTWARE\Piriform\Agomo\NID. Upon the initial run, the registry key does not
exist; however, the malware eventually inserts an IP address computed via a DGA (Domain
Generating Algorithm) later in the execution flow. It is interesting to note that even if the
registry key exists, the malware extracts the IP address from the registry value, but does not
do anything with it. After the registry check, it decodes the hard-coded IP address
216.126.225[.]148, and attempts to send the encoded data struct to it via an HTTP POST
request on port 443. It uses InternetSetOptionA to set the following option flags on the
HTTP handle:

SECURITY_FLAG_IGNORE_CERT_DATE_INVALID → Ignores bad or expired SSL
certificates from the server
SECURITY_FLAG_IGNORE_CERT_CN_INVALID → Ignores incorrect SSL certificate
common names
SECURITY_FLAG_IGNORE_WRONG_USAGE → Ignores incorrect usage problems
SECURITY_FLAG_IGNORE_UNKNOWN_CA → Ignores unknown certificate authority
problems
SECURITY_FLAG_IGNORE_REVOCATION → Ignores certificate revocation problems

The malware also calls HttpAddRequestHeadersA to append the domain
speccy.piriform[.]com to the POST request. This is performed to appear inconspicuous and
make it harder to detect. It is also likely an attempt to confuse the analyst performing
dynamic analysis of the malware. Once the information is sent to the C2, the malware
expects to receive a stage 2, which it reads into a locally allocated memory block. Analysis
shows that once stage 2 is received, it is decoded using the same custom Base64 and the
decoding algorithm. Once decoded, the functions GetProcAddress and LoadLibraryA are
pushed to the stack, and the EP of stage 2 is called. At the time of analysis, stage 2 was not
available.

DGA

If the malware cannot connect to the C2, it employs a Domain Generating Algorithm, or
DGA, to generate a domain. The DGA is dependent on the current year and month;
therefore, it generates a new domain on a monthly basis. Below is the code, reproduced in
C, displaying the DGA utilized by the malware.

7/12

#include "stdafx.h"
#include <Windows.h>
#include <stdio.h>
void main()
{
SYSTEMTIME st;
DWORD r1, r2, r3, seed;
char buf[100];
const char *format = "ab%x%x.com";
GetLocalTime(&st);
seed = st.wYear * 10000 + st.wMonth;
srand(seed);
r1 = rand();
r2 = rand();
r3 = rand() * r2;
sprintf_s(buf, format, r3, r1);
}

The list of domains calculated for all months in the years 2017 and 2018 are listed in the
Appendix.

Once the DGA domain for the current month and year has been calculated, the malware
calculates an IP address using that domain in the following steps:

Get a hostent structure by calling gethostbyname on the generated domain
Get the h_addr_list, which is a NULL terminated list of IP addresses associated with
the domain

These A records (127.100.183[.]225 and 10.158.168[.]171) for the domain
ab1145b758c30[.]com, as highlighted in the PCAP screenshot below will be used to
calculate a new C2 IP address. If there are more than two A records, the malware will only
utilize the first two on the list.

8/12

The Python code below reproduces the algorithm to calculate the new C2 IP address from
the A records of the newly generated domain.

import struct
 import socket
 a1 = 0xE1B7647F # Addresses are returned in network byte order

 a2 = 0xABA89E0A def mod_record(rr):
 rr1 = (((rr & 0xff000000) / 0x1000000) ^ (rr & 0xff)) * 0x1000000

 rr2 = (((rr & 0xff0000) / 0x10000) ^ ((rr & 0xff00) / 0x100)) * 0x10000
 rr3 = rr & 0xff00

 rr4 = rr & 0xff
 return (rr1 | rr2 | rr3 | rr4)

 newa1 = mod_record(a1)
 newa2 = mod_record(a2) newIP = (newa2 & 0xffff0000) | (newa1 >> 0x10) #

newIP = 0xA1369ED3 print socket.inet_ntoa(struct.pack("<L", newIP)) #
Output is 211.158.54.161

The new C2 IP address derived from the records of the domain ab1145b758c30[.]com is
211.158.54[.]161. The malware will attempt to connect to this C2 as shown below. If the
connection is successful, it will subsequently send the encoded data structure and await
stage 2.

9/12

Initial (Buggy) Registry Modifications

Once the C2 communication subroutine has ended, the malware makes two registry
modifications:

Encodes the newly calculated C2 IP address and attempts to save it in
HKLM\SOFTWARE\Piriform\Agomo\NID. The encoding scheme is the same as the
one mentioned before. Analysis shows that before the registry key string is built, a
function is called to change the endianness of 0x44494E (DIN) to 0x4E4944 (NID).
However, due to a bug in the code the function incorrectly changes it to 0x004E4944
(prepended with a NULL value). Subsequently, function SHSetValueA is called with the
following parameters:

hKey = HKEY_LOCAL_MACHINE
Subkey = “SOFTWARE\Piriform\Agomo”
Value = “”
ValueType = REG_DWORD
Data = …
DataLength = 0x4

The parameter Value should be “NID”; however, since the string is incorrectly prepended
with a NULL value, the function doesn’t read the string at all. The C2 IP address is instead
saved in HKLM\SOFTWARE\Piriform\Agomo\Default as shown below.

10/12

Takes the current time value as determined by the earlier call to msvcrt.time and adds
172,800 seconds (2 days) to the value. Saves the new value in
HKLM\SOFTWARE\Piriform\Agomo\TCID.

Recommendations

Falcon Endpoint will notify you of any additional activity through our Falcon Intelligence
detections. The intent behind the malicious packages was to collect an initial set of
reconnaissance data; we urge you to block the known IP address and domains at your
network perimeter to prevent any communication to the collection server. In addition, we
recommend you update to the latest version of the Avast CCleaner software to ensure the
embedded malicious code is removed.

For additional information on CrowdStrike’s threat intelligence offerings, visit the Falcon
Intelligence product page.

Appendix

Hashes

Information regarding the CCleaner binaries that were affected:

https://www.crowdstrike.com/endpoint-security-products/falcon-x-threat-intelligence/

11/12

Size: 9791816
SHA256: 1A4A5123D7B2C534CB3E3168F7032CF9EBF38B9A2A97226D0FDB7933CF6030FF
Compiled: Tue, Dec 29 2015, 21:34:49 UTC – 32 Bit EXE
Version: 5.33.00.6162
Signature Valid
Subject: Piriform Ltd
Issuer: Symantec Class 3 SHA256 Code Signing CA

Size: 7680216
SHA256: 6F7840C77F99049D788155C1351E1560B62B8AD18AD0E9ADDA8218B9F432F0A9
Compiled: Thu, Aug 3 2017, 9:25:13 UTC – 32 Bit EXE
Version: 5, 33, 00, 6162
Signature Valid
Subject: Piriform Ltd
Issuer: Symantec Class 3 SHA256 Code Signing CA

Size: 7781592
SHA256: 36B36EE9515E0A60629D2C722B006B33E543DCE1C8C2611053E0651A0BFDB2E9
Compiled: Thu, Aug 3 2017, 9:37:49 UTC – 32 Bit EXE
Version: 5, 33, 00, 6162
Signature Valid
Subject: Piriform Ltd
Issuer: Symantec Class 3 SHA256 Code Signing CA

The following is the information about the decoded payload in memory:
Size: 16384
SHA256: FA8A55A05CA9E6587C941354628A0E818DCBF42ED3D98C40689F28564F0BFA19
Compiled: Tue, Aug 1 2017, 8:24:34 UTC – 32 Bit DLL

Network Artifacts

The following is the infrastructure associated with the CCleaner backdoor:

Infrastructure Connection Type Description

216.126.225[.]148 Port 443 / TCP C2

DGA Domains

Month, Year Domain Month, Year Domain

January, 2017 abde911dcc16[.]com January, 2018 ab3c2b0d28ba6[.]com

February, 2017 ab6d54340c1a[.]com Feburary, 2018 ab99c24c0ba9[.]com

12/12

March, 2017 aba9a949bc1d[.]com March, 2018 ab2e1b782bad[.]com

April, 2017 ab2da3d400c20[.]com April, 2018 ab253af862bb0[.]com

May, 2017 ab3520430c23[.]com May, 2018 ab2d02b02bb3[.]com

June, 2017 ab1c403220c27[.]com June, 2018 ab1b0eaa24bb6[.]com

July, 2017 ab1abad1d0c2a[.]com July, 2018 abf09fc5abba[.]com

August, 2017 ab8cee60c2d[.]com August, 2018 abce85a51bbd[.]com

September, 2017 ab1145b758c30[.]com September, 2018 abccc097dbc0[.]com

October, 2017 ab890e964c34[.]com October, 2018 ab33b8aa69bc4[.]com

November, 2017 ab3d685a0c37[.]com November, 2018 ab693f4c0bc7[.]com

December, 2017 ab70a139cc3a[.]com December, 2018 ab23660730bca[.]com

Dynamically Decoded Strings

The following are the strings that are dynamically decoded during the malware’s execution. It
should be noted that each string is promptly zeroed out in memory after use.

SOFTWARE\Piriform\Agomo
 kernel32.dll

 IsWow64Process
 SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

 Publisher
 Microsoft Corporation

DisplayName
 QueryFullProcessImageFileNameA

 SeDebugPrivilege
 %u.%u.%u.%u

 ab%x%x.com
speccy.piriform.com

