
1/11

Ramnit – in-depth analysis | CERT Polska
cert.pl/en/news/single/ramnit-in-depth-analysis/

If we look on Ramnit’s history, it’s hard to exactly pin down which malware family it actually
belongs to. One thing is certain, it’s not a new threat. It emerged in 2010, transferred by
removable drives within infected executables and HTML files.

A year later, a more dangerous version was released. It contained a part of recently leaked
Zeus source code, which allowed Ramnit to become a banking trojan.

These days, it has become much more sophisticated by utilizing a number of malicious
activities including:

Performing Man-in-the-Browser attacks
Stealing FTP credentials and browser cookies
Using DGA (Domain Generation Algorithm) to find the C&C (Command and
Control) server
Using privilege escalation
Adding AV exceptions
Uploading screenshots of sensitive information

https://www.cert.pl/en/news/single/ramnit-in-depth-analysis/


2/11

Despite Europol’s shut down of 300 C&C servers in 2015, it’s still going strong, recently
being distributed by RIG EK via seamless gates.

Executable’s analysis
The main binary is packed like a matryoshka – a custom packing method first and then
UPX.

Despite being encrypted, extracting the binary from the packer is pretty straight-forward
– all one needs to do is to set a breakpoint right after the binary decrypts the code and
before it jumps into it. 

https://www.europol.europa.eu/newsroom/news/botnet-taken-down-through-international-law-enforcement-cooperation


3/11

And if we now navigate to the newly unpacked code section we’ll find the binary right
after the loader assembly:



4/11

The unpacked binary (after UPX decompression) consists of 3 general functions:

ApplyExploit
CheckBypassed
start

ApplyExploit
If the current user is not already an admin and the process is not running with admin
privileges it tries to perform privilege escalation.

Malware contains exploits for CVE-2013-3660 (patched in MS13-053) and CVE-2014-
4113 (patched in MS14-058) vulnerabilities, however before it actually tries to run the
payload, registry checks are performed to make sure that the host system is indeed
vulnerable to said CVEs:

If the exploits succeed or the program is already running with high privileges, a “TRUE”
value is stored in a hardcoded random-looking registry key:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\jfghdug_ooetvtgk, which is later used in the CheckBypassed
function.

CheckBypassed
This function checks if previously mentioned registry key is set. If not and process has
admin privileges, updates it. Assuming the exploit has worked, Ramnit then adds
registry keys to evade Windows’ security systems detection (see Obfuscation/Evasion):

start routine
The routine coordinates ApplyExploit and CheckBypassed – if they both run
successfully it creates two svchost.exe processes and writes rmnsoft.dll and
modules.dll into them respectively.

Important detail: the binary executes CheckBypassed before ApplyExploit, so the
binary has to be executed again in order to make any further progress. This trick
outsmarts many single-run malware analysis systems, such as Cuckoo.

http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2013-3660
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-4113


5/11

Static config
Ramnit encrypts its network communication using RC4 algorithm. Key for RC4 and
botnet name are encrypted using xor with a hardcoded password.

XOR encryption is pretty standard, the only catch is that it skips key’s first char and
then reverses the key.

XOR function calls:

Ciphertext lengths are almost always too long and we have to rely on null termination:

DGA config seems to be always declared at the beginning of the data section: 



6/11

Persistence
Program copies itself into C:\Users\User\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\.

DGA
Ramnit generates a list of domains by using a LCG algorithm with a hardcoded seed:

Generating a domain:



7/11

DGA recreated in Python:

Communication
Ramnit connects to C&C servers through port 443, but don’t let that fool you – it
doesn’t use HTTPS, but its own protocol instead:

Packet’s structure:

Chunks’ structures:

So if we’d like to send a packet containing some data, we would:

encrypt large (>4bytes) chunk data using RC4 with a key recovered from the
XOR decryption
create packed chunks from data parts
concatenate all chunks together
wrap the output in packet layer

Traffic example:



8/11

Some of available commands:

Command
Byte
Value Short Description

COMMAND_OK 0x01 Server’s response that the command
executed successfully

GET_DNSCHANGER 0x11 Get DNS-changer payload

GET_INJECTS 0x13 Get webinjects

UPLOAD_COOKIES 0x15 Upload stolen cookies (zip format)

GET_MODULE 0x21 Get a specific module

GET_MODULE_LIST 0x23 Get a list of downloadable modules

VERIFY_HOST 0x51 Check if the host is able to send a
signed message

REGISTER_BOT 0xe2 Register bot (send two MD5s)

UPLOAD_INFO_GET_COMMANDS 0xe8 Upload detailed machine info

Bot registration
When a bot wants to register itself it sends two encrypted md5 hashes, the data
structure of which is following:

Python code:

If C&C responds with a success packet (00ff0100000001), malware follows up with a
empty 0x51 command. Signature from the response is verified using a hardcoded
public RSA key. If there is a mismatch – the execution stops.

Modules
The program can request a list of modules and then download each one individually:

Antivirus Trusted Module v2.0
Adds exceptions to a fixed list of anti-virus software (AVG Anti-Virus, BitDefender,
Avast, ESET NOD32 Antivirus, Norton AntiVirus)

Chrome reinstall module (x64-x86) v0.1
Uninstalls Google Chrome

and installs it again:

Cookie Grabber v0.2 (no mask)



9/11

Steals cookies from various hardcoded locations and sends a zip with results to the
C&C through rmnsoft.dll.

Hooker
Used for performing Man-in-the-Browser attacks and hooking HTTP functions.

Webinjects
Webinjects are a relatively new addition to Ramnit. They utilize a standard Zeus format:

Obfuscation / Evasion
Ramnit attempts to hide itself from Windows Defender by adding following registry
values:

‘NOPs’ are inserted in random functions, which makes them difficult to find using e.g.
Yara rule:

New variant
During writing of this article we’ve noticed a variation of Ramnit called clickbideu in an
Italian spam campaign.

Its loader is completely different, but the communication module (rmnsoft.dll) has
remained somewhat unchanged with only some minor differences:

DGA cycles between 3 hardcoded TLDs instead of just one:

Python implementation:



10/11

Also new version seems to be using different port – 8001, although we’ve also seen
usage of port 442.

Additionally, a different value (“fE4hNy1O”) is used for calculating the second md5.

Additional links
IoCs
Yara rules:
Samples analyzed:

Main PE

92460d8ac1d1e9f155ef2ca6dd7abb417df8900a17e95157d4372a2c846e829f
rmnsoft.dll

be2044fe6f0220dde12c51677f2ef4c45d9dea669073bd052695584e573629e0
modules.fll

96a10e07d092f6f429672ce2ca66528aae19de872bda39249135a82477d27a83
Module Antivirus Trusted Module v2.0 (AVG, Avast, Nod32, Norton, Bitdefender)

975ed0f933d4a22ca631c5ab77c765cd46c48511d43326b066b4505c6dc911de
Module Cookie Grabber v0.2 (no mask)

bc977a0f455fc747a7868a7940aa98af10c91c4aae7598310de8b78132436bee
Module Hooker

a88151b3bf825e26ded28f94addeada095d2cd13791b2153a9594b26d9cfb85e
Configs:
Loader sha256:

d290225dde1b18bf68c4c42e06638a61fb336c91a2c4e6dd007bcbe7327fcbae
c2cae7d9ef91dfcc1ae8f542e0ac64ce66c526d5a4154241855020612d358ee8
1f3fbca46a599b4f221ead7785606451365db45bbbc537ee0c4d019e8984d106
9d723bb1dc375834ebb907271b83dffab44e98b82fa73da6267037f019e4bc83
f3567e2b5fc521987f0dd79aff6f3b1328db8e03fa825c3c030080a8b5819564
7689465ba010537b0c29cf18d32a25962bd1605b717733f5953eb1b1eb0a68c9
f98ca50b7d07682ac359b97dd68eb924c4cbd825db72c1a132458e9bb765fa1e
4b00b0ece480267af051e7907458381d8a9e8506c7da67b8a8e1d74d45773d68
6ac47d82134385fa73386ff3cd7b2eb7008da2205b3f5af7b41fab45c63f9046
6a1fc689d2ef32ee6288498f8a875c6dc880d7494f46c05d25d0e1f627984e8e
522e935b91307b8c01e0ea8a724985f5b4e01227a761aeccb63b00f0d964f7e9
b3e67b5ee899c53f90c9da772592a4709372192542e1297bbce4929a8e1d5c69
71d92cc6dc9273d162a969960b1021e5f18cf39b2c48043e5c5e49db5a58d955



11/11

da15c2a89334496910b6d966bf91fa25a1c9526c53796e06d166416abe7cf2f4
e4353bda9692581ea9743165dfd843238c23bb92e24b778983de80e90ac650a3

DGA domains for analyzed configs:


