Deep Analysis of New Poison lvy/PlugX Variant - Part Il

&_8 blog.fortinet.com/2017/09/15/deep-analysis-of-new-poison-ivy-plugx-variant-part-ii

September 15, 2017

Threat Research

By Xiaopeng Zhang | September 15, 2017

Background

This is the second part of the FortiGuard Labs analysis of the new Poison lvy variant, or
PlugX, which was an integrated part of Poison lvy’s code. In the first part of this analysis we
introduced how this malware was installed onto victim’s systems, the techniques it used to
perform anti-analysis, how it obtained the C&C server’s IP&Port from the PasteBin website,
and how it communicated with its C&C server.

What we didn’t talk much about in that first blog was the control-commands that are used by
this malware, partly because only a few of those commands were used during our analysis.
However, as you may know, RAT malware usually has many control-commands so that
attackers can effectively remotely control a victim’s machine.

1/12

https://blog.fortinet.com/2017/09/15/deep-analysis-of-new-poison-ivy-plugx-variant-part-ii
https://blog.fortinet.com/blog/search?author=Xiaopeng+Zhang
https://fortiguard.com/
http://blog.fortinet.com/2017/08/23/deep-analysis-of-new-poison-ivy-variant

So, after our initial analysis, we monitored the C&C servers and captured their packets.
Fortunately, we were able to successfully collect enough attacks and packets so that we
could obverse and document its behavior. In this analysis, I'm going to focus on the control-
commands used by the C&C server as it attempts to penetrate the victim’s network by
exploiting vulnerabilities.

Victim's LAN

Penetration

Control Commands

C&C server/Attacker Victim

Although the C&C servers have now been shut down, we found a way to decrypt the
communication data from the captured packets in order to analyze its behavior.

As per my analysis, this variant of Poison Ivy eventually launches the MS17-010 (Eternal
Blue) attack against the machines located inside the victim’s LAN. Let’s now take a look at
how it performs this exploit.

Manage multiple modules

Before going on, however, we have to talk about how the decrypted modules are managed.
From Part | we know that there are six modules in the svchost.exe program, which are
connected by a doubly linked list. There is a module node in each of modules, as well as in
svchost.exe. The module node is added into the doubly linked list when its module code is
initialized. The header of the doubly linked list is in a global variable located in svchost.exe’s
memory space (qword_2345D0 with base address 0x220000 in my case). Below is a
module node’s structure, along with some corrections to the one shown in the Part | of this
analysis.

offset 8ize Description

+BEH bytes pointer to next object in the list

+BEH bytes pointer to previous object in the list
+18H bytes a flag that tells if the module being used
+14H bytes a constant @x1B1844DF

+18H bytes module’s index

+28H bytes the base address of the module

+38H bytes pointer to export function table

[I~ I R R -

2/12

https://technet.microsoft.com/en-us/library/security/ms17-010.aspx

The first module (which was injected into svchost.exe when svchost.exe started) is executed
in svchost.exe, and was the first one added into the doubly linked list. | call it the host
module.

| named these module1, module2, etc. according to the order in which they are added into
the doubly linked list, The six modules are decrypted by the host module.

Figure 1 shows a view of the module node of the host (svchost.exe) in memory.

00000000002 1F&ES oo 0o add byte ptr ds [rax] ,al
00000000002 1FSES oo oo add byte ptr ds:[rax],al
0000000002 1FGET oo zo add byte ptr ds:[ra<].zh ~ | |Default (x4 Fasteal)
1 | i S e b 1: rCx 000000000051F2
z
3
4

e g e

Lo g g ‘

i tdx 0000000000000C
I K& 000000000021EB0C

Iore 000000004001000

00000000002 1FE08 Const value
R EQ00000000z OF3045
WoDump 1 G Dump 2 | s w5 | B Gfimp 4 I wWoumes | & odulemdex I 0002 1FG0E | 000000000021F&FO |
sddress [hex Next node Prev “nd"",.-'M [P00z LFSED | 0000000000000000
0000000000334A20 | 42 o L AL ﬁbL** 00021FEES | 0000000000000020
e R ..1,. TR, AR R R 0002 LFEFD | 0000000000404045
2Used fla E et T : 2 12 1FGFE | DO0G0O00005ARS 40
'3' T T e e T » Module Base Address |
z Z1F700 | 00000000005 AAZED
””””””””””” 5 o 00021F708 | 00000000001921E3 |
HOBoO50003 34A !
TR E A 00021F710| 00000000005 ABSCA | L

O0021F712 | 00000000005A3000

LG LLL LR EEFEY

0 Pointer to function table

O0021F720| 0000000000000000
OO021F722 | 0000000000000000
OO021F720|0000000000000043

DDDDDDDDDDB34ABD 0002 1F725 | 0000000000000001
00000000003 24420

00021F740 [0000000000000000
00000000003 34A00 0002 1F745 | 0000000000000000
00000000003 244E0

OO021F750| 0000000000000000

00000000003 34AF0 0002 1F7EE | 0000000000000000

00000000033 4610 Oo0zZ1F7&0 | 0000000000000000
00000000002 34B10

00000000003 24E20 ODO0Z1F7&E | 0000000000000000
00000000003 324E30 O0021F770 | 00000FFEFEQAQOOD | W

OO021F772 | 00000000002345F3

0000000000334EB40 0002 1F7E0 | 0000000000000001

0000000000334B50 OO021F722 | 0000000000000000
0000000000334B60 O0021F720| 0000000000232 4460
0000000000334870 0002 1F722 | 0000000000151003
00000000002 24B50

OO021F7AD | F2027208A6525E00
00021F7~8 | 0000000000000003
0002 1F7EO | 000000000021F3E0 | &'

0000000000324E20
00000000003 24EA0

oaoDDaa00a 450D O0021F7ES | 00000000005405590
0000000000322 4BC0

00000000003 34E00 OOOZ1FZC0 | 0000000000000000
00000000003 34BED O0021F 728 | 000000000017324C4 |

ODoOzZ1F70D0| 00000000000000032
ODOZ1F7DE | 00000000005 405590
ANnz I ETEN L Anannnnnnna 24a6n

00000000003 24EF0
00000000003 2400

Figure 1. View of the host module node in memory

The host module node’s address is 0x334A20. The previous node’s address is 0x165068,
and the next one is 0x51F280. The host module’s index is 0, and its module base address is
0x220000. Finally, the function table’s address is 0x334A60. Module index is important
because it is also a part of the Control-Commands. We will talk more about this later.

Several functions in the host module are used to manage this doubly linked list. To manage
the doubly linked list between these different modules, the author of the malware designed a
named sharing memory (by calling API CreateFilemappingA) where the addresses of the
manager functions are saved. So whenever it wants to manage the doubly linked list, it only
needs to access all these functions from the sharing memory. BTW, the name of this sharing
memory is created by calculating two current process IDs (by calling API
GetCurrentProcessID, i.e. svchost.exe PID).

3/12

In Figure 2, you can see how the named sharing memory is created, and where the manager

functions are saved in the sharing memory. The functions in [rax+8] and [rax+18] are called
frequently during handling C&C commands. [rax+18] is the function that gets the module
node from the doubly linked list using the module index, and sets module flag. [rax+8] is
used to restore the module flag.

cs:call_GetCurrentProcessId ; GetCurrentProcessIN
edi, eax

edi, BFFFFFFFCh

cs:call_GetCurrentProcessld ; GetCurrentProcessid
rdx, unk_2254D8 ; ;; "%Lpi%p"

mou bx, eax
lea A sp+98h+var_68]
now r8d, 1EANTTHR
xor ebx, L4OA0GGE
call Decrypt_String_fun
nou rcx, rax
call sub_2210088 ; ;WideCharToHultiByte
lea rcx, [rsp+PBh+var_ 48] ; ;;target buf
mowv rod, edi
now rdx, rax 5 "%pEkpt
now r8d, ebx
call cs:call_wsprintfA ; wsprintfA{target ec 2) %p address
lea rcx, [rFsp+?8h+var_68]
call sub_224C54
now ebx, 28h
lea r11, [rsp+98h+var/ 48] ;- 0ae00080040ABBACEABARBAOFFFFF238" as CreateFileMappingA name
now [rsp+98h+var_78] % r11
lea v8d, [rbx-24h]
®or rod, rod
®or edx, edx
or rcx, BFFFFFFFFFFFFFFFFh
mowv dword ptr [rsp+98h+var_ 78], ebx
call cs:call CreateFilemappingn
test rax, rax
jnz short loc_222A5A
L L1
loc_222A5A: ; CODE XREF: sub_2220C4+8CTj
xar r9d, r9d
xor r8d, r8d
mov FCX, rax
lea edx, [r9+2]
moy [rsp+98h+var_78], rbx
call cs:call HapUiewDfFile ; HMapUiewOfFile
test rax, rax
jz short loc 22252 ;
flea rCX, SuUb_222F28 ; ; add module node 1nto doubly 1inKed 115t. ™y
mov [rax], rcx
lea rcx, sub_ 223884 ; ;;; restore module used flag
moy [rax+8], rc=z
lea rcx, sub_223188
moy [rax+18h], rcx
lea rcx, sub_223348 ; ;;;get module node from doubly linked 1list by moudle index.
moy rax+18h rCx - A
lea Ecx, Suhjgm,w It saves 5 functions of managing doubly
oy rax+28h], rcx
@mu .[-.:x, .-ax] linked list into named sharing memory. —_
call cs:call_UnmapUiewOfFile
Xor eax, eax
loc_222ABB: ; CODE XREF: sub_2229CL4+947j
moy rbx, [rsp+98h+arg_#8]
add rsp, 98h
pop rdi
retn
sub_2229Ch endp

4/12

Figure 2. Code snippet of adding management functions into the named sharing memory

Here is the modules’ information in my test environment:

Name Base address Size Module index
Host ax2z2agaa BX11E888 Bxge
Modulel axlcagga BxaarFeaa Bxel
Module2 axl7agaa gxalleaa Bxe2
Modulez ax1sgaaa Bxaleoga Bxe3
Moduled axapagaa BXa8EBQ8 Bxes
Modules ex4E@88a Bx08ERa8 ex1e
Modules ax4ragaa BXa8Faaa Bxl1l

Control-Command Packet Structure

In order to easily understand the C&C packets, | will explain the packet structure here. As |
explained in the first blog, the packet payload is encrypted. Through analyzing its decryption
function, | was able to write a python function to decrypt the data. This is the same function
that the host module used to decrypt those six modules, as well as the C&C server IP&Port
from the PasteBin website, but different decryption keys are used.

Python decryption function:

def decrypt_fun({buf, size, key):

target = []
keyl = key
key2 = key

for cnt in range(size):
keyl *= 8x13373c8
key2 *= @x13
keyl ~= 8x5397fc2
key2 -= 8x17
cl = (keyl&axft)
cl -= (key2&exff)
val = {({cl} =~ ord(buf[cnt]})&axff
target.append({val))

return Jjoin{map{chr, target))

The decrypted packet consists of two parts. The first 14H bytes are the header, and the data
starts at offset 14H. The packet structure looks like this:

offset Size Description

+88H 4 bytes Decryption key

+84H 4 bytes Control-Command

+88H 4 bytes Sub-command, data depends on control-command
+BCH 4 bytes the size of data part

+18H 4 bytes

+144H variable the data part starts here

In the first blog | introduced commands “030001” and “030003”. Please refer here for more
details. By the way, the malware uses big-endian byte order to save its data. The control
command is a Dword value, whose high 16 bits are the module index, and the low 16 bits is

5/12

http://blog.fortinet.com/2017/08/23/deep-analysis-of-new-poison-ivy-variant

a kind of code branch switch. Once the malware gets the command it retrieves the module
node from the doubly linked list by matching the module index. It then calls the functions of
that module to handle this command data.

loc_192313: ; CODE XREF: sub_1921E8+1171j
mov rcx, [rbptarg_ 18] ; ;:;socket
lea rdx, [rbp+arg_8]
call sub_1933789 ; ;It calls recu to receive C&C server data. It then decrypts it.
mouv edi, eax
test eax, eax
jnz loc_1923C1
mov rax, [rbp+arg_8] ; It holds the decrypted data's address.
mov ecx, [rax+i] ; It gets control command.
call cs:call_htonl
mov ebx, eax
shr ehx, 16h 1t gets high 16bits as the module index of the control command.

call sub_191Ch4 It retrieves the linked list management functions from named sharing memory

mouv ecx, ebx ; ebx is the command®'s high 16 bit. it's the module's index.

call quord ptr [rax+18h] ; It obtains the module node from doubly linked list by its index.
mou rbx, rax

test rax, rax

jz loc_1923FD

mou 8, [rax+36h] ; at module node offset 308H saves the address of function table.

test r8, r8

jz loc_1923FD

cmp quord ptr [r8], 8

jz loc_1923FD

mou rdx, [rbp+arg_8]

lea rcx, [rbp+arg_18]

call quord ptr [r8] ; Going to different code branch according to module index.

mou edl, eax

call sub_191Ch4 ; Get the linked list management functions from named sharing memory.
mou rcx, rbx

call quord ptr [rax+8] ; restore module node used flag.

cmp edl, BFFFFFFFFh

jnz short loc_1923F2

mou ecx, 7Fh

Figure 3. All packets from C&C server are dispatched from here

Figure 3 shows the code snippet used for dispatching the C&C packets to the correct module
for processing. After “call sub_193370” we got the decrypted C&C server packet in
[rbp+arg_8]. “call sub_191C44” is used to get the management functions in rax from the
named sharing memory. “call qword ptr [rax+18h]” is used to call one management function
to get the module node from the doubly linked list using the module index in rcx i.e. high 16
bits of command. “call qword ptr [r8]” calls the first function of the function table to process
the received packet.

From the above analysis you should now be able to clearly see the entire process of how the
malware processes the C&C server’s packets.

Installing the “00000025” module

In my captured traffic, | was able to see many control commands. They include “00030001”,
“00030002”, “00030003”, “00030004”, “00000003”, “00000001”, “002500007, etc.

6/12

So let’'s now take a look at what the “00000003” command is used for. Figure 4 shows the
original received packet and the decrypted data.

Eile Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am 2@ Res=FaEEaaan

[[tcp.stream eq 1 and tep.len>=14 [X] ~| Expression... | +

Mo, Time Source Destination Protocol Length Info [l
48 971.85847.. 172.38.144.188 172.184.188.53 TCP 74 58866 + 5938 [PSH, ACK] Seq=33 Ack=21 Win=26@ Len=20 |
41 972.8935.. 172.184.188.53 172.38.144.188 TCP 74 5938 -+ 58866 [PSH, ACK] Seq=21 Ack=53 Win=64188 Len=28
42 972.8944.. 172.38.144.188 172.184.188.53 TCP 74 58866 » 5938 [PSH, ACK] Seqg=53 Ack=41 Win=268 Len=28 hd

Transmission Contrel Protocol, Src Port: 5938 (5938), Dst Port: 58866 (58866), Seq: 21, Ack: 53, Len: 2@
v Data (20 bytes)
Data: Tac324121b5481T323ecd76dab@49T20b39ce778
[Length: 2@]

T4 82 38 8d c4 3T ee 89 @f @9 5a 22 @3 @@ 45 e
@@ 3c 2c 5T 48 @@ T4 B6 Bc ec ac 68 64 35 ac le

98 b4 17 32 e5 f2 ba 8c ed ep 92 a3 19 96 58 18
fa 2

[l i Y fa c3 24 12 1b 54 f 3 23
84 97 28 b3 9c 8

Received C&.C packet

After decrypted

packet num:41 recv BEt size:20
Len: Ox14
00 01 02 03 04 05 06 07 08 09 OA OB OC QD OE OF

69 FF E3 OAIOO 00 00 03"00 00 00 25'00 00 00 00
00 00 00 00

It'll reply C&C server with below packet

packet num:42 send pkt size:20
Len: Oxl4
00 01 02 03 04 05 06 O7 0% 09 O& OB OC OD QE OF

sF B2 56 aa o0 00 00 0d[0o0 00 00 40] oo oo 0o 00

00 00 00 00

() 7 Data (data.data), 20 bytes || Packets: 3088 - Displayed: 12 (0.4%) - Load time: 0:0.75|| Profile: Default

Figure 4. “00000003” command data

From the command “00000003” details we know that this packet is going to be passed to the

host module (its index is 0), and then be processed by the first function in the function table
and the “0003” branch.

It gets the sub-command (“00000025”) as the module index to look for in that doubly linked
list. So far, no module’s index is 0x25. It then replies to the C&C server with sub-command
“00000040”. If the 0x25 module node exists, the sub-command is “00000000”.

The C&C server then sends back command “00000001” with a new module attached. Below
is part data of this packet after decryption, where you can see that the sub-command is
“00000025”. In code branch “0001” it decompresses the received module, then gets its code

initialized, and finally adds it into the doubly linked list. This module’s index is 0x25, so | call it
Module25.

712

Len: @x42@
88 81 82 83 &4 85 86 87 B2 89 8A 8B 6C 8D 8E 8F

It later sends command “00000001” with sub-command “00000000” to the C&C server to let
it know that the 0x25 module was installed successfully. This module will be used to
penetrate the victim’s network.

BTW, this module’s information in my test machine is:

Name Base address Size Module index
Module2s ex2efaeaes axDeag oax2s

Penetrating the victim’s LAN using EternalBlue

I’'m sure that the C&C server sent commands to get the victim’s network configuration (my
local IP, Gateway, DNS server), though | did not catch them.

Figure 5 is the screenshot of the network configuration of my test machine.

[e] Administrator: C: Windows' system32icmd.exe

Ethernet adapter Local Area Connection:

Connection—specific DNS Suffix
Description . . - . - . - . .
Physical Address.

DHCP Enabhled. . . .
Autoconfiguration Enahled
Link—local IFub Address

[Pv4 Address. - . . .

subnet MAask . . .
Lease Obtained. .
Lease Exnives .
Default Gateway .
DHLE Sepver . . .
DHCPve IAID . . .
DHCPvEe Client DUID

DHE Servers

Intel(R> PRO/1AAA MT Desktop Adapter
B2-89-27-7E-

Yes

Yes

feBA: :157A:200h: (Preferred>
10.0.2. 15(Preferred)

o 1 - 1 - 1

Fridavy. Harch 17, 20817 5:12:31 PHM
Saturdav. September B2, 2817 5:82:83 FPH
iA.8.2.2

1. WM. L.L

235405351
B3—91-A8-01-28-54-CB-56-B8-A8—-2"7—
172.38.1.1685

G.G.6.0

MetBIOS over Tepip. - - - - . . . & Enahled

Tunnel adapter isatap.{61A43B1D-F349-4C8C-B722-9D7?CF4B5F318%:

Media State . . . e e m o e
Cunnectlun—ape31f1c DHS Suffix
Description . -
Physzical Address.
DHCP Enabled. . -
Autoconfiguration Enabhled . .

Media disconnected

. Microsoft ISATAP Adapter
. BA—PAR—-AB-06-AE-B0-BB—-EA

. Mo
. Yes

Tunnel adapter Local Area Connection»* 9:
Media State . . Media disconnected
Cnnnectlun—ﬂpec1f1c DNE Suffix
Description . - e e e e e .
Phy=zical Hddress. e e e e e .
DHCP Enabled. - - . . -
Autoconfiguration Enahled -

Teredo Tunneling Pseudo—Interface
HA—PR—AR-A8-A8-A0—BA—-EA

8/12

Figure 5. Network information

The C&C server controls the malware to scan the victim’s network segment, including local
IP, Gateway, and DNS server. For example, because my DNS server is 172.30.1.105 it’s
going to scan the 172.30.1.105/24 network segment.

The C&C server sends the “00000025” command with the destination IP and Port for further
attack. By decrypting “00000025” packets we are able to see its data, shown below.

packet num:11%4 recv pkt size:4a
Len: @x23
80 81 82 83 94 @5 86 BF 82 8% @A OB @C 8D 8E 8F

78 A5 F7 94 PENESNEENEE fe @0 @1 BD 60 B @@ 14 {7} ¥ 2
80 809 62 8D 45 14 @D 9@ 8@ 80 8@ 31 37 32 2E 33 E 2172.3
30 2E 31 2E 31 32 35 8@ 8.1.125

packet num:119% recv pkt size:48
Len: 8x28
28 @1 82 &3 84 85 @5 a7 BE 8% 8A @B aC 8D 2E @eF

EA F& 12 32 BEJEENEENEE eo o0 81 ED @0 @8 o8 14 &2 ? X 2
20 89 80 @D 45 14 8D P8 e9 e 80 31 37 32 IE 33 E ?172.3
38 2E 31 2E 31 32 32 @8 8.1.122

packet num:119& recv pkt size:4a
Len: @x23
80 81 82 83 94 @5 86 BF 82 8% @A OB @C 8D 8E 8F

45 52 F3 B3 BONESNEENeE e 80 @1 BD 9@ B @8 14 EPG? % :
@0 82 8@ @D 45 14 8D 08 0@ @@ 89 31 37 32 2E 33 E 2172.3
38 2 31 2E 31 32 33 @@ 8.1.123

From this data it is easy to see that there are IP addresses from three local machines. The
sub-command “000001BD” refers to port 445.

Module25 processes this packet, pulls the IP and port information from the packet, and then
makes a connection to it. If any error occurs, it sends the status to the C&C server.

Once successfully connected to the destination machine, the malware then serves as a
middleman that keeps transferring the two sockets’ data between the C&C server and the
destination machine (like man-in-the-middle does). In module3 we also see its debug output
strings “SoTransfer(%p<=>%p)...\r\n" and “SoTransfer(%p<=>%p) quit'\r\n". Figure 6 and 7
show the attack view in Wireshark.

9/12

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AW 1@ REQReo=s=F s5/[Eaaan
[. |bq:|.steam eq 516 and tcp.len>==14 B[] -] Expression.. | +
Na. Time Source Destination Protocol Length Info
— 3811 1693.628.. 172.308.144.188 172.184.188.53 NBSS 91 NBSS Continuation Message
3812 1693.831.. 172.104.108.53 1 Encrypted 25 command packets uation Message
3813 1693.837.. 172.38.144.188 Licuwsmrosuuwess s r— mu_s voencoluation Message
: : : : .30, : ; Eegotlate Protocol Request
3@15 1694.856.. 172.38.144.188 172.184.188.53 SMB 181 Negotiate Protocol Response
3816 1694.254.. 172.104.188.53 172.38.144.188 SMB 194 Session Setup AndX Request, User: anonymous !
3817 1694.257.. 172.38.144.188 172.184.188.53 SMB 263 Session Setup AndX Response
3818 1694.46@.. 172.184.188.53 172.3@.144.188 SMB 158 Tree Connect AndX Request, Path: \\192.168.1.113\IPCH
3619 1694.463.. 172.30.144.180 172.104.160.5 Transferred packets 1ect AndX Response =
3828 1694.664.. 172.184.188.53 172.3@.144.188 SMB 136 Trans2 Request, SESSION_SETUP
3821 1694.676.. 172.38.144.188 172.184.168.53 SMB 93 Trans2 Response, SESS5ION_SETUP, Error: STATUS_NQT_TMPLEMENTED
3822 1694.892.. 172.184.188.53 172.3@.144.188 SMB 1138 NT Trans Request, <unknown
3823 1695.165.. 172.30.144.188 172.184.1088.53 SMB 93 NT Trans Respense, <unknown (@)>
3824 1695.3088.. 172.184.188.53 172.3@.144.188 TCP 1414 [TCP segment of a reassembled PDU] -
3825 1695.388.. 172.104.188.53 172.38.144.188 TCP 742 [TCP segment of a reassembled PDU]
3826 1695.311.. 172.184.188.53 172.3@.144.188 TCP 1414 [TCP segment of a reassembled PDU] -
3828 1695.312.. 172.184.188.53 172.3@.144.188 NB5S 1414 NB55 Continuation Message
3829 1695.312.. 172.1@4.188.53 172.38.144.1388 NESS 1414 NBSS Continuation Message
3838 1695.312.. 172.184.186.53 172.38.144.188 NBSS 1414 NBSS Continuation Message
3831 1695.312.. 172.1@4.188.53 172.38.144.1388 NESS 7@ NBSS Continuation Message
3832 1695.56809.. 172.184.180.53 172.38.144.188 NBSS 1414 NBSS Continuation Message —
3833 1695.589.. 172.1@4.188.53 172.38.144.1388 NESS 1414 NBSS Continuation Message
3834 1695.513.. 172.184.184.53 172.38.144.188 NBSS 1414 NBSS Continuation Message =
L C E1 2o g C a - EN T - o 2 aa 4 i a2 l 2 h
© Fo__ mnmA. a4ma L.oo__ __ ..f__ saa-man Lir_i aasa Lo ___ L1 faaman Lzt
Figure 6. EternalBlue attack packets
M Wireshark - Follow TCP Stream (tcp.stream eq 516) - O *
u..&...4'8.8....7h.2.Q0..G....p. W.+..3.9d..)™M 2
Au.yZ.oza..for. 16T HeH. T Z. L 95(Y. L LARR.
Workgroups 3.1a..LM1.2X882..LANMAN2.1..NT LM ©.12.
{. ...
...... b = = s o
___________________ Ko Weion.d.oow.s. .2.0.0.8. .21 2.5, : Get destination machine's system version
.d.o.w.s. .7. .P.r.o.f.e.s.s.i.o.n.a.l. .7.6.8.1. .S.e.r.v.i.c.e. .P.a.c.k.|.
#{WR1SIEB4+aEe IVESwcGTbp@OkCNFhT1d/
25582m4lzyLN9COT4T9ibIGe ¥LhI0+W5Ibhal76+Vgh+r590Ea634bZViac+/
T9ikfkPCuob@lyr3ssPkggifo3nd PIFbn2x4L5]imOMCPeec/
XT5ZZew7eSZla7+0bL1loTaRHfh GZSHECJEn O
L3 2 W
Packet 3022, 7 client pktfs). 40 server pkafs), 13 (), Qlick 1o sslect
Entire conversation (54 kB) 4 Show data as | ASCIT 4 Stream
Find: | [Findext |
Hide this stream Print Save as... Close Help

Figure 7. EternalBlue attack packet payload

10/12

Module25 makes the connection to the destination IP and then calls module3’s function to
perform the transfer work by calling the recv() and send() functions. In module3 function
sub_1935A8 it creates two threads to do that. One thread receives data from the C&C
socket and sends it to the destination machine, and another one receives data from the
destination machine and forwards it to the C&C server. Figure 8 shows the code snippet for
what | explained about the two threads.

In module3's sub 1935A8 function

mnou [rspru6Bh+uar_u4u4@], rax
and [rsp+46Bh+var 44871, B
lea ¥9, [rsp+i68h+var_u28] ; ;;thread parameter.
lea r8, '{'hrsad fun - ! P |ee193728
wor edx . edx Th d1 88193728 nou [rsp+arg_8], rbx
xor ecx, ecx rea 00193720 push rdi Thread Function
o 8819372E sub rsp, 30h
call cs:call_GreateThread 86193732 nou rdi. rex
* 98193735 nov ecx, 406h
'[‘2;')12;;:3;;: 8], rax 0819373A call sub_191BF4 ; s;RtlAllocateHeap(8)
lea rax, [rbp+376h] gggg;i; mov rbx, rax
xar edx, edx Thread?2 i . i .
mov [rsp+468h+var_Lu40], rax 88193742 loc_193742: . ; CODE XREF: Thread_fun+5Fj
08193742 noy rcx, [rdi]
and [rsp+a6Bh+uar 448],%0
xor ecx, ecx 00193745 lea r9, [rsp+38h+arg_0]
call cs:call CreateThread :g;‘;g;;: mou "gds 4@oh
lea rdx, aSotransferPP S\'SoTransfer (%p<=>%p) .. . Arin® mov rdx, [rex]
1ea ok, [Fsprib8hruar 588] 08193753 nou rex, [rext8]
nov r9, rbx - 88193757 nov [rsp+38h+var_18], 7536h
nou ve. rdi 8019375F mou r18, [rdx+30h] ; rdx points to module's node of moduleS.
: 06103763 nov rdx, rbx
23;1 E;?E;?iﬂﬁ;;i:atig], rax 08193766 call quord ptr [F18+18h] ; module5._4e1F28, call recv function
lea rcx, [rsp+468h+uar_4B8] gg:gg;gg test e;"-teix 198780
call cs:call_OutputDebugStringn jnz short loc_
xor r8d, r8d 0019376E nov r8d, [rsp+38Bh+arg_0]
’ 00193773 mnou rcx, [rdi+s]
lea rdx, [Fsp+ia68h+var_u38 .
lea ecx, Ersfz] -8l 89193777 mou r9d, 7536h
oF vod. BFFFEFFFER 00193770 nou rdx, rbx
call cs:call VWaitForHultipleObjects 08193780 call sub_193384 ; module5.4e1ef@, call send function
nov ecx, 3EBh 00193785 test eax, eax
i 08193787 jz short loc_193742
call cs:call_Sleep 06103789
08193789 loc_193789: ; CODE XREF: ThreadiFunHmTj
8B193789 mov rcx, rbx
0819378C call sub_191CG1C ; s;HeapFree
88193791 nov rbx, [rsp+38h+arg_38]
080193796 xor eax, eax
08193798 add rsp, 38h
8819379C pop rdi
88193790 rektn

Figure 8. Two threads to transfer packets

Conclusion

Based on our analysis, this new Poison Ivy variant takes advantage of the EternalBlue
exploit to spread. Once one system is infected by this variant, other systems on the same
network are likely to be infected by the compromised system.

Solution

Users should apply Microsoft’s patch for MS17-010.

Fortinet IPS signature MS.SMB.Server.SMB1.Trans2.Secondary.Handling.Code.Execution
was released in March 2017 to protect our customers against the EternalBlue attack.

Sign up for weekly Fortinet FortiGuard Labs Threat Intelligence Briefs and stay on top of the
newest emerging threats.

Related Posts

11/12

https://technet.microsoft.com/en-us/library/security/ms17-010.aspx
http://ftnt.net/2iT7Mcp%C2%A0

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy
| Cookie Settings

12/12

https://www.fortinet.com/corporate/about-us/legal.html
https://www.fortinet.com/corporate/about-us/privacy.html

