Ten process injection techniques: A technical survey of
common and trending process injection techniques

endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process

July 18, 2017

18 July 2017 Tech Topics

By
Ashkan Hosseini
Share

Editor’s Note: Elastic joined forces with Endgame in October 2019, and has migrated
some of the Endgame blog content to elastic.co. See Elastic Security to learn more about
our integrated security solutions.

Process injection is a widespread defense evasion technique employed often within
malware and fileless adversary tradecraft, and entails running custom code within the
address space of another process. Process injection improves stealth, and some
techniques also achieve persistence. Although there are numerous process injection
techniques, in this blog | present ten techniques seen in the wild that run malware code on
behalf of another process. | additionally provide screenshots for many of these techniques
to facilitate reverse engineering and malware analysis, assisting detection and defense
against these common techniques.

1/24

https://www.endgame.com/blog/technical-blog/ten-process-injection-techniques-technical-survey-common-and-trending-process
https://www.endgame.com/blog/category/technical-topics
https://www.endgame.com/blog/author/ashkan-hosseini
https://www.elastic.co/blog/introducing-elastic-endpoint-security
https://www.elastic.co/security

1. CLASSIC DLL INJECTION VIA CREATEREMOTETHREAD AND
LOADLIBRARY

This technique is one of the most common techniques used to inject malware into another
process. The malware writes the path to its malicious dynamic-link library (DLL) in the
virtual address space of another process, and ensures the remote process loads it by
creating a remote thread in the target process.

CLASSIC DLL INJECTION

TARGET 5 : MALWARE
EPROCESS ; EPHOCESS

IMAGE CONTENTS

DISK SPACE

ENDGAME.

The malware first needs to target a process for injection (e.g. svchost.exe). This is usually
done by searching through processes by calling a trio of Application Program Interfaces
(APIs): CreateToolhelp32Snapshot, Process32First, and Process32Next.
CreateToolhelp32Snapshot is an APl used for enumerating heap or module states of a
specified process or all processes, and it returns a snapshot. Process32First retrieves

2/24

information about the first process in the snapshot, and then Process32Next is used in a
loop to iterate through them. After finding the target process, the malware gets the handle of
the target process by calling OpenProcess.

As shown in Figure 1, the malware calls VirtualAllocEx to have a space to write the path to
its DLL. The malware then calls WriteProcessMemory to write the path in the allocated
memory. Finally, to have the code executed in another process, the malware calls APIs
such as CreateRemoteThread, NtCreateThreadEx, or RtICreateUserThread. The latter two
are undocumented. However, the general idea is to pass the address of LoadLibrary to one
of these APIs so that a remote process has to execute the DLL on behalf of the malware.

CreateRemoteThread is tracked and flagged by many security products. Further, it requires
a malicious DLL on disk which could be detected. Considering that attackers are most
commonly injecting code to evade defenses, sophisticated attackers probably will not use
this approach. The screenshot below displays a malware named Rebhip performing this
technique.

3/24

push 1] ; duSize
push edi ; lpaAddress
push ebx ; hProcess
call UirtualFreeEx
push LBh ; FlProtect
push 38088h ; flAllocationType
push esi ; duSize
push edi : lpAddress
push ehx ; hProcess
call | UirtualAllocEx |
mov ebp, eax
test ebp, ebp
jz short loc_ 4BAFAY
L 4
I
lea eax, [esp+24h+Humber0fBytesiritten]
push eax ; lpHumberO0fBytesWritten
push esi : n%ize
push a ; 1pHoduleHame
call GetModuleHandlen_@
push eax ; 1pBuffer
push edi ; 1lpBasenddress
push ebx : hProcess
call | writEPruceszgngE%J
cmp €51, [esp+Zih+Humber0fBytesiritten]
ja short loc_4BAFAL
Y
il s 5
1lea eax, [esp+24h+ThreadId]
push eax ; 1pThreadId
push a ; duCreationFlags
mov eax, [esp+2Ch+1pParameter]
push eax ; lpParameter
mou eax, [esp+3Bh+1lpStartAddress]
push eax ; lpStartAaddress
push a : dwStacksSize
push 8 ; 1pThreadattributes
push ehx —hProcess
call |EreateHemuteThread
push ebx ; hObject
call CloseHandle
mou [esp+24h+var_1C], ebp
Yy
il e 5=
loc_4BAFAL:
mou eax, [esp+2ih+var 1C)
add esp, 14h
pop ebp
pop edi
pop esi
pop ebx
retn
sub_4BAFB8 endp

4/24

Figure 1: Rebhip worm performing a typical DLL injection
Sha256: 07b8f25e7b536f5b6f686¢12d04edc37e11347c8acd5¢c53f98a174723078c365

2. PORTABLE EXECUTABLE INJECTION (PE INJECTION)

Instead of passing the address of the LoadLibrary, malware can copy its malicious code into
an existing open process and cause it to execute (either via a small shellcode, or by calling
CreateRemoteThread). One advantage of PE injection over the LoadLibrary technique is
that the malware does not have to drop a malicious DLL on the disk. Similar to the first
technique, the malware allocates memory in a host process (e.g. VirtualAllocEx), and
instead of writing a “DLL path” it writes its malicious code by calling WriteProcessMemory.
However, the obstacle with this approach is the change of the base address of the copied
image. When a malware injects its PE into another process it will have a new base address
which is unpredictable, requiring it to dynamically recompute the fixed addresses of its PE.
To overcome this, the malware needs to find its relocation table address in the host
process, and resolve the absolute addresses of the copied image by looping through its
relocation descriptors.

PE INJECTION

SUNGNNASRANSSNAASAESSNSSSSSSREEEASESRNAESSEARNEREEEES R R A R

i TARGET : MALWARE
: PROCESS : PROCESS

IMAGE CONTENTS

ENDGAME.

This technique is similar to other techniques, such as reflective DLL injection and memory
module, since they do not drop any files to the disk. However, memory module and
reflective DLL injection approaches are even stealthier. They do not rely on any extra
Windows APIs (e.g., CreateRemoteThread or LoadLibrary), because they load and execute
themselves in the memory. Reflective DLL injection works by creating a DLL that maps itself
into memory when executed, instead of relying on the Window’s loader. Memory Module is

5/24

similar to Reflective DLL injection except the injector or loader is responsible for mapping
the target DLL into memory instead of the DLL mapping itself. In a previous blog_post, these
two in memory approaches were discussed extensively.

When analyzing PE injection, it is very common to see loops (usually two “for” loops, one
nested in the other), before a call to CreateRemoteThread. This technique is quite popular
among crypters (softwares that encrypt and obfuscate malware). In Figure 2, the sample
unit test is taking advantage of this technique. The code has two nested loops to adjust its
relocation table that can be seen before the calls to WriteProcessMemory and
CreateRemoteThread. The “and OxOfff” instruction is also another good indicator, showing
that the first 12 bits are used to get the offset into the virtual address of the containing
relocation block. Now that the malware has recomputed all the necessary addresses, all it
needs to do is pass its starting address to CreateRemoteThread and have it executed.

6/24

https://www.endgame.com/blog/technical-blog/hunting-memory

/& 2
il] =1 S~
loc_YHO1670:
mov edl, [esiti]
lea eax, [esi+ti]
mov [espt50h+tvar_28], eax
cmp edi, 8
jb short loc_#018B5
5
] 5=
add edi, OFFFFFFF8h
mou edx, O
shr edi, 1
]z short loc_#016B5

L_L_i

‘Eiiﬁ!ﬁ =S
nop dword ptr [eaxteax+00h]

e =

=

loc_401690:

test ax,

movzx eax, Word ptr [esitedxx2+8]

aX

jz short loc_#01BAC

%I

H==

moy ecx, [esptSOhtvar_30]

and eax, OFFFh |

add eax, [esl]
sub ecx, [esptSOh+tvar_2C]
add [eax+tebx], ecx

il i =

inc
cmp
jb

loc_H016AC:

edx
edx, edil
short loc_401630

I

Figure 2: Example structure of the loops for PE injection prior to calls to

CreateRemoteThread

7/24

Sha256: ce8d7590182db2e51372a4a04d6a0927a65b2640739f9ec01cfd6¢c143b1110da

3. PROCESS HOLLOWING (A.K.A PROCESS REPLACEMENT AND
RUNPE)

Instead of injecting code into a host program (e.g., DLL injection), malware can perform a
technique known as process hollowing. Process hollowing occurs when a malware unmaps
(hollows out) the legitimate code from memory of the target process, and overwrites the
memory space of the target process (e.g., svchost.exe) with a malicious executable.

PROCESS HOLLOWING

. TARGET . MALWARE
. PROCESS . i PROCESS

IMAGE CONTENTS

ENDGAME.

The malware first creates a new process to host the malicious code in suspended mode. As
shown in Figure 3, this is done by calling CreateProcess and setting the Process Creation
Flag to CREATE_SUSPENDED (0x00000004). The primary thread of the new process is
created in a suspended state, and does not run until the ResumeThread function is called.
Next, the malware needs to swap out the contents of the legitimate file with its malicious
payload. This is done by unmapping the memory of the target process by calling either
ZwUnmapViewOfSection or NtUnmapViewOfSection. These two APIs basically release all
memory pointed to by a section. Now that the memory is unmapped, the loader performs
VirtualAllocEx to allocate new memory for the malware, and uses WriteProcessMemory to
write each of the malware’s sections to the target process space. The malware calls

8/24

SetThreadContext to point the entrypoint to a new code section that it has written. At the
end, the malware resumes the suspended thread by calling ResumeThread to take the

process out of suspended state.

call Wiystemddr 1 L1LEharyqgqrpeac ; System::_ lainkproc_ FilllChar{wold = 1int,char)
mow [ebp+StartupInfo.cb], 44h
lea eax, [ebp+ProcessIinformation]
push eax ; 1lpProcessinformation
lea eax, [ebp+Startupinfo]
push Pax ; lpStartuplnfo
push A ; 1pCurrentDirectory
ush 5 : 1pEnvironment
push 0 ; dwCreationFlags| Process created in suspended state
push i 3 bInheritHandIes
push H + 1pThreadattributes
push] ; lpProcessAttributes
now eax, [ebprvar_8]
call Biystem@ALStrToPChariqqrz17System@Ansistring ; System:: linkproc LStrToPChar (System: :Ansistring)
push eax ; 1pComnandLine
push g ; lpApplicationHame
lcall CreateProcessi |
test Pax, Pax
iz loc_45E120
=
eax, [ebp+lpaddress]
sub_ KSAD3N
[ebp+lpContext], eax
[ebp+lpContext], @
loc_LSAFF2
\;'
mou eax, [ebp+lpContext]
moy dword ptr [eax], 108870
mow eax, [ebp+lpContext]
push Pax ; lpContext
mow eax, [ebprProcessInformation.hThread]
ush Bax ; hThread
all GetThreadContext |
test eax, eax
jz loc_HSAFEZ2
L*
ol e =
lea eax, [ebp+HumberDfBytesRead]
push eax ; lpHunberDfBytesRead
push i ; nsize
lea eax, [ebp+Buffer)
push eax + lpBuffer
mouw eax, [ebp+lpContext]
mow eax, [eax+@Ash]
add eax, 8
push eax ; lpBasefddress
My eax, [ebp+Processinformation.hProcess]
push eax + hProcess
call ReadProcessMemory
mou eax, [edi+i4h]
chp eax, [ebp+Buffer]
ijnz short loc_ MSAF27
| 1
L]
PIE
now eax, [edi+3uh]
push pax ; Basepddress
noy eax, [ebp+Processinformation.nProcess]
ush BaK ; ProcessHandle
all HtUnmapUiewlfSection | Hollowing out the
fest eax, Eax process
jnz short loc_45AFac

1

9/24

Figure 3: Ransom.Cryak performing process hollowing
Sha256: eae72d803bf67df22526f50fc7ab84d838efb2865c27aef1a61592b1c520d144

4. THREAD EXECUTION HIJACKING (A.K.A SUSPEND, INJECT, AND
RESUME (SIR))

This technique has some similarities to the process hollowing technique previously
discussed. In thread execution hijacking, malware targets an existing thread of a process
and avoids any noisy process or thread creations operations. Therefore, during analysis
you will probably see calls to CreateToolhelp32Snapshot and Thread32First followed by
OpenThread.

THREAD EXECUTION HIJACKING

--

: TARGET : MALWARE
: PROCESS : PROCESS

: THHEAD

IMAGE CONTENTS

" H H
..

ENDGAME.

After getting a handle to the target thread, the malware puts the thread into suspended
mode by calling SuspendThread to perform its injection. The malware calls VirtualAllocEx
and WriteProcessMemory to allocate memory and perform the code injection. The code can
contain shellcode, the path to the malicious DLL, and the address of LoadLibrary.

Figure 4 illustrates a generic trojan using this technique. In order to hijack the execution of
the thread, the malware modifies the EIP register (a register that contains the address of
the next instruction) of the targeted thread by calling SetThreadContext. Afterwards,
malware resumes the thread to execute the shellcode that it has written to the host process.
From the attacker’s perspective, the SIR approach can be problematic because suspending
and resuming a thread in the middle of a system call can cause the system to crash. To
avoid this, a more sophisticated malware would resume and retry later if the EIP register is
within the range of NTDLL.dII.

10/24

call DpenThread

[mow ebp*hihread], eax
cup [ebpshThread], @
jz loc_ 583853

ol s =

mou eax, [ebprhlhread]
lpush Eax : hThread
call SuspendT hread E£
oy [ebpsvar_DL], 18887h
lea eax, [ebpeuar DC]
push eax i lpContext
mou eax, [ebp*hThread]
ush B : hThread
Eill GELINFeadGontest |
mou eax, [ehpsuar 24
mou [ebpruar_1B8], eax
mou eax, [ebpruar 3C]
mou [ebprvar 10@], eax
push offset aloadlibrarya_ 1 ; “"Loadlibrarygf™

push offset akernel3d2 dll 3 ; "kernel3?. dll™
call GetModuleHandlefd

push eax ; hHodule
call GetProcaddress
moy [ebpsvar FGC], eax
oy edx, [ehpsuar B] ; wnsigned int
mou eax, [ebpsProcessHandle] ; this
call @dvapihookBInjectstringdqqruipe ; Advapihook::injectitring(uint ,char =)
mow [ebpruar FB], eax
W [ebpruar FH], @
jz short loc 583853
-
lea edx, [ebp+var_184] ; unsigned int
oy ecx, T@h : vold =
iy eax, [ebp+ProcessHandle] ; this
call @ndvapinook@injectmenorydqqruipoui ; Advapinook::injectrenary{uint ,uoid = wint)
oy [ebp+uvar_3C], eax
L1 eax, offset sub SO2F28 ; this
call BAdvapihook@SizedfProciqgrpy ; Advapihook::SizelfProc{uoid =)
L BCx, eax ; woid =
oy edx, offset sub S@2F28 ; unsigned int
oy eax, [ebp+ProcessHandle] ; this
call BAdvapihook@InjectNenory$qgruipvui ; Advapihook::InjectHerory{uint ,void = uint}
oy [ebp+var_2&], eax
lea eax, [ebp+var_DC]
push eax : 1pGontext
]Luu eax, [ebpshThread])
ush EaK = hThread
call SetThreadbontext |
oL eax, [ebp+*hThread])
push eax ;3 hThread
call ResumeThread
oy [ebp+war 9], 1

'ilit

loc S@3853:

moy al, [ebpevar_ 9]
L esp, ebp

pop ehp

retn

@advapihook@Injectdl1AltSggruipe endp

Figure 4: A generic trojan is performing thread execution hijacking

Sha256: 787cbc8abd1bc58ea169e51e1ad029a637f22560660cc129ab8a099a745bd50e

5. HOOK INJECTION VIA SETWINDOWSHOOKEX

11/24

Hooking is a technique used to intercept function calls. Malware can leverage hooking
functionality to have their malicious DLL loaded upon an event getting triggered in a specific
thread. This is usually done by calling SetWindowsHookEXx to install a hook routine into the
hook chain. The SetWindowsHookEx function takes four arguments. The first argument is
the type of event. The events reflect the range of hook types, and vary from pressing keys
on the keyboard (WH_KEYBOARD) to inputs to the mouse (WH_MOUSE), CBT, etc. The
second argument is a pointer to the function the malware wants to invoke upon the event
execution.The third argument is a module that contains the function. Thus, it is very
common to see calls to LoadLibrary and GetProcAddress before calling
SetWindowsHookEx. The last argument to this function is the thread with which the hook
procedure is to be associated. If this value is set to zero all threads perform the action when
the event is triggered. However, malware usually targets one thread for less noise, thus it is
also possible to see calls CreateToolhelp32Snapshot and Thread32Next before
SetWindowsHookEXx to find and target a single thread. Once the DLL is injected, the
malware executes its malicious code on behalf of the process that its threadld was passed
to SetWindowsHookEXx function. In Figure 5, Locky Ransomware implements this
technique.

12/24

https://msdn.microsoft.com/en-us/library/windows/desktop/ms644959(v=vs.85).aspx

i e =

loc_4@558E :

lea eax, [ebp+pFileHame]

push Bax ; lplibFileHame
call ds:LoadLibraryW

push offset aMyprocedure ; “HyProcedure”
push Bax ; hHodule

moy [ebp+hnod], eax

call ds:GetProcAddress |

push Besl ; th3zProcessID
push L ; dwFlags

moy [ebp+1lpfn], eax

call ds:CreateToolhelp32Snapshot

maw esi, ds:Thread32Hext

lea ecx, [ebp+te]

push BCK

mow [ebp+lpData], eax

moy [ebp+te.dusize], 1Ch

push BaK

jmp short loc_ 485630

P9

loc_4@5630:
call esi ; Thread32Hext
test edx, eax

jnz short loc_ WBSS5FA
I 1
L
=
loc_4%855Ff:
mo eax, [ebpruar_10]
cmp [ebp+te.th3ZDunerProcessID], eax
jnz short loc_&LB85636
[
=
cmp [ebp+te.tpBasePri], &
jle short loc_ 4085636
11
Y
s =
push [ebp+te.th32ThreadlD] ; duThreadld
push [ebp+hmod] ; hmod
push [ebp+lpFn] s 1pFn
3 ; idHook
call ds :SetWindowsHookExA
push 1388h ; duMilliseconds
push [ebp+hHandle] ; hHandle
mow ebx, eax
call ds:WaitForsingleObject
push ehx ; hhk
mow edi, eax
call ds:UnhookWindowsHooKkEx
test edi, edi
iz short loc_ HB5645

Figure 5: Locky Ransomware using hook injection
Sha256: 5d6ddb8458ee5ab99f3e7d9a21490ff4e5bc9808e18b9e20b6dc2c5b27927ba

6. INJECTION AND PERSISTENCE VIA REGISTRY MODIFICATION
(E.G. APPINIT_DLLS, APPCERTDLLS, IFEO)

13/24

Appinit_DLL, AppCertDlls, and IFEO (Image File Execution Options) are all registry keys
that malware uses for both injection and persistence. The entries are located at the
following locations:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows
NT\CurrentVersion\Windows\Appinit_Dlls HKLM\System\CurrentControlSet\Control\Session
Manager\AppCertDlls HKLM\Software\Microsoft\Windows NT\currentversion\image file
execution options

Applnit_DLLs

Malware can insert the location of their malicious library under the Appinit_DllIs registry key
to have another process load their library. Every library under this registry key is loaded into
every process that loads User32.dll. User32.dll is a very common library used for storing
graphical elements such as dialog boxes. Thus, when a malware modifies this subkey, the
majority of processes will load the malicious library. Figure 6 demonstrates the trojan Ginwui
relying on this approach for injection and persistence. It simply opens the Appinit_Dlls
registry key by calling RegCreateKeyEx, and modifies its values by calling RegSetValueEx.

14/24

push
push
push
push
push
call
test
jnz

offset aSoftwareMicr_0 ;

s@aoaae2h

RegCreateleyExn

eax, eax

: dwlptions
» 1lpClass
+ Reserved

; hKey

short loc_ 483DD2

“SOFTWAREN\Microsofty\Windows HT\\Curren"...

E' |

et 5

1ea ebx, [esp+1818h+Dst]

push ebx ; 1pString
call 1strlenA

inc eax

push eax ; chbhata
push ebx ;: 1pbata
push 1 ; duType
push a ; Reserved
push offset aAppinit _dlls ; “Applnit DLLsS"
[mou eax, [esp+10ZCh+phkAesult |
push eax : hKey
call RegSetUalueExhn |

moy eax, [esp+1818h+phkResult]
push eax ; hKey
call RegCloseKey

mowy bl, 1

e

loc_483DD2:

mouy eax, ebx
add esp, 16818h
pop esi

pop ebx

retn

sub_L4B3CE0 endp

Figure 6: Ginwui modifying the Applniti_DLLs registry key

Sha256: 9f10ec2786a10971eddc919a5e87a927c652e1655ddbbae72d376856d30fa27¢c

AppCertDlls

This approach is very similar to the Applnit_DLLs approach, except that DLLs under this
registry key are loaded into every process that calls the Win32 API functions
CreateProcess, CreateProcessAsUser, CreateProcessWithLogonW,

CreateProcessWithTokenW, and WinExec.

Image File Execution Options (IFEO)

15/24

IFEO is typically used for debugging purposes. Developers can set the “Debugger Value”
under this registry key to attach a program to another executable for debugging. Therefore,
whenever the executable is launched the program that is attached to it will be launched. To
use this feature you can simply give the path to the debugger, and attach it to the
executable that you want to analyze. Malware can modify this registry key to inject itself into
the target executable. In Figure 7, Diztakun trojan implements this technique by modifying
the debugger value of Task Manager.

FaK, [esprachephifesult]

max : phkitesml

Za¥iFh 1 sanbesined

push oFFsPL SRl 1 [“Seftuare\HicrosoFUyilindows HIVCurren™. ..
HESRREETh : hifey

||||| erx, s duard AIOF S push [: WERY
noy e, s cduard AJOFFC call ds:

|||||

Hua= "I — I : ‘ .

as, % tdvard AI0FEN0 inp loe_&@1S1E

T
nou dwrd ptr [espebtheString], ecx
i eex, [esprAtheSirioeg)
push PO : IpString
noy [espehBuar 0], wdx
psp+SBhuar_ 1%

Figure 7: Diztakun trojan modifying IFEO registry key
Sha256: f0089056fc6a314713077273c5910f878813fa750f801dfcadae7e9d7578a148

7. APC INJECTION AND ATOMBOMBING

Malware can take advantage of Asynchronous Procedure Calls (APC) to force another
thread to execute their custom code by attaching it to the APC Queue of the target thread.
Each thread has a queue of APCs which are waiting for execution upon the target thread
entering alterable state. A thread enters an alertable state if it calls SleepEX,
SignalObjectAndWait, MsgWaitForMultipleObjectsEx, WaitForMultipleObjectsEx, or
WaitForSingleObjectEx functions. The malware usually looks for any thread that is in an

16/24

https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951(v=vs.85).aspx

alterable state, and then calls OpenThread and QueueUserAPC to queue an APC to a
thread. QueueUserAPC takes three arguments: 1) a handle to the target thread; 2) a
pointer to the function that the malware wants to run; 3) and the parameter that is passed to
the function pointer. In Figure 8, Amanahe malware first calls OpenThread to acquire a
handle of another thread, and then calls QueueUserAPC with LoadLibraryA as the function
pointer to inject its malicious DLL into another thread.

AtomBombing is a technique that was first introduced by enSilo research, and then used in
Dridex V4. As we discussed in detail in a previous post, the technique also relies on APC
injection. However, it uses atom tables for writing into memory of another process.

(] e =]
push [ebp+eax*i+duThreadIld] ; dwThreadId
push a : bInheritHandle
push 1FB3FFh ;: duDesiredAccess
call ds :0penThread
moy esi, eax
moy [ebp+var 2C], esi
test esi, esi
jz short loc_188839ES
i Y

il (i 5=

push ebx ; dwbata

push esi ; hThread

push ds:LoadLibraryd|; pFnAPC
call QueuelserAPC
push esi ; hbbject
call ds:CloseHandle

loc_1680639ES:
inc [ebp+nsSize]
jmp short loc_188839AC

Figure 8: Almanahe performing APC injection
Sha256: f74399cc0be275376dad23151e3d0c2e2a1c966e6db6a695a05ec1a30551c0ad

8. EXTRA WINDOW MEMORY INJECTION (EWMI) VIA
SETWINDOWLONG

EWMI relies on injecting into Explorer tray window’s extra window memory, and has been
used a few times among malware families such as Gapz and PowerLoader. When
registering a window class, an application can specify a number of additional bytes of

17/24

http://blog.ensilo.com/atombombing-a-code-injection-that-bypasses-current-security-solutions
https://www.endgame.com/blog/technical-blog/dropping-atombombs-detecting-dridexv4-wild

memory, called extra window memory (EWM). However, there is not much room in EWM.
To circumvent this limitation, the malware writes code into a shared section of explorer.exe,
and uses SetWindowLong and SendNotifyMessage to have a function pointer to point to the
shellcode, and then execute it.

The malware has two options when it comes to writing into a shared section. It can either
create a shared section and have it mapped both to itself and to another process (e.g.,
explorer.exe), or it can simply open a shared section that already exists. The former has the
overhead of allocating heap space and calling NTMapViewOfSection in addition to a few
other API calls, so the latter approach is used more often. After malware writes its shellcode
in a shared section, it uses GetWindowLong and SetWindowLong to access and modify the
extra window memory of “Shell_TrayWnd”. GetWindowLong is an API used to retrieve the
32-bit value at the specified offset into the extra window memory of a window class object,
and SetWindowlLong is used to change values at the specified offset. By doing this, the
malware can simply change the offset of a function pointer in the window class, and point it
to the shellcode written to the shared section.

Like most other techniques mentioned above, the malware needs to trigger the code that it
has written. In previously discussed techniques, malware achieved this by calling APIs such
as CreateRemoteThread, QueueUserAPC, or SetThreadContext. With this approach, the
malware instead triggers the injected code by calling SendNotifyMessage. Upon execution
of SendNotifyMessage, Shell_TrayWnd receives and transfers control to the address
pointed to by the value previously set by SetWindowLong. In Figure 9, a malware named
PowerlLoader uses this technique.

FEE
push a
push offset ashell traywnd ; "Shell TrayWnd™
call ds:FindWindowl
mou ebx, eax
push a
push ehx
call ds:GetWindowlong# I
test ebx, ebx
jz loc 484069
_ Y

Ll i =

test eax, eax

jz loc 484D6YT

18/24

https://www.malwaretech.com/2013/08/powerloader-injection-something-truly.html

push offset alnject32 event ; "inject3? event™
push a
push a
push a
call ds:CreateEventy
mou edi, ds:CloseHandle
mou esl, eax
test esi, esi
jz short loc_484D63
i L J
[l el 5=
mou edx, [ebp+var_14]
sub edx, BFFFFFF88h
push edx
push a
push ebx
call ds:SetWindowlongd |
push]
push a
push BFh
push ehx
call US:SendHutiFyMESSagEH|
[push BEAGHN
push esi
call ds:WaitForSinglelObject
test eax, eax
jnz short loc_hBu4D6a

Y
Lol s =]
mou [ebp+var_1], 1

bl e 55

loc_484D68:
push esi
call edi ; CloseHandle

o

il e 5

loc_4B4D63:
mov eax, [ebp+Handle]
push eax
call edi ; CloseHandle

Figure 9: PowerLoader injecting into extra window memory of shell tray window
Sha256: 5e56a3c4d4c304ee6278df0b32afb62bd0dd01e2a9894ad007f4cc5f873ab5cf

9. INJECTION USING SHIMS

19/24

Microsoft provides Shims to developers mainly for backward compatibility. Shims allow
developers to apply fixes to their programs without the need of rewriting code. By
leveraging shims, developers can tell the operating system how to handle their application.
Shims are essentially a way of hooking into APIs and targeting specific executables.
Malware can take advantage of shims to target an executable for both persistence and
injection. Windows runs the Shim Engine when it loads a binary to check for shimming
databases in order to apply the appropriate fixes.

There are many fixes that can be applied, but malware’s favorites are the ones that are
somewhat security related (e.g., DisableNX, DisableSEH, InjectDLL, etc). To install a
shimming database, malware can deploy various approaches. For example, one common

approach is to simply execute sdbinst.exe, and point it to the malicious sdb file. In Figure
10, an adware, “Search Protect by Conduit”, uses a shim for persistence and injection. It
performs an “InjectDLL” shim into Google Chrome to load vc32loader.dll. There are a few
existing tools for analyzing sdb files, but for the analysis of the sdb listed below, | used
python-sdb.

20/24

https://technet.microsoft.com/en-us/library/dd837644(v=ws.10).aspx
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf
https://github.com/williballenthin/python-sdb

Figure 10: SDB used by Search Protect for injection purposes
Sha256: 6d5048baf2c3bba85adc9ac5ffd96b21c9a27d76003c4aa657157978d7437a20

10. IAT HOOKING AND INLINE HOOKING (A.K.A USERLAND
ROOTKITS)

IAT hooking and inline hooking are generally known as userland rootkits. IAT hooking is a
technique that malware uses to change the import address table. When a legitimate
application calls an API located in a DLL, the replaced function is executed instead of the
original one. In contrast, with inline hooking, malware modifies the API function itself. In
Figure 11, the malware FinFisher, performs |IAT hooking by modifying where the
CreateWindowEx points.

push offset allser3?_dll_8 ; "user3Z.dll’
push eax ; char =

call ds: _stricmp

test eax, eadx

pop ecx

pop ecx

jnz loc_4B8244F

edi, [ebx]

edi, esi

esi, [ebx+18h]
esi, [ebptuar_8]

loc_h4B2442
[l i 55
loc_482442:
mov eax, [edi]
test eax, eax
jnz loc 4823BE
3 ' B '
ol e = FFE
mou esi, [ebp+var_8]
loc 4823BE:
mou ec®, [ebp+uvar_8]
lea eax, [eax+ecx+2]
push offset aRegisterclasse ; “RegisterClassExUf
push eax ; char =
call ds: stricmp
test Pax, eax
pop ecx
pop eCx
jnz short loc_4823FC
L J
lea eax, [ebp+fl01dProtect]
push eax ; 1pfl0ldProtect loc 4B244F:
push 48h ; FlHewProtect mov eax, [ebx+20h]
push L ; dwsSize add ehx, 14h
nush poi s 1nAddress test eax, eax

21/24

call

ds:UirtualProtect

Iea

push
mov

push
push
push
call

eax, [ebp+FIUIdProtect]

eax : 1pfl0ldProtect
dword ptr [esi], offset sub 4B19EF
[ebp+fl01ldProtect] ; flHewProtect
L ; dwSize

esi ; lpAddress
ds:UirtualProtect

X

jnz

loc_ 482397

il s 5

mou
mov
1ea

loc_4B23FC:

eax, [edi]
ecx, [ebp+uvar 8]
pax, [eax+pcxe?]

push

offset aCreatewindowex : "CreateWindowExl"”

PasiT
call
test
pop

nnn

Figure 11: FinFisher performing IAT hooking by changing where CreateWindowEx points to
Sha256: f827c92fbe832db3f09f47fe0dcaafd89b40c7064ab90833a1f418f2d1e75e8e

Eda » LIdF *
ds: stricmp

eax, eax

ecx

o

CONCLUSION

R

edi

In this post, | covered ten different techniques that malware uses to hide its activity in
another process. In general, malware either directly injects its shellcode into another
process or it forces another process to load its malicious library. In Table 1, | have classified
the various techniques and provided samples to serve as a reference for observing each
injection technique covered in this post. The figures included throughout the post will help

the researcher recognize the various techniques when reversing malware.

22/24

Shellcode | Forcing | Sha256
Imjection | A DLL
To Be
Loaded

1.DLL X 07bBf25eThb536f5b6f686c1 2d04edec3Tel 1347 cBacd5ch3f98a1 7472307 8c365
Injection
2. PE x ceBd7590182db2e51372a4a04d6a0827ab5026407399ec)1cfdéc143b1110da
Injection
3. Process | X eaeT2dB03bf67df22526f50fcTabB4dB83Befb2B865c2Taef1a61592b1c520d144
Hollowing
4. Thread X TBTcbcBa6d1bcS58eal69e51e1ad029a637f22560660cc1 29abBal99a745bd50e
Execution
Hijacking
5. Hook X 5d6ddbB45Bee5ab99f3eTd9a21490f4e5bci808e18b3e20bbdc2c8b2792Tha
Injection
6. Registry X 9f10ec2786a10971eddc919a5e87a927c652e1655ddbbaeT2d376856d30fa2 Te
Modification
7. APC X fT4399cc0be275376dad23151e3d0c2e2a 1 cO66e6dbGat95a05ec1a30551clad
Injection
8. Shell X S5e56alcd4d4ci0dest2TRAf0b32afh62bd0dd01e2a9894ad007f4cc5fBT3abscf
Tray
Window
Injection
9. Shim X 6d5048baf2c3bbab5adc9acsfd96b21c9a27d76003c4aabs57157978d7437az0
Injection
10. IAT and | X X f827c92fbeB32db3f09f47fe0dcaafdBO9b40cT064ab80833a1f418f2d1e75e8e
Inline
Hooking

Table1: Process injection can be done by directly injecting code into another process, or by
forcing a DLL to be loaded into another process

Attackers and researchers regularly discover new techniques to achieve injection and
provide stealth. This post detailed ten common and emerging techniques, but there are
others, such as COM hijacking. Defenders will never be “done” in their mission to detect
and prevent stealthy process injection because adversaries will never stop innovating.

At Endgame, we constantly research advanced stealth techniques and bring protections
into our product. We layer capabilities which detect malicious DLLs that load on some
persistence (like Applnit DLLs, COM Hijacks, and more), prevent many forms of code
injection in real-time via our patented shellcode injection protection, and detect malicious
injected payloads running in memory delivered through any of the above techniques
through our patent-pending fileless attack detection techniques. This approach allows our
platform to be more effective than any other product on the market in protecting against
code injection, while also maximizing resiliency against bypass due to emerging code
injection techniques.

23/24

https://www.endgame.com/blog/technical-blog/how-hunt-detecting-persistence-evasion-com

We're hiring
Work for a global, distributed team where finding someone like you is just a Zoom
meeting away. Flexible work with impact? Development opportunities from the start?

24/24

