EternalPetya and the lost Salsa20 key

blog.malwarebytes.com/threat-analysis/2017/06/eternalpetya-lost-salsa20-key/

Malwarebytes Labs June 29, 2017

We have recently been facing a huge outbreak of a new Petya-like malware armed with an
infector similar to WannaCry. The research is still in progress, and the full report will be
published soon.

In this post, we will focus on some new important aspects of the current malware. The low-
level attack works in the same style as the first Petya, described here. As before, the
beginning of the disk is overwritten by the malicious Petya kernel and bootloader. When the
malicious kernel is booted, it encrypts the Master File Table with Salsa20 and in this way,
makes the disk inaccessible.

The code from Petya’s kernel didn’t change much, but the new logic implemented in the
high-level part (the Windows executable) caused the change in the malware’s mission. In the
past, after paying the ransom, the Salsa key from the victim was restored and with its help,
the Petya kernel was able to decrypt the Master File Table. Now, the necessary key seems to
be lost for eternity. Thus, the malware appears to have only damaging intentions.

Let’'s have a look at the implementation and discuss the details.

Analyzed sample:

1/10

https://blog.malwarebytes.com/threat-analysis/2017/06/eternalpetya-lost-salsa20-key/
https://blog.malwarebytes.com/cybercrime/2017/06/petya-esque-ransomware-is-spreading-across-the-world/
https://blog.malwarebytes.com/threat-analysis/2016/04/petya-ransomware/
https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://en.wikipedia.org/wiki/NTFS#Master_File_Table

71b6a493388e7d0b40c83ce903bc6b04 — the main DLL
f3471d609077479891218b0f93a77ceb — the low level part (Petya bootloader +
kernel)

[UPDATE] _A small bug_ in the Salsa20 implementation has been found. Unfortunately,
it is not significant enough to help restoring the key.

How is the disk encrypted?

The low level attack affecting the Master File Table hasn’t changed since Goldeneye. It is
executed by the Petya kernel.

The Salsa20 algorithm that was implemented incorrectly in the early versions of Petya and
caused it to be cracked has been fixed in version 3 (read more here). Now it looks almost the
same as in Goldeneye (that was the 4th step in the evolution) and it does not seem to have
any significant bugs. Thus, once the data is encrypted, having the valid key is the only way to
restore it.

Here’s a comparison of the changes in the code between the current version and the
Goldeneye one.

2/10

https://www.virustotal.com/en/file/027cc450ef5f8c5f653329641ec1fed91f694e0d229928963b30f6b0d7d3a745/analysis/
https://virustotal.com/en/file/b5d2ad3c7758f58aa329243af4ce4a906771a1a199210ed0c61f82d47edb3b1d/analysis/1498584989/
https://twitter.com/hasherezade/status/881846324437581824
https://en.wikipedia.org/wiki/NTFS#Master_File_Table
https://blog.malwarebytes.com/threat-analysis/2016/12/goldeneye-ransomware-the-petyamischa-combo-rebranded/
https://en.wikipedia.org/wiki/Salsa20
https://blog.malwarebytes.com/threat-analysis/2016/07/third-time-unlucky-improved-petya-is-out/
https://twitter.com/hasherezade/status/881855440275070981

sirnilarity
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
0.99
0.16

Looking inside the code, we can see that the significant changes have been made only to the

confide change EA primary

0.99
0.99
0.99
0.99
0.99
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.9
0.9
0.9
0.99
0.99
0.99
0.99
0.99
0.9
0.9
0.9
0.98
0.98
0.98
0.938
0.98
0.98
0.88
0.88
0.99
0.38

------- 00008sC4
------- 00008572
------- 00002994
------- 00002382
------- 000029 CA
------- 00008 AB4
------- DD00EBIA
------- 0000ZBF2
------- 00008Co8
------- 00009386
------- 00009652
------- 00009604
------- 00009798
------- D0D0099EE
------- 000099FC
------- 0000&2A2
------- 00009206
------- D000 FAG
------- D000sDE2
------- 00008114
------- 000o0s212
------- 000085 CE
------- 0000&7 26
------- 00002332
------- 00008454
------- 00009462
------- 00009494
------- 00009508
------- 000095EC
------- 00009628
------- 00009878
------- 0000989.C
------- 00008654
------- 0000291E
------- 00003948
------- 00002950
------- 00002964
------- DD00BC5A
------- 00009518
------- 00009578
-I--E-- 00008426
GI--EL- 000086ED

name primary

sub 88C4 13

sub 8972 19

sub_ 8994 20
zub_89B2_21
read_input
sub_8AG4 23
zub_8B9A_24
zub_8BF2_25
enc_dec_disk
sub_9386_26

=20 _hash
s20_expand_key
s20_crypt
sub_998E_36
sub_99FC_37

cub 8242 8

sub 9806 _35
encrypt_mft
find_and_encrypt_mft
fake_chkdsk
display_reboot_request
screen_output

sub 8726 12
zub_8932 15

sub 8454 22

sub_ 9462 _27

sub 9494 28

zub_ 9508 31

sub 95EC 32

=20 _rev_little_endian
zub_9875_33
sub_989C_34
display_strings
sub_891E 14

sub_ 8948 16
zub_8950_17

cub_ 8964 _18
disk_read_or_write
zub_ 9518 29
zub_9578_30
main_info_screen
sub 86ED 11

EA secondary
000888C4
00088972
00088394
00088982
000889CA
00088454
00088BOA
00088BF2
0008898
00089386
00089652
00089604
00089798
0008998E
000899FC
00088242
00089806
0008EFAG
00088DE2
00088114
00088212
000885CE
00088726
00088932
00088454
00089462
00089494
00089508
000895EC
00089628
00089878
000898aC
00088654
0008891E
00088948
00088950
00088964
00088 C5A
00089518
00089578
00088426
000886ED

elements responsible for displaying the screen with information.

3/10

B00088L42 6
A0a0a8L2 A
Aeaa8tYL2 A
A000a8YL2 G
B0088424
000088424
A0088424
BeBOBL26
B00088L42 6
A0a0a8L2 A
Aeaa8tYL2 A
A000a8YL2 G
B808842A
000088428
a8a8842c
feBOBL2F
A0088L431
AaaegL33
A0aA8 L35
ELE] L
g008843B
g8a8843c
A008843F
feeasLuB
aeaa8L4L3
A0a0a8 LG
Aaaa8 40
LSS R
B0888 44D
000088 44F
A8088451
feeABLEY
B00088L5T
aaae8tLsA

Another subtle, yet interesting change is in the Salsa20 key expansion function. Although the

main_info_screen proc near

var_24C= byte
var_223= byte
var_1E3= byte
var_1Ad= byte

ptr -24Ch
ptr -223h
ptr —-1E3h
ptr —-1A3h

var_4C= byte ptr -4Ch
var_1= byte ptr -1
arg_A= word ptr 4
arg_2= byte ptr 6h

enter
push
push
call
push
push
push
push
lea
push
mouy
push
call
add
push
call
pop
push
push
call
add
push
call

24Ch, @

di

si

sub_86ER

a

1

8

ax, [bp+uvar_24uC]
ax
al,
ax
disk _read or_write
sp, BCh

9CAGh
display_string

bx

[bp+arg 2]

N
BFFDCh
sub_8668
Sp, 4
OCD6h .
display string

If you see this text, then your Files...'

Salsa20 algorithm itself was not altered, there is one keyword that got changed in
comparison to the original version. This is the fragment of the current sample’s code:

4/10

JCHHHH- TFUL T
seqBBB:-26DL4 enter 16h, @
seqBBB:26D8 push di
segBBB:26D9 push si
ceqBae:-956DA mou [bptuar_11], "1° ; -1nvald s3ct-id
seqBad:-96DE mou [bp+var_18], "n°
seqBaf-956E2 mou [bp+uvar_F], v’
seqBAaB8:956E6 mow [bp+var_E], "a"
segBBA:06EA mov [bp+var D], "1°
seqBBA:946EE mou [bp+var B], "d°
seqBBaz06F2 mou [bp+var_A], "
seqBBA:06F6 mou [bp+var_9], 's°
ceqBaB:-956FA mou [bp+var_B], "3
seqBad:-96FE mou [bp+var_7], 'C°
seqBaa:-9782 mou [bp+uvar_ 6], "Lt
seqBae:-97086 mov al, "-*
segBBA:0708 mov [bp+var_12], al
seqBBa:07ae mou [bp+var 5], al
seqBB0:978E mouv al, "i'
seqBBa:-9718 mou [bp+uvar_C], al
ceqBae:-9713 mou [bp+var_4], al
seqBaf:-9716 mou [bp+var_3], "d’
seqB@B-927 1A il di, di

And this is a corresponding fragment from Goldeneye:
Jl:l_.l RFREFEF . FULSE
seqB@8:96D4 enter 16h, @
seqBBB:26D8 push di
seqf@n 9609 push 5i
ceq@aa:-25DA mowv [bp+var_11], "x'
seq@aa:-26DE mowv [bp+var_18], "p’
seqBaa-96E2 mowv [bp+var_F], "a’
seqBa8:96EG mov [bp+var_E], 'n’'
seqBB88:96EA mov [bp+var_D], 'd’
seqBBA:96EE mov [bp+var_B], '3°
seqB@A:96F2 mov [bp+var_n], *2°
ceqBBA:26F6 mov [bp+var_9], "-°
ceqB0a:-95FA mowv [bp+var_8], 'b’
ceq@a8:96FE mowv [bp+var_7], 'y’
seqlae-97 a2 mowv [bp+var_6], "t°
seqBae:97 a6 mov al, ‘e’
seqB088:9708 mov [bp+var_12], al
seqB@@:970B mov [bp+var 5], al
seqB@a:970E mov al, * ¢
ceqB@a=9710 mov [bp+var_C], al
ceqBone:9713 mowv [bp+var_4], al
ceq@an:9716 mowv [bp+var_3], 'k’
seqB@n: 27 1A Xor di, di

Instead of the keyword typical for Salsa20 (“expand32-byte k*) we’'ve got something custom:
“-1nvald s3ct-id’ (that can be interpreted as: “invalid sector id”). As we confirmed, the change
of this keyword does not affect the strength of the crypto. However, it may be treated as a
message about the real intentions of the attackers.

How is the Salsa key generated?

5/10

https://github.com/alexwebr/salsa20/blob/master/salsa20.c#L121

Generating the Salsa key and the nonce, as before, is done by the PE file (in the higher level
of the infector), inside the function that is preparing the stub to be written on the disk

beginning.

18881661 mov edi, 288h

10081666 push edi ; Size
10881667 lea eax, [ebp+var_ 998]
18881660 push 7 ; Ual
1888166F push eax ; Dst
188816708 call memset

18881675 add esp, BCh

18801678 push 28h ; dwLen
18081674 lea eax, [ebp+key buffer] ; salsa key - 32 byte
10881688 push eax ; pbBuffer
18081681 mov [ebp+Buffer], @

10881688 call get_random_buffer

188801680 movw rFes, eax

10001692 test edx, Pax

18881694 js

loc_18061895

In all versions of Petya, a secure random generator was used. We can find it in the current

L

push B ; duLen
lea eax, [ebp+nonce_buffer] ; random nonce - 8 byte
push eax ; pbBuffer
call get_random_buffer

188816A8 movw res, eax

188016AD0 test eax, eax

188016AF js loc_18081895

Y

push 22h ; Size
lea eax, [ebp+var_36F]

version as well—it uses CryptGenRandom.

push offset aimz7153hmuxxtu ; “1Hz/153HMuZXTURZRIE/8mESdzantHbB WX

6/10

int stdcall het_randum_huFFer(B?TE *huffer, DWORD dwLen})
{
int v2; 7/ eax@2
int v3; // eax@6
HCRYPTPROU phProv; /F [sp+Ch] [bp-4h]@1
phProv = @;
if { CryptAcquireContextA{&phProv, @, B, 1u, OxFOOOBOAB))
goto LABEL_14;
U2 = GetLastError();
if ¢ v2 > 8)
v2 = (unsigned inti16)v2 | Bx800700008;
res = uZ;
if (w2 »=8)
{
LABEL 1h:
if { *CryptGenRandom{phProv, dwlLen, buffer})
{
v3 = GetLastError{);
if ¢ vd > @)
v3 = (unsigned int16)v3 | Bx800700808;
res = ui;
H
H
if { phProu)
CryptReleaseContext{phProv, 8});
return res;
¥

The generated Salsa key and nonce are stored in the dedicated sector for further use by the

kernel during encryption.

Example of the stored data:

is_encrypted?

Q00003FFO 00 00 Q0 Q0 00 00 Q0 Q0
00004000 SE 6F 01 15 78 53 07 04
00004010 » 10 76 CF 19 0& 7C C5 33
00004020 8 Dq 31 4D T4 37 31 35 33
00004030 32 52 31 T4 3T 38 eD 47
00004040 42 57 58 00 00 00 OO 0O
00004050 00 00 00 00 OO0 00 00 00
00004060 00 00 OO 00 OO0 OO0 00 00
00004070 00 00 0O Q0 00 00 00 00
00004080 00 00 QO Q0 00 00 Q0 00
00004050 00 00 00 00 OO0 00 00 00
00004080 00 71 56 62 6E o4 42 TO
00004080 4% 35 51 53 51 34 &E 41
000040C0 33 TR 44 4C 64 4D 48 58
000040D0 5% 78 51 7D 53 58 34 54
000040ED 00 00 00 00 OO0 00 00 00

"

l=th.r'E"o. .x™. .
va'h dr. . {D..|L:
e Mz 7153
HMu=XTuRZR1t78mG
SdzaBAtNEEWH.

D
6WYskRJIZJISQSQ4nR

Q58 omQyM3z JLAMHX
nhcQPRDXUvQRSN4Z

Sector 32

alsa key
nonce
bitcoin address

victim ID

The byte at the offset 0x4000 is the flag: 0 means that the disk is not encrypted yet, 1 means

encrypted.

From the offset 0x4001, the Salsa20 key starts. It is 32 bytes long. After that, at offset
0x4021 there is the random Salsa20 nonce.

7/10

What happens with the Salsa key after the encryption?

After being read and used for the encrypting algorithm, the stored Salsa key is erased from
the disk. You can see the comparison of the disk image before and after the encryption
phase.

2FFE: 00 00 00 00 00 00 00 Q0 |........ - [3FFEB: 00 00 00 00 OO0 00 00 00 |........
4000: 00 30 FE F2 0D 72 92 CC | .=th.r'E 4000: 01 00 00 00 00 00 00 OO0 |........
4008: SE &F 01 15 78 33 07 OC |"o..x"_._ 4008z 00 00 00 00 00 00 00 OO0 |........
4010: 3E &1 532 &8 AB EF 51 AD |»a"h'd*- 4010 00 00 00 00 0O OO0 OO OO |._____...
4018: 10 7B CF 1% 0R 7C C5 33 |_{6_.|i3 4018: 00 00 00 00 00 00 00 OO0 |........
4020: EO0 E1 02 71 42 E4 09 F8 |f&.gB&.% 4020: 00 E1 02 71 42 E4 0% F8 |.&.gBa&.f
40Z8: 05 31 4D T& 37 31 325 33 | .1M=T153 4028: 05 31 4D TR 327 31 35 23 | .1M=zT153
4030: 48 4D 75 78 58 54 75 52 |HMuxXETuR 4030: 48 4D 75 78 58 54 75 52 |HMuxETuR
4038: 32 52 31 74 37 38 €D 47 |ZR1t7EmE 4038: 32 52 31 T4 37 38 €D 47 |ZR1t7EmE
4040: 53 &4 TR &1 41 74 4E &2 |Sd=z=zAtNb 4040: 53 &4 Th &8l 41 74 4E &2 |Sd=zs=htNb
4048: 42 57 58 00 00 00 00 00 |BWE..... 40458: 42 57 58 00 00 00 00 00 |BWE.....
4050z 00 00 00 00 00 00 00 00 |........ 4050z 00 00 00 00 00 00 00 00 |

As you can see, after use the key is erased.

What is the relationship between the victim ID and the Salsa key?

In the previous versions of Petya, the victim ID was, in fact, the victim’s Salsa20 key,
encrypted with the attacker’s public key and converted to Base58 string. So, although the
Salsa key is erased from the disk, a backup was still there, accessible only to the attackers,
who had the private key to decrypt it.

Now, it is no longer true. The victim ID is generated randomly, BEFORE the random Salsa
key is even made. So, in the current version, the relationship of the Salsa key and the victim
ID is none. The victim ID is just trash. You can see the process of generating it on the video.

8/10

'}
B

e Watch Video At:

L e U7 F—

Gl me DH -~ BXNENS D . TS

ttps://youtu.be/LSONWpRfVs8

After the reboot from the infected disk, we can confirm that the random string generated
before Salsa key and nonce is the same as the one displayed on the screen as the victim ID
(“personal installation key”):

Ooop=, your important files are encrypted.

If you =ee this text, then your files are no longer accessible, because they
have been encrypted. Perhaps you are busy looking for a way to recover your
files, but don’t waste your time. MNobody can recover your files without our
decryption service.

We guarantee that you can recover all your files safely and easily. All you
need to do is submit the payment and purchase the decryption key.

FPlease follow the instructions:

1. Send 5300 worth of Bitcoin to following address:

1Mz7153HMuxXTuRZR1t7BmGSdzafntNbBLX

Send your Bitcoin wallet ID and personal installation key to e-mail
wowsmithlZ3456@posteo.net. Your personal installation key:
EBw?¥Yc-aNgDoy-3SUcKX6-wYLzt3-h4eRcJ-R3f3af -Ft9xe j-Kk4vws5-LtUEJJ-EBNGoA

If you already purchased your key, please enter it belouw.
Key:

Conclusion

9/10

https://youtu.be/LS0nWpRfVs8

According to our current knowledge, the malware is intentionally corrupt in a way that the
Salsa key was never meant to be restored. Nevertheless, it is still effective in making people
pay ransom. We have observed that new payments are being made to the bitcoin account.
You can see the link to the bitcoin address here:
https://blockchain.info/address/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

Transactions (oidest First) Filter =
51048079b8799c55733¢cb930ebiB4aB635didbd2easda7bb8631327b07d567ce 2017-06-28 11:51:41
1hkYgppC19jje7esinVmdZ97DyZ8PxP5Z # 1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX

0.00001 BTC

0.00001 BTC
ccB6b68c2fabba80abb1 B5afebaal614a7de2c1 8B6aB80h308aced93adal 75ed0e 2017-06-28 11:51:11
34gpxu3uXEb7FgabBFhJ7bCoZhgsNMSLxs # 1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX 0.116 BTC
IKDpBVyyw2WIXekSVEUWzFLgQNmmzmPms

0.116 BTC

If you are a victim of this malware and you are thinking about paying the ransom, we warn
you: Don’t do this. It is a scam and you will most probably never get your data back.

We will keep you posted with the updates about our findings.

Appendix

Microsoft’s report about the new version of Petya

About the original version (Goldeneye):

Goldeneye Ransomware — the Petya/Mischa combo rebranded

This video cannot be displayed because your Functional Cookies are currently disabled.
To enable them, please visit our privacy policy and search for the Cookies section. Select
“Click Here” to open the Privacy Preference Center and select “Functional Cookies” in the
menu. You can switch the tab back to “Active” or disable by moving the tab to “Inactive.”
Click “Save Settings.”

This was a guest post written by Hasherezade, an independent researcher and programmer
with a strong interest in InfoSec. She loves going in details about malware and sharing threat
information with the community. Check her out on Twitter @hasherezade and her personal
blog: https.://hshrzd.wordpress.com.

10/10

https://blockchain.info/address/1Mz7153HMuxXTuR2R1t78mGSdzaAtNbBWX
https://blogs.technet.microsoft.com/mmpc/2017/06/27/new-ransomware-old-techniques-petya-adds-worm-capabilities/
https://blog.malwarebytes.com/threat-analysis/2016/12/goldeneye-ransomware-the-petyamischa-combo-rebranded/
https://www.malwarebytes.com/privacy/#how-we-collect-information
https://twitter.com/hasherezade
https://hshrzd.wordpress.com/

